i

Allen-Bradley

PLC-5
Programmable
Controllers

Instruction
Set Reference

)

NIC SANAT {"

it PP WK

'www.nicsanat.com
| 021-87700210 |

Important User Information

Solid state equipment has operational characteristics differing from
those of electromechanical equipment. “Safety Guidelines for the
Application, Installation and Maintenance of Solid State Controls”
(Publication SGI-1.1) describes some important differences between
solid state equipment and hard-wired electromechanical devices.
Because of this difference, and also because of the wide variety of
uses for solid state equipment, all persons responsible for applying
this equipment must satisfy themselves that each intended application
of this equipment is acceptable.

In no event will the Allen-Bradley Company be responsible or liable
for indirect or consequential damages resulting from the use or
application of this equipment.

The examples and diagrams in this manual are included solely for
illustrative purposes. Because of the many variables and requirements
associated with any particular installation, the Allen-Bradley
Company cannot assume responsibility or liability for actual use
based on the examples and diagrams.

No patent liability is assumed by Allen-Bradley Company with
respect to use of information, circuits, equipment, or software
described in this manual.

Reproduction of the contents of this manual, in whole or in part,
without written permission of the Allen-Bradley Company is
prohibited.

Throughout this manual we use notes to make you aware of
safety considerations.

ATTENTION: Identifies information about practices
or circumstances that can lead to personal injury or
death, property damage, or economic loss.

Attentions help you:
e identify a hazard
* avoid the hazard
e recognize the consequences

Important: Identifies information that is especially important for
successful application and understanding of the product.

Ethernet is a registered trademark of [ntel Corporation, Xerox Corporation, and Digital
Equipment Corporation.

Data Highway Plus, DH -, PLC, PLC-5, PLC-5/11, -5/20, -5/26, -3/30, -5/40, -5/46, -5/401., -3/60, -5/60L,
-5/80, -3/86, -3/20E, -5/40E, and -3/80F are trademarks of Rockwell Automation.

Allen-Bradley is a trademark of Rockwell Automation, a core business of Rockwell International
Corporation.

021-87700210

NIC SANAT r‘
AR =

PLC-5 Instruction Set Alphabetical Listing

PLC-5 Instruction Set Alphabetical Listing

For th!s .~ See Page: For this . See Page:
Instruction: Instruction:
ABL 17-5 CMP 3-3
ACB 17-7 cop 9-20
ACI 17-9* Cos 4-211
ACN 17-10* CPT 4-5
ACS 4-13 CTD 2-20
ADD 4-14 CTU 2-18
AEX 17-111 DDT 10-2
AFI 13-19 DEG 6-5
AHL 17-12* DFA 18-3
AIC 17-141 DIV 4-22
AND 5-2 DTR 10-8
ARD 17-15 EOT 13-24
ARL 17-181 EQU 3-6
ASC 17-211 FAL 9-2
ASN 4-151 FBC 10-2
ASR 17-22* FFL 11-5
ATN 4-16 FFU 11-5
AVE 4-171 FLL 9-21
AWA 17-23 FOR 13-8
AWT 17-26* FRD 6-4
BRK 13-8 FSC 9-15
BSL 11-2 GEQ 3-7
BSR 11-2 GRT 3-8
BTD 7-2 IDI 1-10?
BTR 15-4 IDO 1-112
BTW 15-4 IIN 1-8
Clo 15-252 loT 1-9
CLR 4-20 IMP 13-5

For th!s . See Page: For th?s . See Page:
Instruction: Instruction:
JSR 13-12 RES 2-25
LBL 13-5 RET 13-12
LEQ 39 RTO 2-13
LES 3-10 SBR 13-12
LFL 11-5¢ SDS 18-2
LFU 11-5 SFR 13-23¢
LIM 3-11 SIN 4271
LN 4-23! QI 12-2
LOG 4-241 SQL 12-2
MCR 13-3 SQO 12-2
MEQ 3-13 SQR 4-28
MOV 7-4 SRT 4-291
MSG 16-2 STD 4-311
MUL 4-25 SuB 4-34
MVM 7-5 TAN 4-351
NEG 4-26 TND 13-19
NEQ 3-15 TOD 6-3
NOT 5-4 TOF 2-9
NXT 13-8 TON 2-5
ONS 13-20 uiD 13-25¢
OR 5-6 UE 13-26*
OSF 13-22* XIC 1-3
OSR 13-211 XI0 1-4
OTE 1-5 XOR 5-8
oTL 1-6 XPY 4-361
0TU 1-7 1 EnhancedPLC-5 processors
PID NO TAG 2 ggl())/o programming software
with ControINet PLC-5
RAD 6-6 processors only

021-87700210

NIC SANET

2 g

PLC-5 Instruction Set Alphabetical Listing

See Table A for guidelines on choosing the appropriate instruction for
the operation you want to perform. Table B lists some examples.

Table A
Choosing an Instruction Category

If You Want to Perform Use this Instruction Category:
this Operation:
examine, check or control 2-state device or condition bit level

multiple 2-state devices or conditions multi-bit

move, copy, change, analog values, codes element level
compute, compare multiple sets of values file instructions
convert conversion instructions

time or delay timer

count counter

shift or track bit shift

sequence sequencer

PID PID

message sending/receiving message

transfer data to/from modules block transfer or ControlNet transfer

diagnostics, fault handling diagnostics

control the flow of your program program control

Table B

Example Operations

If Your Application Calls for Operations such as: Use:
detecting when a limit switch closes bit level
changing the temperature preset element level
transfer analog data block transfer

turn on a motor 10 seconds after a pump is activated timing

move 1 of 3 recipes into a work area multi-element

keep track of parts as they move from station to station ~ shifting

keep track of total parts in a bin counting

021-87700210

NIC SANET

2 g

Summary of Changes

Summary of Changes

New Information Added to The list below summarizes the changes that have been made to this
this Manual manual since the last printing:
For this Update Information: See Chapter:
Converting non-decimal numbers with the FRD instruction 6
How non-existing, indirect addresses affect the COP and 9
FLL instructions
How the .POS value operates in sequencer instructions 12
Using a RET instruction 13
Using the PID bias term 14
Using the no zero crossing (.NOZC) and no back calculation 14
(.NOBC) features in the PD control block
Clarification to error code 89 for MSG instruction 16
Ethernet PLC-5 processors now support SLC Typed Read and 16

SLC Typed Write MSG instructions

Configuring a multihop MSG instruction over Ethernet or 16
over ControlNet

Monitoring the status of the .EN bit in a continuous 16
MSG instruction

To help you find new information and updated information in this
release of the manual, we have included change bars as shown to the
left of this paragraph.

021-87700210

Summary of Changes

Notes:

021-87700210

NIC SANAT r‘
AR =

Preface

Conventions

Preface

This manual uses the following conventions:

¢ Unless otherwise stated:

References to: Include these Allen-Bradley Processors:
Classic PLC-5 processors PLC-5/10™, -5/12™ -5/15™ -5/25™ and -5/VME™ processors.
Enhanced PLC-5 processors PLC-5/11™, -5/20™ -5/30™, -5/40™, -5/40L™, -5/60™,

-5/60L™, and -5/80™ processors.

Note: Unless otherwise specified, Enhanced PLC-5 processors include
Ethernet PLC-5, ControINet PLC-5, Protected PLC-5 and VME PLC-5
processors.

Ethernet PLC-5 processors PLC-5/20E™, -5/40E™, and -5/80E™ processors.

ControlNet PLC-5 processors PLC-5/20C™, -5/40C™, -5/46C™, and -5/80C™ processors.

Protected PLC-5 processors 1 PLC-5/26™, -5/46™ and -5/86™ processors.

VME PLC-5 processors PLC-5/V30™, -5/V40™, -5/V40L™, and -5/V80™ processors. See the
PLC-5/VME VMEbus Programmable Controllers User Manual for more
information.

! Proteeted PLC-5 processors alone do not ensure PLC-3 sysiem security. Sysiem sceurity is a combination of
the Protected PLC-5 processor, the sofiware, and vour application cxpertisc.

* Words in square brackets represent actual keys that you press.
For example:

[Enter]; [F1l] - Online Programming/Documentation

e Words that describe information that you have to provide are
shown in italics. For example, if you have to type a file name, this
is shown as:

filename
* Messages and prompts that the terminal displays are shown as:

Press a function key

021-87700210

Preface

Notes:

021-87700210

NIC SANAT r‘
AR =

Table of Contents

Relay-Type Instructions
XIC, XIO, OTE, OTL, OTU, IIN, IOT,
IDI, IDO

Timer Instructions TON, TOF,
RTO Counter Instructions CTU,
CTD Reset RES

Chapter 1
Using Relay-Type Instructions, 1-1
I/0 Image Files in Data Storage 1-2
RUNGLOGIC .. oot e 1-2
ExamineOn (XIC). 1-3
Examine Off (XIO) 1-3
Energize (OTE). . ..ot e 1-4
Latch (OTL) . .. oo e 1-4
Unlatch (OTU)o 1-5
Immediate Input (IIN) 1-6
Immediate Output (I0T) 1-7
Immediate Data Input (IDI). 1-8
Immediate Data Output (IDO). 1-8
Using IDI'and IDO Instructions oot 1-9
Chapter 2
Using Timersand Counterscoovvunn... 2-1
USINg TIMEIS . . oo 2-1
Entering Parameters i 2-2
TIMEr ACCUTACY .+« v o v vt et et e e e a s 2-3
TimerOnDelay (TON) 2-4
Using Status Bits. 2-4
Timer Off Delay (TOF) 2-7
Using Status Bits 2-7
Retentive TimerOn(RTO) ..., 2-10
Using Status Bits 2-10
UsingCounters 2-13
Entering Parameters L. 2-13
CountUp (CTU) .o 2-15
Using Status Bits.oo i 2-15
Count DowN (CTD). .o v vt 2-17
Using Status Bits. 2-17
Timer and Counter Reset (RES). 2-20

021-87700210

NIC SANET

2 g

)

-

toc-2 Table of Contents

Compare Instructions
CMP, EQU, GEQ, GRT, LEQ, LES, LIM,
MEQ, NEQ

Compute Instructions

CPT, ACS, ADD, ASN, ATN, AVE,
CLR, COS, DIV, LN, LOG, MUL, NEG,
SIN, SRT, SQR, STD, SUB, TAN, XPY

Chapter 3
Using Compare Instructions., 3-1
Using Arithmetic StatusFlags 3-2
Compare (CMP). 3-2
Entering the CMP Expression. 3-2
Determining the Length of an Expression. 3-3
Equalto (EQU). 3-5
Greater than or Equal to (GEQ). 3-5
Greaterthan (GRT) i 3-6
Less than or Equal to (LEQ)ot 3-6
Lessthan (LES).o 3-7
Limit Test (LIM). ... e 3-7
Entering Parameters i 3-7
Mask Compare Equalto (MEQ) 3-9
Entering Parameters 3-9
Not Equal to (NEQ).o 3-10

Chapter 4
Using Compute Instructions., 4-1
Using Arithmetic StatusFlags 4-2
Data Types and the Compute Instruction. 4-3
Using Floating Point Data Types 4-4
Compute (CPT) ..o 4-5
Entering the CPT Expression 4-5
Determining the Length of an Expression. 4-7
Determining the Order of Operation. 4-8
Expression Examples. oo 4-8
Entering the Destination 4-9
Using CRTFunctions 4-9
Arc Cosine (ACS) . . .o 4-11
Addition (ADD). . ..o o 4-12
Arc Sine (ASN). . ..o o 4-13
Arc Tangent (ATN). 4-14
Average File (AVE). 4-15
Entering Parametersot 4-15
Using Status Bits. 4-16
Clear (CLR) e 4-17
Cosine (COS). . oot 4-18
Divide (DIV) . ..o ot 4-19
Natural Log (LN) 4-20
Log tothe Base 10 (LOG)., 4-21
Multiply (MUL). 4-22
Negate (NEG). 4-23
SINE(SIN) .« 4-24
Square ROOt (SQR). . ..o e 4-25
NIC SANFAT

-

7

Table of Contents toc-3

SortFile (SRT). ..o 4-26
Entering Parameters 4-26
Using Status Bits. 4-27
Standard Deviation (STD) ...t 4-28
Entering Parametersot 4-29
Using Status Bits. 4-29
Subtract (SUB).o 4-31
Tangent (TAN) 4-32
Xto the Power of Y (XPY).o 4-33
Logical Instructions Chapter 5
AND, NOT, OR, XOR Using Logical Instructions 5-1
Using Arithmetic Status Flags 5-1
AND Operation (AND).o 5-2
NOT Operation (NOT).o o 5-3
OROperation (OR). . ..o e 5-4
Exclusive OR Operation (XOR)coovun... 5-5
Conversion Instructions Chapter 6
FRD and TOD, DEG and RAD Using the Conversion Instructions 6-1
Using Arithmetic StatusFlags 6-1
Convertto BCD (TOD) . ..o oo 6-2
ConvertfromBCD(FRD) 6-2
Degree (DEQG)
(Enhanced PLC-5 Processors Only) 6-3
Radian (RAD)
(Enhanced PLC-5 Processors Only) 6-4
Bit Modify and Move Instructions Chapter 7
BTD, MOV, MVM Using Bit Modify and Move Instructions. 7-1
Bit Distribute (BTD) 7-2
Entering Parameters 7-2
Move (MOV) ... 7-3
Masked Move (MVM). 7-4
Entering Parameters, 7-4
File Instruction Concepts Chapter 8
Concepts of File Operation 8-1
Entering Parameters i i, 8-1
Using the Control Structure 8-2
Manipulating FileData., 8-3
Choosing Modes of Block Operation 8-5
AlEMOde ..o 8-5
Numerical Mode 8-6
Incremental Mode 8-7
Special Case, Numerical Mode with Words Per Scan = 1. . 8-8

toc—4 Table of Contents

File Instructions
FAL, FSC, COP, FLL

Diagnostic Instructions
FBC, DDT, DTR

Shift Register Instructions
BSL, BSR, FFL, FFU, LFL, LFU

Sequencer Instructions
SQO, SQI, SQL

021-87700210

Chapter 9
Using File Instructions., 9-1
File Arithmetic and Logic (FAL) 9-2
Using Status Bits. 9-4
FAL Copy Operations., 9-5
FAL Arithmetic Operations. 9-7
Upperand Lower Limits., 9-7
FAL Logic Operationsccoiiiiinnennn... 9-12
FAL Convert Operations.covvviennennn... 9-14
File Search and Compare (FSC)., 9-14
Using Status Bits. 9-15
FSC Search and Compare Operations 9-17
Data Conversionuieiinennennnnnns 9-17
File Search Operation c.ovvvunn. 9-17
File Copy (COP) . .. oo 9-19
Entering Parameterso 9-19
File Fill (FLL) ..o oo 9-20
Entering Parameterso, 9-20
Chapter 10
Using Diagnostic Instructions 10-1
File Bit Comparison (FBC) and Diagnostic Detect (DDT) 10-2
Selecting the SearchMode 10-2
One MismatchataTime.............., 10-2
AllPerScan.o 10-3
Entering Parameters 10-4
Using Status Bits. 10-5
Data Transitional (DTR), 10-8
Entering Parametersot 10-8
Chapter 11
Applying Shift Registers i, 11-1
Using Bit Shift Instructions 11-2
Entering Parametersot 11-2
Using Status Bits. 11-3
Using FIFO and LIFO Instructions. 11-5
Entering Parameters 11-5
Using Status Bits. 11-6
Chapter 12
Applying SEQUENCETS.\t 12-1
Using Sequencer Instructions 12-2
Entering Parametersot 12-2
Using Status Bits. 12-4
Resetting the Positionof SQO 12-6
Using SQI Without SQO 12-7

Table of Contents toc-5
Program Control Instructions MCR, ~ Chapter 13
JMP, LBL, FOR, NXT, BRK, JSR, Selecting Program Flow Instructions 13-1
Master Control Reset (MCR) 13-2
§ERR ER(?'— LTJ:\IIEDU'?EI ONS, OSR, OSF, Jump (JMP) and Label (LBL) 13-3
’ o USINgJIMP. ... oo 13-4
USINGLBL . ..o 13-4
For Next Loop (FOR, NXT), Break (BRK) 13-5
Entering Parametersot 13-6
USINgGFORo 13-6
USINgBRKo 13-7
USINg NXT . ..o 13-7
Jump to Subroutine (JSR), Subroutine (SBR),
andReturn (RET). 13-8
Passing Parameters., 13-8
Entering Parameters 13-10
Nesting Subroutine Files 13-10
USINgJSRo 13-11
USINgSBR. ... 13-11
USINgRET . ..o 13-12
Temporary ENd (TND) oo 13-13
Always False (AFI). ... 13-13
One Shot (ONS) 13-14
One ShotRising (OSR). 13-15
Entering Parameters, 13-15
One Shot Falling (OSF).t 13-16
Entering Parametersl 13-16
Sequential Function Chart Reset (SFR). 13-17
Entering Parametersl 13-17
End of Transition (EOT) iii... 13-18
User Interrupt Disable (UID). 13-19
User Interrupt Enable (VIE). 13-20
Process Control Instruction PID Chapter 14
USINgPID ... 14-1
PIDFeatures 14-2
Using PIDEquationsccoviiinennn... 14-2
Conversion of Gain Constants 14-3
Integral Term Implementation 14-3
Derivative Termo 14-4
Setting Input/Output Ranges, 14-5
Implementing Scaling to Engineering Units 14-5
Settingthe Dead Band 14-6
Using Zero-Crossingovvi e 14-6
Using No Zero Crossingo oo 14-7
Selecting the Derivative Term (Acts on PV or Error) 14-7

021-87700210

toc-6

Table of Contents

Setting Output Alarms.. 14-7
Using Output Limiting 14-7
Anti-Reset Windup. 14-8
Using a Manual Mode Operation (Bumpless Transfer) . .. 14-8
SetOutput. ... 14-8
Feedforward or OutputBiasing 14-9
Resume LastState 14-9
PIDINStruction.covvvii i 14-10
Using No Back Calculation. 14-11
Operational Status Bits 14-11
Integer Block. 14-11
PDBIOCK . .o et 14-12
Entering Parameters, 14-12
Using an Integer Data File Type for the Control Block. 14-14
Using Control Block Values 14-16
Using a PD File Type for the Control Block. 14-18
Using Control Block Values 14-23
Programming Considerations 14-25
RunTime Errors ... 14-25
Transferring Data to the PID Instruction 14-25
Loop Considerationscovveiieienn.. 14-26
Number of PIDLOOPS.o 14-26
LoopUpdate Time..........., 14-26
Descaling INnputs 14-27
PIDExamples 14-29
Integer Block (N) Examples 14-29
Main ProgramFile.............. 14-29
STIProgramFile it 14-30
RTSProgram File.o, 14-32
PDBlock Examples., 14-33
Main Program File. 14-33
STIProgramFileo 14-34
RTSProgramFile. 14-36
Ladder Logic Simulation of a Manual Control Station. . . 14-37
Cascading LOOPS. . .o oo e e 14-38
RatioControl oo, 14-38
Process Variable Tracking 14-39
PIDTREOIY ..\t 14-40

021-87700210

www.nicsanat.com @

NIC SANET

-

2 g

Table of Contents toc—7
Block-Transfer Instructions Chapter 15
BTR and BTW and ControlNet I/0 Using Block Transfer and ControlNet I/0
: Transfer Instructions. 15-1
Transfer Instruction CIO Using Block Transfer Instructions 15-1
Block-Transfer Read (BTR) and Block-Transfer Write (BTW). 15-3
Block-Transfer Request Queue 15-3
Entering Parameters 15-4
Using Status Bits. 15-6
Using the Control Block. 15-8
Requested Word Count (RLEN) 15-8
Transmitted Word Count (DLEN) 15-8
File Number (.FILE) i 15-9
Element Number (ELEM). 15-9
Selecting Continuous Operation. 15-10
Selecting Non-Continuous Operation. 15-12
Block Transfer Timing — Classic PLC-5 Processors 15-13
Instruction RunTime, 15-13
Waiting Time inthe Queue. 15-13
TransferTime ... 15-13
Block Transfer Timing — Enhanced PLC-5 Processors 15-14
Instruction RunTime, 15-14
Waiting Time in the Holding Area. 15-14
TransferTime ... 15-14
Programming Examples, 15-15
Example Bidirectional Alternating Block-Transfer. 15-16
Example Bidirectional Alternating Repeating
Block-Transfero, 15-17
Example Bidirectional Continuous Block-Transfer 15-18
Example Directional Non-Continuous Block-Transfer . . . 15-19
Example Directional Repeating Block Transfer. 15-19
Example Directional Continuous Block-Transfer. 15-20
Example Buffering Block Transfer-Data 15-21
ControlNet I/0 Transfer (CIO) Instruction 15-22
Control Block Addresst 15-22
Using the CIO Instruction.iinn... 15-23
Using Status Bits. 15-24
Using the CT Control Block 15-25

021-87700210

www.nicsanat.com @

NIC SANET

-

2 g

toc-8 Table of Contents

Message Instruction MSG

Chapter 16
Using the Message Instruction. 16-1
Message (MSG). 16-1
Entering Parameters, 16-2
Control Block Address 16-2
MSG Data Entry Screen.o i 16-3
Using the Message Instruction for Ethernet
ComMMUNICALIONSo v e e 16-5
Entering Parametersot 16-5
Using the Message Instruction for PLC-5 Ethernet Interface
Module Communications., 16-7
Entering Parameters 16-7
Configuring an Ethernet Multihop MSG Instruction. 16-9
Using the Message Instruction for ControlNet
CommMUNICALIONS . . .« oot 16-10
Control Block Addresst 16-10
Configuring a ControlNet Multihop MSG Instruction 16-11
Using Status Bits. 16-12
Using the Control Block. 16-13
Error Code (ERR). 16-13
Requested Length (RLEN). 16-13
Transmitted Length (DLEN). 16-13
Entering Parameters, 16-14
Communication Command 16-14
External Data Table Addresses. 16-15
PLC-2 to PLC-5 Compatibility Files 16-15
Sending SLC Typed Logical Read and Typed Logical
Write Commands 16-16
Monitoring a Message Instruction 16-17
Selecting Continuous Operation. 16-18
Selecting Non-Continuous Operation. 16-19
MSGTIMING ... 16-20
ErrorCodes. 16-22

021-87700210

www.nicsanat.com @

NIC SANET

-

2 g

Table of Contents toc-9
ASCII Instructions Chapter 17
ABL, ACB, ACI, ACN, AEX, AIC, AHL, ~ Using ASCII Instructions
ARD, ARL, ASC, ASR, AWA, AWT Enhapced PLC-5 .Processors only 17-1
Using Status Bits. 17-2
Using the Control Block 17-3
Length (LEN). ... 17-3
Position ((POS). 17-3
Using Strings.o 17-3
Test Buffer for Line (ABL), 17-4
Entering Parametersot 17-4
Number of Characters in Buffer (ACB) 17-5
Entering Parametersot 17-5
ASCII String to Integer (ACI).o 17-6
ASCII String Concatenate (ACN)., 17-7
ASCII String Extract (AEX) 17-7
Entering Parameters 17-7
ASCII Set or Reset Handshake Lines (AHL). 17-8
Entering Parametersot 17-8
ASCIl Integer to String (AIC).o 17-9
ASCIlI Read Characters (ARD).coovvvnnn, 17-10
Entering Parametersl 17-10
ASCIIRead Line (ARL) 17-12
Entering Parameters, 17-12
ASCII String Search (ASC)o 17-14
Entering Parameters, 17-14
ASCII String Compare (ASR). 17-15
ASCII Write with Append (AWA) 17-15
Entering Parameters 17-15
ASCITWrite (AWT) o oo e 17-17
Entering Parameters, 17-17
Custom Application Routine Chapter 18
Instructions SDS, DFA Chapter Objectives, 18-1
Smart Directed Sequencer (SDS) Overview 18-2
Programming the SDS Instruction 18-2
Diagnostic Fault Annunciator (DFA) Overview 18-3
Programming the DFA Instruction 18-3

021-87700210

www.nicsanat.com @

NIC SANET

-

2 g

toc-10 Table of Contents

Instruction Timing and
Memory Requirements

SFC Reference

Valid Data Types for
Instruction Operands

Appendix A-1

Instruction Timing and Memory Requirements. A-1

Timing for Enhanced PLC-5 Processors. A-2
Bit and Word Instructions. A-2
File Instructions. A-5

Timing for Classic PLC-5 Processors. A-10
Bit and Word Instructions. A-10
File Instructions. A-13

ProgramConstants A-17

Direct and Indirect Elements: Enhanced PLC-5 Processors . A-17
Direct and Indirect Elements: Classic PLC-5 Processors . .. A-18
Indirect Bit or Elements Addresses: Classic

PLC-5ProCESSOrS oot A-19
Additional Timing Considerations: Classic
PLC-5 PrOCESSOrS . oo e et A-20
Appendix B-1
Appendix Objectives B-1
SFC Status Information in the Processor Status File. B-1
Memory Allocation, B-3
Dynamic Constraints — Classic PLC-5 Processors Only B-5
Scanning SEqUENCES.o B-7
Step and Transition Scanning B-7
Selected Branch Scanning. B-8
Simultaneous Branch Scanning. B-9
SFC Example and Scan Sequence B-11
Run Times — Classic PLC-5 Processors. B-12
Using Sequence Diagrams to Determine Run Time B-13
Using Equations to Determine RunTime B-14
Appendix C-1
Appendix Objectives C-1
Instruction Operands and Valid Data Types C-1

021-87700210

www.nicsanat.com @

NIC SANET

-

2 g

Chapter 1

Using Relay-Type Instructions

Relay-Type Instructions XIC, XIO, OTE,
OTL, OTU, IIN, 10T, IDI, IDO

Use relay-type instructions to monitor and control the status of bits in
the data table, such as input bits or timer control-word bits. The relay
instructions let you:

If You Want to: Use this Instruction: Found on Page:
Examine a bit for an ON condition XiC 1-3
Examine a bit for an OFF condition XIO 1-3
Hold a bit ON or OFF (non-retentive) OTE 1-4
Latch a hit to ON (retentive) OTL 1-4
Unlatch a bit to OFF (retentive) oTU 1-5
Immediately update input image bits IIN 1-6
Immediately update outputs 10T 1-7
Immediately perform an update of DI 1-8

the ControlNet™ data input file from
the ControlNet memory buffers.

Immediately perform an update of IDO 1-8
the ControlNet memory buffers from

the source file before the next

output-image update

With these instructions, you can address bits in all sections of data
storage, but the examples in this chapter only show how to address
bits in the I/O image files.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

If you use relay-type instruction (OTE, OTL, or OTU) with indirect
addresses to set or reset a bit in the control file of a block-transfer or
message instruction, there may be conflicting results. Even though
the bit instruction is executed to set or reset a bit, its result might be
overwritten by the block-transfer or message operation that sets or
resets the same bit. These are asynchronous operations. The last
operation to set or reset the bit is the value that is saved in the

data table.

021-87700210

1-2

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, IOT, IDI, IDO

I/0 Image Files in Data Storage

The input image file in the processor stores the status of input sensors
connected to input module terminals.

If the Input Sensor Is: Then Its Corresponding Input Image Bit Is:
closed (on) on (1)
open (off) off (0)

You program instructions in ladder logic to monitor bits. Use a
logical address for the bit.

The output image file controls the status of actuators wired to output
module terminals.

If the Output Image Bit Is: Then Its Corresponding Output Is:
on (1) energized (on)
off (0) de-energized (off)

You program instructions in ladder logic to control bits.

Rung Logic

As each conditioning instruction is executed, the addressed bit is
examined to see if it matches a certain condition (on or off). If a
complete path of true conditions examined for are found, the rung
is set to true. The rung must contain a continuous path of true
instructions from the start of the rung to the output for the output
to be enabled.

021-87700210

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, 0T, IDI, IDO 1-3

Examine On (XIC)

Description:

=

Example:

1012
H
07

If you find an ON condition at bit :012/07 in
the input table, set this instruction true.

This bit corresponds to input terminal 7 of a
module in 1/0 group 2 of I/0 rack 1. If the input
circuit is true, the instruction is true.

Examine Off (XI0)

Description:

1/

Example:

[:012

i/
07

If you find an OFF condition at bit 1:012/07 in
the input table, set this instruction true.

This hit corresponds to input terminal 7 of a
module in 1/O group 2 of I/0 rack 1. If the input
circuit is false, the instruction is true.

When a device closes its circuit, the module whose input terminal is
wired to the device detects the closed circuit. The processor reflects
this ON state in the data table. When the processor finds an XIC
instruction that addresses the bit that corresponds to the input
terminal, the processor determines whether the device is ON (closed).
If the processor finds an ON state, it sets the logic for this instruction
true; if the processor finds an OFF state, it sets the logic for the
instruction not true.

If the XIC instruction is the only conditioning instruction on the rung,
the processor enables the output instruction when the XIC instruction
is true (input closed). The processor disables an output instruction
when the XIC instruction is false (input open).

The examine-on instruction is true or false depending on whether the
processor finds an ON or OFF condition at the addressed bit.

If the Bit Is: Then the Instruction Is: Bit Logic State:
on true 1
off false 0

When a device opens its circuit, the module whose input terminal is
wired to the device detects an open circuit. The processor reflects
this OFF state in the data table. When the processor finds an XIO
instruction that addresses the bit that corresponds to the input
terminal, the processor determines whether the device is OFF
(open). If the processor finds an OFF state, it sets the logic for this
instruction true. If the processor finds an ON state, it sets the X1O
instruction to false.

If the XIO instruction is the only conditioning instruction on the rung,
the processor enables the output instruction when the XIO instruction
is true (input open).

The examine off instruction is true or false depending on whether the
processor finds an OFF or ON condition at the addressed bit.

If the Bit Is: Then the Instruction Is: Bit Logic State:
off true 0
on false 1

021-87700210

1-4

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, IOT, IDI, IDO

Energize (OTE)

Description:
— H

Example:

0:013

—(M

01

Turn ON bit 0:013/01 of the output image table if
the rung is true. Turn it OFF if the rung is false.

This bit corresponds to output terminal 01 of a
module in /0 group 3 of I/0 rack 1.

Latch (OTL)

Description:
—(LH

Example:
0:.013

—(L H

01

Turn ON hit 0:013/01 of the output image table
if the rung is true.

This hit corresponds to output terminal 1 of a
module in I/0 group 3 of I/0 rack 1.

Use the OTE instruction to control a bit in memory. If the bit
corresponds to an output module terminal, the device wired to this
terminal is energized when the instruction is enabled and
de-energized when the instruction is disabled. If the input conditions
that precede the OTE instruction are true, the processor enables the
OTE instruction. If the input conditions that precede the OTE
instruction are false, the processor disables the OTE instruction.
When rung conditions become false, the corresponding device
de-energizes.

An OTE instruction is similar to a relay coil. The OTE instruction is
controlled by preceding input instructions; the relay coil is controlled
by contacts in its hard-wired rung.

The OTE instruction tells the processor to control the addressed bit
based on the rung condition:

If the Rung Is: Then the Processor Turns the Bit: Bit Logic State:
true on 1
false off 0

The OTL instruction is a retentive output instruction that can only
turn on a bit (it cannot turn off a bit). This instruction is usually used
in pairs with an OTU (unlatch) instruction, with both instructions
addressing the same bit.

When you assign an address to an OTL instruction that corresponds
to a terminal of an output module, the output device wired to this
terminal is energized when the processor sets (enables) the bit in
processor memory. If the input conditions that precede the OTL
instruction are true, the processor enables the OTL instruction. When
rung conditions become false (after being true), the bit remains set
and the corresponding output device remains energized. Use the OTU
instruction to turn OFF the bit you latched on with the OTL
instruction.

021-87700210

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, 0T, IDI, IDO 1-5

Unlatch (OTU)

Description:

—(uH

Example:
0:013

—(uH

01

Turn OFF bit 0:013/01 of the output image table
if the rung is true.

This bit corresponds to output terminal 1 of a
module in I/0 group 3 in I/0 rack 1.

When enabled, the latch instruction tells the processor to turn on the
addressed bit. Thereafter, the bit remains on, regardless of the rung
condition, until the bit is turned off, typically by an unlatch (OTU)
instruction in another rung.

Ifthe RungIs: Then the Processor Turns the Bit:

true on

false no change

When the processor changes from Run to Program mode or when the
processor loses power (and there is battery backup), the last true OTL
instruction continues to control the bit in memory. The latched output
device is energized even though the rung conditions that control the
instruction may have gone false.

Important: The OTL instruction is retentive. When the processor
loses power, is switched to Program mode or Test
mode, or detects a major fault, outputs go off; but the
states of retentive outputs are retained in memory.
When the processor resumes operation in Run mode,
retentive outputs immediately return to their previous
states. Non-retentive outputs, such as OTE outputs, are
reset.

The OTU instruction is a retentive output instruction that can only
turn off a bit (it cannot turn on a bit). This instruction is usually used
in pairs with an OTL (output latch) instruction, with both instructions
addressing the same bit. The OTU instruction turns OFF the bit,
which was turned ON (latched) by the OTL instruction.

When the processor changes from Run to Program mode or when the
processor loses power (and there is battery backup), the bit is retained
in the state set by the last rung of the latch/unlatch pair that was true.

The unlatch instruction tells the processor to turn off the addressed bit
based on the rung condition. Thereafter, the bit remains off,
regardless of the rung condition, until it is turned on, typically by a
OTL instruction in another rung.

If the Rung is: Then the Processor Turns the Bit:

true off

false no change

021-87700210

1-6

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, IOT, IDI, IDO

Immediate Input (IIN)

Description:

—(nH

Example:
RRG

— (N

Where:

RR = 1/0 rack number
00-03 PLC-5/10, -5/11, -5/12, -5/15, -5/20
00-07 PLC-5/25, -5/30
000-177 PLC-5/40, -5/40L
000-277 PLC-5/60, -5/60L, -5/80
G = 1/0 group number (0 - 7)

001
— (N

When the input conditions are true, update the
input image word corresponding to 1/0 rack 0,
group 1.

The 1IN instruction is an output instruction that, when enabled,
updates a word of input-image bits before the next regular
input-image update.

For inputs in the local chassis, the program scan is interrupted

while the inputs of the addressed 1/O group are examined. This

sets the input-image bits to the current states of the inputs before

the program scan continues. If the program reaches an enabled

1IN instruction while a block-transfer with the local chassis is in
progress, the processor completes the block-transfer before executing
the IIN instruction.

For inputs in a remote chassis, the program scan is interrupted only
to update the input image with the latest states of the inputs as found
in the remote I/O buffer (from the most recent remote 1/0 scan). The
inputs are not scanned before the program scan continues.

Place the rung with the IIN instruction immediately before rungs that
examine critical input bits updated by the IIN instruction.

For the IIN instruction, you only need to enter the I/O rack number
and the I/0 group number; you do not enter a file number.

ATTENTION: Do not enter an address that includes a
file number, such as 1:027. The processor interprets the
bit pattern found at that address as the I/O rack and I/O
group number of the inputs to update. Unexpected
operation will result with possible damage to equipment
and injury to personnel.

For more information on I/O scanning and block-transfers, see
chapter 15.

021-87700210

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, 0T, IDI, IDO 1-7

Immediate Output (IOT)

Description: The 10T instruction is an output instruction that, when enabled,
updates an I/O group of outputs before the next normal output-
—lo1
H image update.

Example:
P For outputs in the local chassis, the program scan is interrupted while
Rre the outputs of the addressed 1/O group are examined. This sets the
— (ot H puis o group .
Where: output circuits to the current states of the output bits in the output
' image table before the program scan continues. If the program
RR = I/0 rack number
00-03 PLC-5/10, -5/11, -5/12, -5/15, -5/20 reaches an enabled IOT instruction while a block-transfer is in
00-07 PLC-5/25, -5/30 progress, the processor completes the block-transfer before executing
000-177 PLC-5/40, -5/40L he IOT i .
000-277 PLC-5/60, -5/60L, -5/30 the Instruction.

G =1/0 group number (0 - 7) . . L.
For outputs in a remote chassis, the program scan is interrupted only

001 to update the remote I/O buffer with the current states of the
(1om)H output-image bits. This makes these states immediately available for
When the input conditions are true, update the the next remote I/O scan while the program scan continues. The

output image word corresponding to I/0 rack 0,

group 1 outputs are not scanned before the program scan continues.

Place the rung with the IOT output instruction immediately after
rungs that control critical output image bits to be updated by the
10T instruction.

For the 10T instruction, you only need to enter the I/O rack number
and the I/0O group number; you do not need to enter the file number.

ATTENTION: Do not enter an address that includes a
file number, such as O:027. The processor interprets the
bit pattern found at that address as the 1/O rack and 1/0
group number of the outputs to be updated. Unexpected
operation will result with possible damage to equipment
and injury to personnel.

For more information on I/O scanning and block-transfers, see
chapter 15.

021-87700210

1-8

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, IOT, IDI, IDO

Immediate Data Input (IDI)

DI
IMMEDIATE DATA INPUT

Data file offset 232
Length 10

Destination N10:232

Description:

Immediate Data Output (IDO)

DO
IMMEDIATE DATA OUTPUT

Data file offset 232
Length 10

Source N7:232

Description:

When the rung goes true, the IDI instruction performs an immediate
update of the ControlNet data input file from the ControlNet memory
buffers before the next normal input-image update (which occurs at
the end of the program scan).

To program an IDI instruction, you must provide the processor with
the following information that it stores in its control block:

* Data file offset specifies the offset into the Data Input File (DIF)
where words are read — can be an immediate value (0-999) or a
logical address that specifies the data image file offset.

* Length specifies the number of words to be transferred — an
immediate value (0-64) or a logical address that specifies the
number of words to be transferred.

* Destination specifies a data table address to be used as the
destination of the words to be transferred.

Important: The Destination should be the matching data-table
address in the Data Input File (DIF) except when you
use the instruction to ensure data-block integrity in the
case of Selectable Timed Interrupts (STIs). For more
information, see page 1-9.

When the rung goes true, the IDO instruction performs an immediate
update of the ControlNet memory buffers from the source file before
the next output-image update, sending the updated data output file
information across the ControlNet network to the appropriate
ControlNet device.

To program an IDO instruction, you must provide the processor with
the following information that it stores in its control block:

* Data file offset specifies the offset into the Data Output File
(DOF) where words are written — can be an immediate value
(0-999) or a logical address that specifies the data image
file offset.

* Length specifies the number of words to be transferred — an
immediate value (0-64) or a logical address that specifies the
number of words to be transferred.

* Source specifies a data table address to be used as the source of
the words to be transferred.

Important: The Source should be the matching data-table address in
the Data Output File (DOF) except when you use the
instruction to ensure data-block integrity in the case of
Selectable Timed Interrupts (STTs). For more

information, see page L9 §
www.nicsanat.com

021-87700210

Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, 0T, IDI, IDO 1-9

Using IDI and IDO Instructions

You can use the IDI and IDO instructions for immediate data input
and output on ControlNet.

For more detailed information about writing ladder programs, see
your programming manual.

Important: Be careful when using Selectable Timed Interrupts
(STIs) with a program on a ControlNet network.

A Selectable Timed Interrupt (STI) periodically interrupts primary
program execution in order to run a subprogram to completion. If an
STI occurs while a normal ControlNet non-discrete /0 transfer or a
ControlNet Immediate Data I/O instruction (IDI or IDO) is in
progress and they both operate on the same set of data, the integrity of
that block of data is jeopardized.

To ensure data-block integrity, write your STI routine so that it
operates on its own copy of the data block that it needs. Use
ControlNet Immediate Data I/O instructions (IDI and IDO) within
your STI to copy the needed block of data out to and back from a
temporary location that is different from that used by the normal
data table.

For detailed information on STIs, see your software user manual.

021-87700210

1-10 Relay-Type Instructions XIC, XIO, OTE, OTL, OTU, IIN, IOT, IDI, IDO

Notes:

021-87700210

NIC SANAT r‘
AR =

Chapter 2

Using Timers and Counters

Timer Instructions TON, TOF, RTO
Counter Instructions CTU, CTD
Reset RES

Timers and counters let you control operations based on time or
number of events. Table 2.A lists the available timer and counter
instructions.

Table 2.A
Available Timer and Counter Instructions

If You Want to: Use this Instruction: ~ Found on Page:
Delay turning on an output TON 2-4

Delay turning off an output TOF 2-7

Time an event retentively RTO 2-10

Count up CTU 2-15

Count down CTD 2-17

_Reset a_counter, timer, or counter RE 2-20

instruction

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

Using Timers

Before you program timer instructions, you need to understand the
parameters that you enter for timer instructions and how timer
accuracy works.

021-87700210

NIC SANAT r‘
AR =

2-2

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Entering Parameters

TON

TIMER ON DELAY
Timer

Time base
Preset

Accum

(o)~
o)

To program a timer instruction, provide the processor with the
following information:

e Timer is the timer control address in the timer (T) area of data
storage. Use the following address format:

T f = s
|— timer structure number (0-999)

timer file number (3-999)
timer (file type)

Important: You can use any timer file number from 3 to 999;
however, the default timer file number is 4. If you want
to specify a timer file number as any file between 3 and
8 (other than the default 4), you must first delete the
entire default file for that number, and then create the
timer file. For example, if you want a timer file number
as file 3, you must first delete the entire default binary
file and then create the timer file as file 3.

To access a timer status bit, preset, or accumulated value stored at the
timer control address, use the following address format:

Status Bit Preset Accumulated Value

Tfs.sb Tf:s.PRE Tf:s.ACC

The sb specifies a status bit mnemonic, such as .DN

Important: The processor stores timer status bits and the preset and
accumulated values in a 48-bit storage structure (three
16-bit words) in a timer file (T).

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

T4:0 :
EN|TT | DN internal use only Control word
- for T4:0
preset value (16 bits)
accumulated value (16 bits)
141 |EN | TT| DNl internal use only Control word
for T4:1
preset value (16 hits)
accumulated value (16 bits)
T4:2

021-87700210

NIC SANET

2 g

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-3

Timer Accuracy

* Time Base determines how the timer operates. Table 2.B lists the
possible time bases.

Table 1.B
Available Time Base Values

Enter This Time Base: The Accumulated Value Range Is:

1 second to 32,767 time-base intervals (to 9.1hours)

0.01 seconds (10ms) to 32,767 time-base intervals (to 5.5
minutes)

* Preset specifies the value which the timer must reach before the
processor sets the done bit (.DN). You must enter a preset value
from 0-32,767. The processor stores the preset value as a 16-bit
integer value.

Important: The Preset value operates differently if you are using a
TOF instruction. See page 2-7 for more information.

* Accumulated Value is the number of time increments the
instruction has counted. When enabled, the timer updates this
value continually. Typically, enter zero when programming the
instruction. If you enter a value, the instruction starts counting
time base intervals from that value. If the timer is reset, the
accumulated value is zero. The range for the accumulated value is
0-32,767. The processor stores the accumulated value as a 16-bit
integer.

Important: The Accumulated value operates differently if you are
using a TOF instruction. See page 2-7 for more
information.

Timer accuracy refers to the length of time between the moment the
processor enables a timer instruction and the moment the processor
completes the timed interval. Timer accuracy depends on the
processor clock tolerance and the time base. The clock tolerance is
10.02%. This means that a timer could time out early or late by 0.01
seconds (10ms) for a 0.01 second time base or 1 second for a 1 second
time base.

The 0.01-second timer maintains accuracy with a program scan of up
to 2.5 seconds; the 1-second timer maintains accuracy with a program
scan of up to 1.5 seconds. If your programs can exceed 1.5 or 2.5
seconds, repeat the timer instruction rung so that the rung is scanned
within these limits.

The displayed accumulated value of a timer shows actual time but is
dependent on CRT update time. The accumulated value might appear
to be less than the preset when the done bit is set.

021-87700210

2-4

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Timer On Delay (TON)

Description:
TON
TIMER ON DELAY _(EN)_
Timer

Time base —(DN)

Preset
Accum

This Bit: Is Set When:

Use the TON instruction to turn an output on or off after the timer has
been on for a preset time interval. The TON instruction starts
accumulating time when the rung goes true, and continues until one

of the following happens:

* the accumulated value equals its preset value

e the rung goes false

e areset instruction resets the timer

* the SFC step goes inactive

» the processor resets the accumulated value when the rung
conditions go false, regardless of whether the timer timed

out or not

Using Status Bits

Examine status bits in the ladder program to trigger some event. The
processor changes the states of status bits when the processor runs
this instruction. You address status bits by mnemonic.

Indicates:

And Remains Set Until One of the
Following Occurs:

Timer Enable.EN (bit 15) the rung goes true

that the timer is enabled

= the rung goes false
= areset instruction resets the timer
= the SFC step goes inactive

Timer Timing Bit .TT (bit 14) the rung goes true

that a timing operation is
in progress

e the rung goes false

 the .DN bit is set (ACC = .PRE)

e areset instruction resets the timer

« the associated SFC step goes inactive

Timer Done Bit .DN (bit 13)

the accumulated value is
equal to the preset value

that a timing operation
is complete

e the rung goes false
= areset instruction resets the timer
« the associated SFC step goes inactive

021-87700210

NIC SANET

2 g

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-5

If you set the done bit .DN using an OTE instruction, for example,
you can pause the timer. The .EN and .TT bits remain set, but the
accumulated value does not increment. Timing resumes when you
clear the .DN bit. If the rung goes false while the timer is paused, the
timer resets as normal.

1. Ifyou change to Program mode, or the processor loses power
before the instruction reaches the preset value, the following
occurs:

* timer enable (.EN) bit remains set
e timer timing (.TT) bit remains set
e accumulated (.ACC) value remains the same

2. Then when you switch back to Run mode or Test mode or power
is restored, the following happens:

Condition: Result:

If the rung is true: .EN bit remains set
.TT bit remains set
.DN bit remains reset
.ACC value is reset and starts counting up

If the rung is false: .EN bit is reset
.TT bit is reset
.DN bit is reset
.ACC value is reset

Figure 2.1
Example TON Ladder Diagram
[:012 — TON
1 L
] f TIMER ON DELAY —(EN }—
10 When the input condition is true, the Timer T4:0
processor increments the accumulated value)
of T4:0 in 1-second increments. Time base 10 DN)
Preset 180
Accum 0
T4:0 Sets the output while the timer is timing 0:013
1 L (
1 0 ()_
T 01
T4:0 Sets the output when the timer is done timing 0:013
1 L (
1 [()_
DN 02

When bit 1:012/10 is set, the processor starts T4:0. The accumulated value increments in 1-second intervals.
T4:0.TT is set and output hit 0:013/01 is set (the associated output device is energized) while the timer is timing.
When the timer is finished (.AACC = .PRE) T4:0.TT is reset (so 0:013/01 and the associated output device is
de-energized) and T4:0.DN is set (so 0:013/02 is set and the associated output device is energized). When the
accumulated value reaches 180, the .DN bit is set. Or if the rung goes false, the timer is reset.

021-87700210
NIC SANAT
D S

2-6

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

ON

Figure 2.2
Example TON Timing Diagram

Rung Condition OFF
!

ON |

|

|
Timer Enable Bit OFF
I

ON
Timer Timing Bit OFF
|

-

ON |

Timer Done Bit OFF |

Output Device on ||
(Controlled by Done Bit) orr

| \
I

Timer Accumulated Value — | <€—— 2 minutes

(Accumulator) | |
N

]

o 7]

120

\ \
3minutes —»ON 14— |
Delay |

|
! \

[
| \

180

<

Timer Preset = 180 16649

021-87700210

NIC SANET

2 g

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

2-7

Timer Off Delay (TOF)

TOF

Description:

TIMER OFF DELAY
Timer

Time base

Preset

Accum

()~
o)

This Bit:

Use the TOF instruction to turn an output on or off after its rung has
been off for a preset time interval. The TOF instruction starts
accumulating time when the rung goes false and continues timing
until one of the following conditions occur:

* the accumulated value equals its preset value

e the rung goes true

e areset instruction resets the timer

* the SFC step goes inactive

The processor resets the accumulated value when the rung conditions
go true, regardless of whether the timer timed out or not.

Using Status Bits

Examine status bits in the ladder program to trigger some event. The
processor changes the states of status bits when the processor runs
this instruction. You address the status bits by mnemonic.

Is Set When:

And Remains Set Until One of the
Following Occurs:

Timer Enable .EN (bit 15)

the rung goes true

= the rung goes false
e areset instruction resets the timer
» the SFC step goes inactive

Timer Timing Bit .TT (bit 14)

the rung goes false and the
accumulated value is less than
the preset

= the rung goes true

 the .DN bit is set (.ACC = .PRE)

< areset instruction resets the timer

« the associated SFC step goes inactive

Timer Done Bit .DN (bit 13)

the rung goes true

 the accumulated value is equal to the
preset value

www.nicsanat.com

021-87700210

2-8

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

If you set the done bit .DN using an OTE instruction, for example,
you can pause the timer. The .EN and .TT bits remain set, but the
accumulated value does not increment. Timing resumes when you
clear the .DN bit. If the rung goes false while the timer is paused, the
timer resets as normal.

1. If you change to Program mode, or the processor loses power, or
the processor fault interrupts the TOF instruction before it
reaches the preset value, the following occurs:

* timer enable (.EN) bit remains reset

e timer timing (.TT) bit remains set

* timer done (.DN) bit remains set

e accumulated (.ACC) value remains the same

2. Then if you switch to Run mode or Test mode, the following
happens:

Condition: Result:

If the rung is true: .EN hit is set
.TT bit is reset
.DN bit remains set
.ACC value is cleared

If the rung is false: .EN bit is reset
.TT bit is reset
.DN bit is reset
.ACC value equals PRE value
(the timer does not start timing)

ATTENTION: Because the RES instruction resets the
accumulated value, done bit and timing bits of a timing
instruction, do not use the RES instruction to reseta TOF
timer.

During prescan, the following happens:
e timer timing (.TT) bit is cleared

» accumulated (.(ACC) value is equal to the preset value

021-87700210

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-9
Figure 2.3
Example TOF Ladder Diagram
[:012 — TOF
1 L
] E TIMER OFF DELAY —(EN }—
10 When the input goes false, the processor starts Timer 140
incrementing the accumulated value in T4:0 in Time base 1.0 (DN
1-second increments until the input goes true.
Preset 180
Accum 0
T4:.0 Sets the output while the timer is timing 0:013
1 L (
1 0 ()_
T 01
T4:.0 Resets the output when the timer is done timing 0:013
1 L (
1 0 ()_
DN 02
When bit 1:012/10 is reset, the processor starts timer T4:0. The accumulated value increments by 1-second intervals as long as the
rung remains false. T4:0.TT is set and output bit 0:013/01 is set (the associated output device is energized) while the timer is timing.
When the timer is finished (.ACC = .PRE), T4:0.TT is reset (so 0:013/01 is reset and the associated output device is de-energized)
and T4:0.DN is reset (so 0:013/02 is reset and the associated output device is de-energized). When the accumulated value reaches
180 or when the rung conditions go true, the timer stops.
Figure 2.4
Example TOF Timing Diagram
N [-
Rung Condition OFF ‘ ‘ |
| I \
Timer Enable Bit oN
OFF | | | |
Timer Timing Bit N | . \
imer Timing Bi OFF | 1 |
\ \ |
. . ON 1 — o
Timer Done Bit ‘ ‘ ‘
OFF | ‘ | \
. ‘ | |
Output Device ON \ \
(Controlled by Done Bit) OFF | ‘ } \—l
| || OFFDelay } }
2 minutes 3 minutes
« = <«
Time \ | | | 180
! 120 |
\
Timer Accumulated Value \
(Accumulator) 0
Timer Preset = 180 16650
www.nicsanat.com
021-87700210
NIC SANRT

b TR AL

2-10

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Retentive Timer On (RTO)

Description:
RTO
RETENTIVE TIMER ON —(EN)—
Timer
Time base —(DN)
Preset
Accum

Use the RTO instruction to turn an output on or off after its timer has
been on for a preset time interval. The RTO instruction lets the timer
stop and start without resetting the accumulated value.

The RTO instruction begins timing when its rung goes true. As long
as the rung remains true, the timer updates the accumulated value
each program scan, until it reaches the preset value. The RTO
instruction retains its accumulated value even if one of the following
occurs:

e the rung goes false
* you change to Program mode
» the processor faults or loses power

* the SFC step goes inactive

When the processor resumes operation or the rung goes true, timing
continues from the retained accumulated value. By retaining its
accumulated value, retentive timers measure the cumulative period
during which its rung is true.

Important: To reset the retentive timer’s accumulated value and
status bits after the RTO rung goes false, you must
program a reset instruction RES with the same address
in another rung.

Using Status Bits

Examine status bits in the ladder program to trigger some event. The
processor changes the states of status bits when the processor runs
this instruction. You address the status bits by mnemonic.

This Bit: Is Set When: Indicates: And Remains Set Until One of the
Following Occurs:
Timer Enable Bit .EN (bit 15) the rung goes true that a timing operation is = the rung goes false
In progress * areset instruction resets the timer
Timer Timing Bit .TT (bit 14) the rung goes true that a timing operation is = the rung goes false
In progress « the .DN bit is set
= the accumulated value is equal to
the preset value (.ACC=.PRE)
e areset instruction resets the timer
Timer Done Bit .DN (bit 13) the accumulated value is that a timing operation the .DN bit is reset with the
equal to the preset value is complete RES instruction.

021-87700210

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-11

If you set the done bit .DN using an OTE instruction, for example,
you can pause the timer. The .EN and .TT bits remain set, but the
accumulated value does not increment. Timing resumes when you
clear the .DN bit. If the rung goes false while the timer is paused, the
timer resets as normal.

021-87700210

NIC SANET

2 g

1. Ifyou change to Program mode, or the processor loses power, or
a processor fault interrupts the RTO instruction, the following
occurs:
* timer enable (.EN) bit remains set
e timer timing (.TT) bit remains set
e accumulated (.ACC) value remains the same
2. When you switch back to Run mode or Test mode, the following
happens:
Condition: Result:
If the rung is true: .EN bit remains set
.TT bit remains set
.ACC value continues timing
If the rung is false: .EN bit is reset
.TT bit is reset
.DN bit remains the same
.ACC value remains the same
Figure 2.5
Example RTO Ladder Diagram
:012 — RTO
] F RETENTIVE TIMER ON —(EN
10" \When the input is true, the processor starts incrementing Timer T4:10
the accumulated value of T4:10 in 1-second increments. Time base 1.0 (DN)
The timer values remain when the input goes false. Preset 180
Accum 0
1:017 Resets the timer T4:10
I (RES }——
12

2-12

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Rung Condition

Timer Enable Bit

Reset Pulse

Timer Timing Bit

Timer Done Bit

Output Device
(Controlled by Done Bit)

Timer Accumulated Value
(Accumulator)

ON
OFF

ON
OFF

Figure 2.6

Retentive Timer Timing Diagram

Timer Preset = 180

16651

021-87700210

NIC SANET

2 g

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-13

Using Counters

CTu
COUNT UP
Counter
Preset
Accum

)
o)

Before using counter instructions, you need to understand the
parameters that you enter.

Entering Parameters

To program a counter instruction, provide the processor with the following
information:

* Counter is the counter control address in the counter (C) area of
data storage. Use the following address format:

c f = s

|— counter structure number (0-999)

counter file number (3-999)
counter (file type)

Important: You can use any counter file number from 3 to 999;
however, the default counter file number is 5. If you
want to specify a counter file number as any file
between 3 and 8 (other than the default 5), you must
first delete the entire default file for that number, and
then create the counter file. For example, if you want a
counter file number as file 3, you must first delete the
entire default binary file and then create the counter file
as file 3.

To access a counter status bit, preset value, or accumulated value, use
the following address format:

Status Bit Preset Accumulated Value

Cf.s.bb Cf.s.PRE Cf.s.ACC

The bb is a status bit mnemonic, such as .DN

Important: The processor stores counter status bits and the preset
and accumulated values in a storage structure (48 bits —
three 16-bit words) in a counter file (C) in the data table.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

C5:.0
cu [co [on| ov| un| | internal use only Control word
preset (16 bits) for C5:0
accumulated value (16 hits)
C5:1 - Control word
CU |CD | DN| ov | UN| | internal use only for C5:1
preset (16 bits)
accumulated value (16 bits)
C5:2

021-87700210

NIC SANET

2 g

2-14

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Preset specifies the value which the counter must reach before it
sets the done bit .DN. Enter a preset value from —32,768 up to
+32,767. The preset value is stored as a 16-bit integer value.
Negative values are stored in twos complement form.

Accumulated Value is the current count based on the number of
times the rung goes from false to true. The accumulated value is
stored as a 16-bit integer value. Negative values are stored in
twos complement form. The range of the accumulated value is —
32,768 to +32,767. Typically, you enter a zero value when
programming counter instructions. If you enter a non-zero value,
the instruction starts counting from that value. If the counter is
reset, the accumulated value is set to zero.

021-87700210

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-15

Count Up (CTU)

CTu
COUNT UP
Counter
Preset
Accum

Description:

o)
o)

This Bit:

The CTU instruction counts upward over a range of —32,768 to
+32,767. Each time the rung goes from false to true, the CTU
instruction increments the accumulated value by one count. When
the accumulated value equals or exceeds the preset value, the

CTU instruction sets a done bit .DN, which your ladder program can
use to initiate some action, such as controlling a storage bit or an
output device.

The accumulated value of a counter is retentive. The count is retained
until reset by a reset instruction (RES) that has the same address as
the counter.

Using Status Bits

Examine status bits in the ladder program to trigger some event. The
processor changes the states of status bits when the processor runs the

CTU instruction. You address the status bits by mnemonic.

Is Set:

And Remains Set Until One of the Following Occurs:

Count Up
Enable Bit .CU (bit 15)

when the rung goes true to indicate the
instruction has increased its count

Note: During prescan, this hit is set to prevent
a false count when the program scan begins.

the rung goes false
a RES instruction resets the .DN hit

Count Up
Done Bit .DN (bit 13)

when the accumulated value is greater than or
equal to the preset value

the accumulated value counts below the preset, either
by using a CTD instruction to count down or changing
the accumulated value

a RES instruction resets the .DN hit

Count Up
Overflow Bit .0V (bit 12)

when the up counter has exceeded the upper
limit of +32,767 and has wrapped around to —
32,768. The CTU counts up from there.

a RES instruction resets the .DN hit

counting back down to 32,767 with a CTD instruction
with the same address

ATTENTION: Place critical counters outside an MCR
zone or jumped sections of ladder program to guard
against invalid results that could lead to damaged
equipment or personnel injury.

021-87700210

2-16

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Figure 2.7
Example CTU Ladder Diagram

1:012 — CTU
1 L
1 [- ' COUNT UP _(cu)_

10 Each time the input goes false to true, Counter C5:0

the processor increments the counter '
by 1. Preset 4 |—(DN)
Accum 0

C5:0 Tells when the count is reached (ACC > or = PRE) 0:020
1 L (
1 C ()_

01

DN

C5:0 Tells when the counter overflows +32,767 0:021
1 L ()
1 C \ow

ov
1017 Reset the counter C5:0
1 L (
1 (RES }——

12

Rung condition that
controls counter

Count-up enable bit

Rung condition that
controls reset instruction

Done Bit

Output instruction on rung
controlled by counter

Counter Accumulated Value

Figure 2.8
Example CTU Timing Diagram

Counter preset = 4 counts

OFF

ON
OFF

OFF

16636

021-87700210

NIC SANET

2 g

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-17

Count Down (CTD)

CTD

COUNT DOWN
Counter
Preset

Accum

Description: The CTD instruction counts downward over a range of +32,767 to
—32,768. Each time the rung goes from false to true, the CTD

(CD) instruction decrements the accumulated value by one count. The
done bit .DN is set as long as the accumulated value is greater than or

(o) equal to the preset value. When the accumulated value is less than the
preset value, the done bit .DN is reset, which your ladder program can

use to initiate some action, such as controlling a storage bit or an
output device.

The accumulated value of a counter is retentive. The count is retained
until reset by a reset instruction (RES) that has the same address as
the CTD instruction.

Using Status Bits

Examine status bits in the ladder program to trigger some event. The
processor changes the states of status bits when the processor runs
this instruction. You address the status bits by mnemonic.

This Bit: Is Set: And Remains Set Until One of the Following Occurs:
Count Down when the rung goes true to indicate that the = the rung goes false
Enable Bit .CD (bit 14) counter is enabled as a down-counter. e a RES instruction resets the .DN bit

Note: During prescan, this hit is set to prevent
a false count when the program scan begins.

Count Down
Done Bit .DN (bit 13)

when the accumulated value is greater than or e the accumulated value counts below the preset
equal to the preset value. another instruction changes the accumulated value
< aRES instruction resets the .DN bit

Count Down
Underflow Bit (.UN) (Bit 11)

by the processor to show that the down < aRES instruction resets the .DN hit

counter went below the lower limit of —32,768 | o count hack up to -32,768 with a CTU instruction
and has wrapped around to +32,767. The CTD

instruction counts down from there.

ATTENTION: Place critical counters outside an MCR
zone or jumped sections of ladder program to guard
against invalid results that could lead to damaged
equipment or personnel injury.

021-87700210

2-18

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Figure 2.9

Example CTD Ladder Diagram

1:012 — CTD
1 L
] E COUNT DOWN —(CD
10 Each time the input goes from false to true, Counter C5:0
the processor decrements the counter by 1.
Preset 4 [—DN)
Accum 8
C5:0 Tells when the count is reached (ACC > or = PRE) 0:020
1 [(
1 [(—
DN 01
C5:0 Tells when the counter underflows -32,768 0:021
- G —
1:017 Resets the counter C5:0
1 L
] [(RES }——
12

Rung condition that
controls counter

Count-up enable bit

Rung condition that
controls reset instruction

Done Bit

Output instruction on rung
controlled by counter

Counter Accumulated Value

Figure 2.10
Example CTD Timing Diagram

Counter preset = 4 counts
Counter accumulated = 8

o

16637

021-87700210

NIC SANR

T

R S

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES 2-19
Figure 2.11
Example CTU and CTD Logic Diagram
: — CTU
l_iOli Count up pushbutton
] E COUNT UP —(CU
10 Counter C5:0
Preset 4
Accum 0 _(DN)
.I|:01r2 Count down pushbutton — ¢TD
] F COUNT DOWN —(CD
11 Counter C5:0
Preset 4
DN
Accum 0 _()
C5:0 Tells when the count is reached (ACC > or = PRE) 0:013
1T (
1 0 ()_
DN 01
C5:.0 Tells when the counter overflows +32,767 0:013
1T
1 0 ()_
ov 02
C5:0 Tells when the counter underflows -32,768 0:013
1T
1 0 ()_
UN 03
1:017 Resets the counter C5:.0
1T
] [(RES }——
12
Figure 2.12
Example CTU and CTD Timing Diagram
ON
Count Up Pushbutton M
OFF
L Lo
Lol .
N N
Count Down Pushbutton OFF | i | | | i | -
o } } }]
o } \ BE Loy bl
Reset Pulse I \ L [b
OFF 1] T R
L L
I T A o
one Bit oFF } ‘ } ’—‘! | } | } ‘ } f’i‘
o | .
o b s
| la | | |
AE By L,
M o M
Counter Accumulated Value [
Count Up Preset =4
Count Down Preset = 4 16652
www.nicsanat.com
021-87700210
NIC SEANRT

2 g

2-20

Timer Instructions TON, TOF, RTO Counter Instructions CTU, CTD Reset RES

Timer and Counter Reset (RES)

Description: The RES instruction is an output instruction that resets a timer or
counter. The RES instruction executes when its rung is true.
—(RES)—

When Using a RES Instruction for a: The Processor Resets the:

Timer .ACC value
(Do not use a RES instruction for a TOF.) .EN bit

TT bit

.DN bit

Counter .ACC value
.EN bit

.0V or .UN hit
.DN bit

If the counter rung is enabled, the CU or CD bit will be reset as long
as the RES instruction is enabled.

Important: You can use a negative preset value in a CTU or CTD
instruction if you intend to use the RES instruction.
However, note that the RES instruction sets the
accumulated value to zero, which may set the .DN bit
and prevent the CTU or CTD instruction from operating
the next time it is enabled.

ATTENTION: Because the RES instruction resets the
accumulated value, .DN bit and .TT bit of a timing
instruction, do not use the RES instruction to reseta TOF
instruction; unpredictable machine operation or injury
to personnel may occur.

Figure 2.13
Example RES Ladder Diagram
1:012 — CTD
1 L
] L COUNT DOWN —(CD —
10 Each time the input goes from false to true, the Counter C5:0
rocessor decrements the counter by 1.
P ! y Preset 4 HDN)
Accum 8
C5:0 Tells when the count is reached (ACC > or = PRE) 0:020
L
] C ()_
DN 01
[:017 Resets the counter C5:0
1 L (
1 (RES }——
12

021-87700210

Chapter 3

Using Compare Instructions

Compare Instructions CMP, EQU, GEQ,
GRT, LEQ, LES, LIM, MEQ, NEQ

The comparison instructions let you compare values using an
expression or a specific comparison instruction. Table 3.A lists the

available compare instructions.

Table 3.A
Available Compare Instructions

If You Want to: Use the . On
Instruction: Page:
Compare values based on an expression CMP 3-2
Test whether two values are equal EQU 3-5
Test whether one value is greater than or equal to a GEQ 3-5
second value
Test whether one value is greater than a second value ~ GRT 3-6
Test whether one value is less than or equal to a LEQ 3-6
second value
Test whether one value is less than a second value LES 3-7
Test whether one value is between two other values LIM 3-7
Pass two values through a mask and test whether MEQ 3-9
they are equal
Test whether one value is not equal to a second value ~ NEQ 3-10

Important: You can compare values of different data types, such as
floating point and integer. You should use BCD and
ASCII values for display purposes. If you enter BCD or
ASCII values, the processor treats those values as
integers. For example, if the value at N7:2 is 10
(decimal) and the value at D9:3 is 10 (BCD), the
comparison of N7:2 = D9:3 evaluates as false. The 10 in
BCD translates to 0000 0000 0001 0000; the 10 in
decimal translates to 0000 0000 0000 1010.

The parameters you enter are program constants or logical addresses

of the values you want to compare.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see

Appendix C.

021-87700210

NIC SANAT r‘
AR =

3-2

Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ

Using Arithmetic Status Flags

Compare (CMP)

CMP

Description:

COMPARE

Expression

The arithmetic status flags are in word 0 bits 0-3 in the processor
status file (S). Monitor these bits if you perform an arithmetic
function within the CMP instruction. Table 3.B lists the status bits:

Table 3.B
Arithmetic Status Bits

This Bit: Description:

S:0/0 Carry (C)
S:0/1 Overflow (V)
S:0/2 Zero (2)
S:.0/3 Sign (S)

The CMP instruction compares values and performs logical
comparisons.

The CMP instruction is an input instruction that performs a
comparison on arithmetic operations you specify in the expression.
When the processor finds the expression is true, the rung goes true.
Otherwise, the rung is false. With Enhanced PLC-5 processors, you
can enter multiple operands (complex expression).

The execution time of a CMP instruction is longer than the execution
time of one of the other comparison instructions (e.g., GRT, LEQ,
etc.). A CMP instruction also uses more words in your program file
than the corresponding comparison instruction.

Entering the CMP Expression

The expression defines the operations you want to perform. Define
the expression with operators and addresses or program constants.
With Enhanced PLC-5 processors, you can enter complex
expressions. Table 3.C lists valid operations for an expression; the
following list provides guidelines for writing expressions.

* Operators (symbols) define the operations

e Addresses can be direct, indirect, or indexed address(es) (must be
word level)

* With Enhanced PLC-5 processors, program constants can be
integer or floating-point numbers (if you enter octal values, use a
leading &O; if you enter hexadecimal values, use a leading &H;
if you enter binary values, use a leading &B)

021-87700210

Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ

3-3

Table 3.C

Valid Operations for Use in a CMP Expression

Type Operator Description Example Operation
Comparison = equal to if A=B, then ...
<> not equal to if A<> B, then ...
< less than if A<B, then ...
<= less than or equal to if A<= B, then ...
> greater than if A> B, then ...
>= greater than or equal to if A>=B, then ...
Arithmetic + add 2 + 3 Enhanced PLC-5 processor:
2+3+7
- subtract 12-5
* multiply 5*%2 PLC-5/30, -5/40, -5/60,
-5/80: 6*(5*2)
| (vertical bar) divide 2416
- negate —-N7:0
SQR square root SQR N7:0
* exponential 10**3

(x to the power of y)

(Enhanced PLC-5 processors only)

Conversion FRD

convert from BCD FRD N7:0
to binary
TOD convert from binary TOD N7:0

to BCD

Determining the Length of an Expression

Enhanced PLC-5 processors support complex instructions (up to a
total of 80 characters, including spaces and parentheses). Depending
on the operator, the processor inserts characters before/after the
operator in your expression to format the expression for easier
interpretation. Use Table 3.D to determine the number of characters

each operator uses in an expression.

Important: You cannot enter floating point numbers in scientific
notation with negative exponents in complex
expressions. Instead, use the decimal equivalent or put
the number in a floating point file and use the data
address in the complex expression.

www.nicsanat.com

021-87700210

3-4

Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ

Example:

— CMP

With the CMP instruction, a maximum of 80 characters of the
expression can be displayed. If the expression you enter is near this
80 character maximum, when you accept the rung containing the
instruction, the processor may expand it beyond 80 characters. When
you try to edit the expression, only the first 80 characters are
displayed and the rung is displayed as an error rung. The processor
does contain the complete expression, however, and the instruction
runs properly.

To avoid this display problem, export the processor memory file and
make your edits in the PC5 text file. Then import this text file. For
more information on importing/exporting processor memory files, see
your programming manual.

Table 3.D
Character Lengths for Operators

Uses this Number

This Operation: Using this Operator: of Characters:
math binary + =% 3

OR, ** 4

AND, XOR 5
math unary — (negate) 2

LN 3

FRD, TOD, DEG, RAD, SQR, NOT, LOG, SIN, 4
COS, TAN, ASN, ACS, ATN

COMPARE

Expression

(N7:0 + N7:1) > (N7:2 + N7:3)

comparative = <, > 3
<> <=, >= 4
0:013
4 \ |
\ 7

The CMP instruction tells an Enhanced PLC-5 processor: if the sum of the values in N7:0 and N7:1 is greater than the sum of the
values in N7:2 and N7:3, set output bit 0:013/01. (The total number of characters used in this expressions is 3.)

For more information on entering complex expressions, see chapter 4.

021-87700210

NIC SANAT r‘
AR =

Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ 3-5

Equal to (EQU)

Description: Use the EQU instruction to test whether two values are equal.
- Source A and Source B can either be values or addresses that contain
values.

EQUAL

Source A

Source B

Example:

EQU 0:013 |
EQUAL ()
Source A N7:5 01 |
Source B N7:10

If the value in N7:5 is equal to the value in N7:10, set output bit 0:013/01.

Greater than or Equal to (GEQ)

Description:

GEQ
GREATER THAN OR EQUAL

Source A

Source B

Floating point values are rarely absolutely equal. If you need to
determine the equality of floating point values, use the LIM
instruction (instead of the EQU). For information on the LIM
instruction, see page 3-7.

Use the GEQ instruction to test whether one value (Source A) is
greater than or equal to another value (Source B). Source A and
Source B can be values or addresses that contain values.

Example:
GEQ 0:013 |
GREATER THAN OR EQUAL ()
Source A N7:5 01 |
Source B N7:10

If the value in N7:5 is greater than or equal to the value in N7:10, set output bit 0:013/01.

021-87700210

3-6 Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ

Greater than (GRT)

Description: Use the GRT instruction to test whether one value (Source A) is

GRT greater than another value (Source B). Source A and Source B can
GREATER THAN OR EQUAL either be values or addresses that contain values.
Source A
Source B
Example:
GRT 0:013 |
GREATER THAN ()
Source A N7:5 01 |
Source B N7:10

If the value in N7:5 is greater than the value in N7:10, set output bit 0:013/01.

Less than or Equal to (LEQ)

Description: Use the LEQ instruction to test whether one value (Source A) is less
50 than or equal to another value (Source B). Source A and Source B can
LESS THAN OR EQUAL either be values or addresses that contain values.

Source A

Source B

Example:
LEQ 0:013 |
LESS THAN OR EQUAL ()
Source A N7:5 01 |
Source B N7:10

If the value in N7:5 is less than or equal to the value in N7:10, set output bit 0:013/01.

021-87700210

Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ 3-7

Less than (LES)

Description: Use the LES instruction to test whether one value (Source A) is less

LES than another value (Source B). Source A and Source B can be values
LESS THAN or addresses that contain values.
Source A
Source B
Example:
LES 0:013 |
LESS THAN ()
Source A N7:5 01 |
Source B N7:10

If the value in N7:5 is less than the value in N7:10, set output bit 0:013/01.

Limit Test (LIM)

Description: The LIM instruction is an input instruction that tests for values inside

LIM of or outside of a specified range. The instruction is false until it

LIMIT TEST (CIRC) detects that the test value is within certain limits. Then the instruction
Low limit goes true. When the instruction detects that the test value goes outside
Test certain limits, it goes false.

High limit

You can use the LIM instruction to test if an analog input value is
within specified limits.

Entering Parameters

To program the LIM instruction, you must provide the processor with
the following:

Parameter: Definition:

Low Limit a constant or an address from which the instruction reads the
lower range of the specified limit range. The address contains an
integer or floating-point value.

Test Value the address that contains the integer or floating-point value you
examine to see whether the value is inside or outside the
specified limit range.

High Limit a constant or an address from which the instruction reads the
upper range of the specified limit range. The address contains an
integer or floating-point value.

021-87700210

3-8

Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ

LIM Example Using Integer:

Example (when the Low Limit is less
than the High Limit):

— LIM

If value Low Limit < value High Limit: When the processor
detects that the value of B (Test) is equal to or between limits, the
instruction is true; if value Test is outside the limits, the
instruction is false.

from -32,768 oo Ao Cl oo to +32,767
<value B >

If value Low Limit > value High Limit: When the processor
detects that the value of Test is equal to or outside the limits, the
instruction is true; if value Test is between, but not equal to either
limit, the instruction is false.

true < | ------ false------ > true
from-32,768 C Aol to +32,767
valueB < < valueB
0:013 |
LIMIT TEST (CIRC) ()

N7:10 01 |
N7:15
N7:20

If the value in N7:15 is greater than or equal to the value in N7:10 and less than or equal to the value in
N7:20, set output bit 0:013/01.

021-87700210

Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ

3-9

Mask Compare Equal to (MEQ)

Description: The MEQ instruction is an input instruction that compares a value
MEQ ——————— from a source address with data at a compare address, and allows
MASKED EQUAL portions of the data to be masked. If the data at the source address
Source matches the data at the compare address bit-by-bit (less masked bits),
Mask the instruction is true. The instruction goes false as soon as it detects a
Compare mismatch.
You can use the MEQ instruction to extract (for comparison) bit data
such as status or control bits from an element that contains bit and
word data.
Entering Parameters
To program the MEQ instruction, you must provide the processor
with the following:
Parameter: Definition:
Source a program constant or data address from which the instruction reads an
image of the value. The source remains unchanged.
Mask specifies which bits to pass or block. A mask passes data when the
mask bits are set (1); a mask blocks data when the mask bits are reset
(0). The mask must be the same element size (16-hits) as the source
and compare address. In order for bits to be compared, you must set (1)
mask bits; bits in the compare address that correspond to zeros (0) in
the mask are not compared. If you want the ladder program to change
the mask value, store the mask at a data address. Otherwise, enter a
hexadecimal value for a constant mask value. If you enter a hexadecimal
value that starts with a letter (such a F800), enter the value with a
leading zero. For example, type 0F800
Compare specifies whether you want the ladder program to vary the compare
value, or a program constant for a fixed reference. Use 16-bit elements,
the same as the source.
Example: source 01010101 01011111
Mask 111113111 11110000
Compare 01010101 0101xxxx
Result The instruction is true because
reference bits xxxx are not compared.
— MEQ 0:013 |
MASKED EQUAL (),
Source N7:5 ot |
Mask N7:6
Compare N7:10

The processor passes the value in N7:5 through the mask in N7:6. It then passes the value in N7:10 through the mask
in N7:6. If the two masked values are equal, set output bit 0:013/01

021-87700210

NIC SANET

e o

7

3-10 Compare Instructions CMP, EQU, GEQ, GRT, LEQ, LES, LIM, MEQ, NEQ

Not Equal to (NEQ)

Description: Use the NEQ instruction to test whether two values are not equal.

NEQ Source A and Source B can be values or addresses.

NOT EQUAL

Source A

Source B

Example:

NEQ 0:013 |
NOT EQUAL ()
Source A N7:5 01 |
Source B N7:10

If the value in N7:5 is not equal to the value in N7:10, set output bit 0:013/01.

021-87700210

Chapter 4

Compute Instructions CPT, ACS, ADD,
ASN, ATN, AVE, CLR, CQS, DIV, LN, LOG,
MUL, NEG, SIN, SRT, SQR, STD, SUB,
TAN, XPY

Using Compute Instructions The compute instructions evaluate arithmetic operations using an
expression or a specific arithmetic instruction. Table 4.A lists the
available compute instructions.

Table 4.A
Available Compute Instructions

If You Want to: IUnssetrt:Eion: EZ;Z? o
Evaluate an expression CPT 4-5
Take the arc cosine of a number ACS* 4-11
Add two values ADD 4-12
Take the arc sine of a number ASN* 4-13
Take the arc tangent of a number ATN* 4-14
Calculate the average for a set of values AVE* 4-15
Clear an address word (set all bits to zero) CLR 4-17
Take the cosine of a number Cos* 4-18
Divide two values DIV 4-19
Take the natural log of a number LN* 4-20
Take the log of a number LOG* 4-21

* Only Enhanced PLC-5 processors support this instruction.

(Continued)

021-87700210

NIC SANAT r‘
AR =

4-2 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Using Arithmetic Status Flags

If You Want to: }Jnssetrt:ci:fion: 5232? o
Multiply two values MUL 4-22
Take the opposite sign of a value NEG 4-23
Take the sine of a number SIN* 4-24
Take the square root of a value SQR 4-25
Sort a set of values into ascending order SRT* 4-26
Calculate the standard deviation for a set of values ~ STD* 4-28
Subtract two values SuUB 4-31
Take the tangent of a number TAN* 4-32
Raise a number to a power XPY* 4-33

* Only Enhanced PLC-5 processors support this instruction.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see

Appendix C.

The arithmetic status flags are in word 0 bits 0-3 in the processor
status file (S). Table 4.B lists the status bits:

Table 4.B
Arithmetic Status Bits

This Bit: Description:

S:0/0 Carry (C)
S:0/1 Overflow (V)
S:0/2 Zero (2)
S:0/3 Sign (S)

021-87700210

NIC SANET

2 g

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

4-3

Data Types and the
Compute Instruction

You can compute values of different data types, such as floating point
and integer. If you use a floating-point as the source, use a
floating-point as the destination; otherwise, the destination value will

be rounded.

You should use BCD and ASCII values for display purposes. If you
enter BCD or ASCII values, the processor treats those values as

integers.

The parameters you enter are program constants or logical addresses

of the values you want.

If You are Using this Processor:

The Processor Rounds:

Classic PLC-5

the final value of a mathematical operation before
storing the final result. The processor rounds to
the nearest whole number: The processor rounds
values of 0.5-0.9 up to the next whole number; the
processor rounds values of 0.1- 0.4 down to the
closest whole number. If this value is greater than
32,767 or less than —32,768, the overflow status
bit is set.

Enhanced PLC-5

down if the value is < 0.5, up if the value is > 0.5,
and to the nearest even number if the value is =
0.5. If this value is greater than 32,767 or less
than —32,768, the processor “wraps” negative
(32,767, -32,768, —32,767, —32,766, etc.). For
example, if you have an ADD instruction with a
result greater than 32,767, the overflow bit is set,
the sign bit is set, and the result is negative:
32,767 +5=-32,764.

Important: If you are using an Enhanced PLC-5 processor and an
arithmetic operation generates an overflow, the upper
bits are lost, but the lower bits are correct. If you then
perform a logical operation on the lower word (AND or
OR), you can get the proper result. Also, using the carry
bit, you can do multi-word arithmetic (i.e., add two

32-bit words).

021-87700210

NIC SANET

2 g

4-4 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

For example, if: valuel =N7:0 and N7:1
value2 = N7:2 and N7:3
result = N7:4 and N7:5

and you want to add valuel to value2, your ladder program would be:

1:012 — ADD
] F ADD
10 Add the lower words of valuel and value2. Source A N7:1
Source B N7:3
Dest N7:5
1:012 — AND
| [BITWISE AND
10 Capture the carry bit. Source A 50
Source B 1
Dest N7:4
| 1:012 — ADD
] ! ADD
| 10 Add the high word of valuel to the carry bit. Source A NT:0
Source B N7:4
Dest N7:4
| 1:012 — ADD
] ADD
| 10 Add the high word of value2 to this sum. Source A N7:2
Source B N7:4
Dest N7:4

Using Floating Point Data Types

For an Enhanced PLC-5 processor, if you use floating point data
types and the result is too large or if it is undefined (i.e. natural log of
0), the processor sets the overflow bit.

If the result it too large, a ! +INF! is displayed; if the result to too
small, a ! -INF! is displayed. If the value is not a number, ! NAN!
is displayed.

Important: Ifyou are using floating point and the number is greater
than 32,767 or less than —32,768, you must use a
decimal point. If you do not use a decimal point, the
error INVALID OPERAND appears.

When you use complex expressions, if any operand is floating
point, the entire expression is evaluated as floating point. See the
example in the “Expression Examples™ section on page 4-10 for
more information.

021-87700210

NIC SANRT

—

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-5

Compute (CPT)

CPT
COMPUTE
Destination

Expression

Description:

The CPT instruction performs copy, arithmetic, logical, and
conversion operations.

The CPT instruction is an output instruction that performs the
operations you define in the expression, and writes the result into the
destination address. The CPT instruction can also copy data from one
address to another and automatically converts the data type at the
source address to the data type you specify in the destination address.

The execution time of a CPT instruction is longer than the execution
time of an arithmetic, logic or move instruction (i.e., ADD, AND,
MOV, etc.). The CPT instruction also uses more words in your
program file.

After each CPT instruction is performed, the arithmetic status bits in
the status file of the data table are updated the same as the
corresponding arithmetic, logic or move instruction. For example,
refer to the description of the ADD instruction to see how the status
bits are updated after a CPT (add) instruction is executed.

Entering the CPT Expression

The expression defines the operations you want to perform. You
define the expression with operators and addresses or program
constants. With Enhanced PLC-5 processors, you can enter complex
expressions. Table 4.C lists valid operations for an expression; the
following list provides guidelines for writing expressions:

* Operators (symbols) define the operations

e Addresses can be direct or indirect logical address(es) (must be
element or bit level)

* With Enhanced PLC-5 processors, program constants can be
integer or floating-point numbers (if you enter octal values, use a
leading &O; if you enter hexadecimal values, use a leading &H)

* Expressions can only total 80 characters, including spaces and
parentheses

021-87700210

NIC SANRT

e Sl

‘e

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Table 4.C

Valid Operations for Use in a CPT Expression

Type Operator Description Example Operation
Copy none copy fromAto B enter source address in the expression enter
destination address in destination
Clear none set a value to zero 0 (enter 0 for the expression)
Arithmetic + add 2+3
2+3+7 (Enhanced PLC-5 processors)
- subtract 12-5
(12-5)-7 (Enhanced PLC-5 processors)
* multiply 5*2
6*(5*2) (Enhanced PLC-5 processors)
| (vertical bar) divide 2416
(241 6)*2 (Enhanced PLC-5 processors)
- negate -N7:0
SQR square root SQR N7:0
* exponential * 10**3
(x to the power of y)
LN natural log * LN F8:20
LOG log to the base 10* LOG F8:3
Trigonometric ~ ACS arc cosine* ACS F8:18
ASN arc sine* ASN F8:20
ATN arc tangent * ATN F8:22
cos cosine* COS F8:14
SIN sine* SIN F8:12
TAN tangent* TAN F8:16
Bitwise AND bitwise AND D9:3 AND D10:4
OR bitwise OR D10:4 OR D105
XOR bitwise exclusive OR ~ D9:5 XOR D10:4
NOT bitwise complement NOT D9:3
Conversion FRD convert from BCD FRD N7:0
to binary
TOD convert from binary TOD N7:0
to BCD
DEG convert radians DEG F8:8
to degrees*
RAD convert degrees RAD F8:10
to radians*

* Available in Enhanced PLC-5 processors only.

www.nicsanat.com

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-7

Determining the Length of an Expression

With Enhanced PLC-5 processors, you can enter complex instructions
(up to a total of 80 characters, including spaces and parentheses).
Depending on the operator, the processor inserts characters
before/after the operator in your expression to format the expression
for easier interpretation. Use Table 4.D below to determine the
number of characters each operator uses in an expression.

With the CPT instruction, a maximum of 80 characters of the
expression are displayable. If the expression you enter is near this 80
character maximum, when you accept the rung containing the
instruction, the processor may expand it beyond 80 characters. When
you try to edit the expression, only the first 80 characters are
displayed and the rung is displayed as an error rung. The processor
does contain the complete expression, however, and the instruction
runs properly.

To work around this display problem, export the processor memory
file and make your edits in the PC5 text file. Then import this
text file.

Important: You cannot enter floating point numbers in scientific
notation with negative exponents in complex
expressions. Instead, use the decimal equivalent or put
the number in a floating point file and use the data
address in the complex expression.

Table 4.D
Character Lengths for Operators

Uses this
This Operation: Using this Operator: Number of
Characters:
math binary + =% 3
OR, ** 4
AND, XOR 5
math unary — (negate) 2
LN * 3

FRD, TOD, DEG*, RAD*, SQR, NOT, LOG*, SIN*, 4
COS*, TAN*, ASN*, ACS*, ATN*

comparative =<, > 3

<>, <=, >= 4

* Available in Enhanced PLC-5 processors only.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Determining the Order of Operation

The operations you write into the expression are performed by the
processor in a prescribed order, not necessarily the order you write
them. You can override the order of operation by grouping terms
within parentheses, forcing the processor to perform the operation
within the parentheses ahead of other operations.

Operations of equal order are performed left to right. The expression
you use must include an operator. Table 4.E shows the order of
operation.

Table 4.E
Order of Operation for CPT Expressions

Order Operation Description

1 ** exponential (X")
Enhanced PLC-5 processors only
2 - negate
NOT bitwise complement
3 * multiply
divide
4 + add
- subtract
5 AND bitwise AND
6 XOR bitwise exclusive OR
7 OR bitwise OR

Expression Examples

Single Value: The expression SQR (N7:4) with destination N7:20
tells the processor to take the square root of the value stored at N7:4
and store the result at N7:20.

Multiple Values: With Enhanced PLC-5 processors, you can also use
functions to operate on one or more values in the expression
(complex expressions) for compute and compare operations.
Complex expressions can be up to 80 characters long (spaces and
parentheses are considered characters). For example, you could enter
an expression such as:

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-9

Example:
| :012 — CPT
] [COMPUTE
| 10 Destination N7:20
Expression
(N7:1*5) | (N7:2]7)

If the input word 12, bit 10 is set, multiply the value of N7:1 by 5. Divide this result by the quotient of N7:2 divided by 7.
If N7:1=5 and N7:2=9, the result is 25. (The result is rounded to the nearest whole number because the constants 5 and 7
were specified as whole numbers.)

When you use complex expressions, if any operand is floating point,

the entire expression is evaluated as floating point:

Example:
1:012 — CPT
|] F COMPUTE
| 10 Destination N7:20
Expression
(N7:1*5.0) | (N7:2 | 7.0)

If the input word 12, hit 10 is set, multiply the value of N7:1 by 5. Divide this result by the quotient of N7:2 divided by 7. If N7:1=5 and
N7:2=9, the result is 19. (The result is rounded differently because the constants 5.0 and 7.0 were specified to 1 decimal place.

Entering the Destination

Enter a direct or indirect logical address for the destination. The
instruction stores the result of the operation in the destination address.

Important: The processor automatically converts the data type
specified by the source address to that specified by the
destination address. The processor uses BCD for display
or compatibility with PLC-2 family processors. You
must program any BCD conversions.

Using CPT Functions

Use functions to operate on one or more values in the expression of a
CPT instruction to perform these types of operations:

e convert from one number format to another
* manipulate numbers

e perform trigonometric functions

021-87700210

NIC SANET

2 g

4-10

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

The instruction performs the function(s) you specify based on a
mnemonic. When you enter the expression, enter the mnemonic as
the prefix to the address of the value on which you want to operate, or
as a prefix to the value itself when entered as a program constant.

Important: Floating-point numbers are 32-bit values. Integers are

16-bit values. The instruction automatically converts the
data types found in the expression to the data type
specified by the destination address.

ATTENTION: If the expression or destination
addresses require conversion from 32-bit to 16-bit data
and the value is too large, the processor sets an overflow
bitin S:0/1 and sets a minor fault (S10:14). The resulting
erroneous value could lead to a dangerous situation.
Monitor this bit in your ladder program.

Table 4.F lists the CPT functions you can use.

Table 4.F

CPT Functions for Number Conversion

Mnemonic Title Description

RAD * radians Converts from degrees to radians

DEG * degrees Converts from radians to degrees

TOD to BCD Converts from integer to BCD (supports 4-digit BCD
numbers)

FRD from BCD Converts from BCD to integer (supports 4-digit BCD
numbers)

SQR square root Takes the square root of the number; accurate to 6
significant digits

LOG * - Log to the base 10; accurate to 6 significant digits

LN * - Natural log; accurate to 6 significant digits

SIN * sine; manipulated in radians, accurate to 6 significant digits

COos * cosine; manipulated in radians, accurate to 6 significant digits

TAN * tangent; manipulated in radians, accurate to 6 significant digits

ASN * inverse sine; manipulated in radians, accurate to 6 significant digits

ACS * inverse cosine; manipulated in radians, accurate to 6 significant digits

ATN * inverse tangent; manipulated in radians, accurate to 6 significant digits

* Available in Enhanced PLC-5 processors only.

You can use the above CPT arithmetic functions within expressions
or as stand-alone instructions; see the individual instructions

described in this chapter.

021-87700210

NIC SANET

2 g

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-11

Arc Cosine (ACS)
(Enhanced PLC-5 Processors Only)

Description: Use the ACS instruction to take the arc cosine of the source (in
s radians) and store the result (in radians) in the Destination. See Table
4.G for status flags for the ACS instruction.
ARCCOSINE
Source The Source must be greater than or equal to —1 and less than or
Destination equal to 1. If it is not in this range, the processor returns a ! NAN !
result in the Destination. The resulting value in the Destination is
always greater than or equal to 0 and less than or equal to &
(where ©=3.141592).
Table 4.6
Updating Arithmetic Status Flags for an ACS Instruction
With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) always resets
Example:
1:012 — ACS
| 1L ARCCOSINE
o Source F8:19
10 0.7853982
Destination F8:20
0.6674572

If input word 12, bit 10 is set, take the arc cosine of the value in F8:19 and store the result in F8:20.

021-87700210

4-12 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Addition (ADD)
Description: Use the ADD instruction to add one value (Source A) to another
o0 value (Source B) and place the result in the destination. Source A and
100 Source B can either be values or addresses that contain values. See
< Table 4.H for status flags for the ADD instruction.
ource A
Source B Important: The ADD instruction executes once each scan as long as
Destination the rung is true; if you only want values added once,
include the ONS command (see chapter 13).
Table 4.H
Updating Arithmetic Status Flags for an ADD Instruction
With this Bit: ~ The Processor:
Carry (C) sets if carry generated; otherwise resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| 1:012 — ADD
E ADD
| Source A N7:3
Source B N7:4
Destination N7:20

If input word 12, hit 10 is set, add the value in N7:3 to the value in N7:4 and store the result in N7:20.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-13

Arc Sine (ASN)
(Enhanced PLC-5 Processors Only)

Description: Use the ASN instruction to take the arc sine the source (in radians)
and store the result (in radians) in the Destination. See Table 4.1 for

ASN

ARCSINE status flags for ASN instruction.

Source

Destination The Source must be greater than or equal to —1 and less than or

equal to 1. If it is not in this range, the processor returns a ! NAN'!
result in the Destination. The resulting value in the Destination is
always greater than or equal to —t/2 and less than or equal to ©/2
(where ©=3.141592).

Table 4.1
Updating Arithmetic Status Flags for an ASN Instruction

With this Bit: The Processor:

Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) always resets
Example:
| 1:012 — ASN
] ARCSINE
| 10 Source F8:17
0.7853982
Dest F8:18
0.9033391

If input word 12, hit 10 is set, take the arc sine of the value in F8:17 and store the result in F8:18.

021-87700210

4-14 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Arc Tangent (ATN)
(Enhanced PLC-5 Processors Only)

Description: Use the ATN instruction to take the arc tangent of the source (in
radians) and store the result (in radians) in the Destination. The
resulting value in the Destination is always greater than or

equal to —7t/2 and less than or equal to /2 (where T = 3.141592).
See Table 4.J for status flags for ATN instruction.

Table 4.J
Updating Arithmetic Status Flags for an ATN Instruction

ATN
ARCTANGENT
Source

Destination

With this Bit: The Processor:

Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (2) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| 1:012 — ATN
] F ARCTANGENT
| 10 Source F8:21
0.7853982
Destination F8:22
0.6657737

If input word 12, bit 10 is set, take the arc tangent of the value in F8:21 and store the result in F8:22.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

4-15

Average File (AVE)

(Enhanced PLC-5 Processors Only)

AVE
AVERAGE FILE
File
Destination
Control
Length
Position

Description:

o)-
o)

The AVE instruction calculates the average of a set of values. When
the rung goes from false to true, the value at the current position is
added to the next value, which is added to the next value, and so on.
See Table 4.K for status flags for AVE instruction.

Each time another value is added, the position field and the status
word (S:24) is incremented. The final sum is divided by the number
of values added and the result is stored in the destination.

Table 4.K
Updating Arithmetic Status Flags for an AVE Instruction

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets

Sign (S) sets if result is negative; otherwise resets

An overflow can occur if:
e the intermediate sum exceeds the maximum floating point value

» the destination is an integer address and the final value is greater
than 32,767 or less than —32,768

If an overflow occurs, the processor stops the calculation, sets the .ER
bit, and the Destination remains unchanged. The position identifies
the element that caused the overflow. When you clear the .ER bit, the
position resets to 0 and the average is recalculated.

Important: Use the RES instruction to clear the status flags.

Entering Parameters

To program the AVE instruction, you must provide the processor
with the following:

e File is the address that contains the first value to be added. This
address can be floating point or integer.

e Destination is the address where the result of the instruction is
stored. This address can be floating point or integer.

* Control is the address of the control structure in the control area
(R) of processor memory. The processor stores information such
as the length, position and status, and uses this information to
execute the instruction.

* Length is the number of words in the file (1-1000).

* Position points to the word thly u
021-87700210

NIC SANET

H

2 g

4-16

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Using Status Bits

To use the AVE instruction correctly, examine status bits in the
control structure. Address these bits by mnemonic.

This Bit: Is Set:

Enable .EN (bit 15) on a false-to-true rung transition to indicate that the instruction
is enabled. The instruction follows the rung condition.

Done .DN (bit 13) after the instruction finishes operating. After the rung goes
false, the processor resets the .DN hit on the next false-to-true
rung transition.

Error .ER (bit 11) when the operation generates an overflow. The instruction
stops until the ladder program resets the .ER bit.

Important: The AVE instruction calculates the average using
floating point regardless of the type specified for the file
or destination parameters.

ATTENTION: The AVE instruction increments the
offset value stored at S:24. Make sure you monitor or
load the offset value you want prior to using an indexed
address. Otherwise, unpredictable machine operation
could occur with possible damage to equipment and/or
injury to personnel.

Example:
1:012 — AVE
— F AVERAGE FILE —(EN }—
10 File ANT:1
Dest N7:0 |+ DN)
Control R6:0
Length 4
Position 0
R6:0 0:010
— F (—
EN 5
R6:0 0:010
— ()
DN 7
R6:0
\
(RES)

If input word 12, hit 10 is set, the AVE instruction is enabled. The values in N7:1, N7:2, N7:3, and N7:4 are
added together and divided by 4. The result is stored in N7:0. When the calculation is complete output

word 10, bit 7 is set. Then the RES instruction resets the status
EZI -E??Oﬂﬂ 0

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-17

Clear (CLR)
Description: Use the CLR instruction to set all the bits of a word to zero. The
R destination must be a word address. See Table 4.L for status flags for
CLEAR CLR instruction.
Destination Table 4.L

Updating Arithmetic Status Flags for a CLR Instruction

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) always resets

Zero (2) always sets
Sign (S) always resets
Example:
| 1012 — CLR
1 F CLEAR
| 10 Destination N7:3

If input word 12, hit 10 is set, clear all of the bits in N7:3 to zero.

021-87700210

4-18 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Cosine (COS)

(Enhanced PLC-5 Processors Only)

Cos
COSINE
Source

Destination

Description: Use the COS instruction to take the cosine of a number (Source in

radians) and store the result in the Destination. See Table 4.M for
status flags for COS instruction.

The Source must be greater than or equal to —205887.4 and less than
or equal to 205887.4. If it is not in this range, the processor returns a

I INF! result in the Destination. The resulting value in the
Destination is always greater than or equal to —1 and less than or
equal to 1.

Important: For greatest accuracy, the source data should be greater
than or equal to —2m and less than or equal to 2.

Table 4.M
Updating Arithmetic Status Flags for an COS Instruction

With this Bit: The Processor:

Example:

Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (2) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
| 1:012 — COS
1 F COSINE
| 10 Source F8:13
0.7853982
Destination F8:14
0.7071068

If input word 12, bit 10 is set, take the cosine of the value in F8:13 and store the result in F8:14.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-19

Divide (DIV)
Description: Use the DIV instruction to divide one value (Source A) by another
o value (Source B) and place the result in the Destination. Source A and
DIVIDE Source B can either be values or addresses that contain values. See
Source A Table 4.N for status flags for DIV instruction.
Source B Important: The compute instructions execute for each scan as long
Destination . .
as the rung is true; if you only want values computed
once, include the ONS command (see chapter 13).
Table 4.N
Updating Arithmetic Status Flags for a DIV Instruction
With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) sets if division by zero or if overflow generated;
otherwise resets
Zero (Z) sets if result is zero; otherwise resets;
undefined if overflow is set
Sign (S) sets if result is negative; otherwise resets;
undefined if overflow is set
Example:
| :012 - DIV
1 F DIVIDE
| 10 Source A N7:3
Source B N7:4
Destination N7:20

If input word 12, hit 10 is set, divide the value in N7:3 by the value in N7:4 and store the result in N7:20.

021-87700210

NIC SANET

2 g

4-20 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Natural Log (LN)
(Enhanced PLC-5 Processors Only)

Description: Use the LN instruction to take the natural log of the value in the

N Source and store the result in the Destination. See Table 4.0 for status
NATURAL LOG flags for LN instruction.
Source

If the Source is equal to 0, the result in the Destination will be

| - INF!; if the value in the Source is less than 0, the result in the
Destination will be !NAN!. The resulting value in the Destination is
always greater than or equal to —87.33655 and less than or equal to
88.72284.

Table 4.0
Updating Arithmetic Status Flags for an LN Instruction

Destination

With this Bit: The Processor:

Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| 1:012 — LN
B NATURAL LOG
| 10 Source N7:0
5
Destination F8:20
1.609438

If input word 12, bit 10 is set, take the natural log of the value in N7:0 and store the result in F8:20.

021-87700210

NIC SANET

2 g

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-21

Log to the Base 10 (LOG)
(Enhanced PLC-5 Processors Only)

Description:

LOG
LOG BASE 10
Source

Destination

Example:

Use the LOG instruction to take the log base 10 of the value in the
Source and store the result in the Destination. See Table 4.P for status
flags for LOG instruction.

If the Source is equal to 0, the result in the Destination will be

| - INF!; if the value in the Source is less than 0, the result in the
Destination will be !NAN!. The resulting value in the Destination is
always greater than or equal to —37.92978 and less than or equal to

38.53184.
Table 4.P

Updating Arithmetic Status Flags for an LOG Instruction

With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
— LOG
F LOG BASE 10
Source N7:2
5
Destination F8:3
0.6989700

If input word 12, it 10 is set, take the log base 10 of the value in N7:2 and store the result in F8:3.

021-87700210

4-22 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Multiply (MUL)

Description: Use the MUL instruction to multiply one value (Source A) by another
value (Source B) and place the result in the destination. Source A and

M- Source B can be values or addresses. See Table 4.Q for status flags for
MULTIPLY . .
MUL instruction.
Source A
Source B Table 4Q . . .
Sestinai Updating Arithmetic Status Flags for a MUL Instruction
estination

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) sets if overflow generated; otherwise resets

Zero (2) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| [:012 — MUL
] [MULTIPLY
| 10 Source A N7:3
Source B N7:4
Destination N7:20

If input word 12, it 10 is set, multiply the value in N7:3 by the value in N7:4 and store the result in N7:20.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-23

Negate (NEG)

Description: Use the NEG instruction to change the sign of a value. If you negate a
negative value, the result is positive; if you negate a positive value,

:EEATE the result is negative. See Table 4.R for status flags for NEG
Source mstruction.
Destination Important: The compute instructions execute for each scan as long
as the rung is true; if you only want values computed
once, include the ONS command (see chapter 13).
Table 4.R

Updating Arithmetic Status Flags for a NEG Instruction

With this Bit: The Processor:

Carry (C) sets if the operation generates a carry
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| 1:012 — NEG
1 F NEGATE
| 10 Source N7:3
Destination N7:20

If input word 12, hit 10 is set, take the opposite sign of the value in N7:3 and store the result in N7:20.

021-87700210

4-24 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Sine (SIN)
(Enhanced PLC-5 Processors Only)

Description: Use the SIN instruction to take the sine of a number (Source in
o radians) and store the result in the Destination. See Table 4.S for
SIE status flags for SIN instruction.
SO“'_Ce _ The Source must be greater than or equal to —205887.4 and less than
estination or equal to 205887.4. If it is not in this range, the processor returns a
I INF! result in the Destination. The resulting value in the
Destination is always greater than or equal to —1 and less than or
equal to 1.
Important: For greatest accuracy, the source data should be greater
than or equal to —2m1 and less than or equal to 2.
Table 4.S
Updating Arithmetic Status Flags for an SIN Instruction
With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (2) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
1:012 - SIN
1L SINE
o Source F:11
10 0.7853982
Destination F8:12
0.7071068

If input word 12, hit 10 is set, take the sine of F8:11 and store the result in F8:12.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-25

Square Root (SQR)

Description: Use the SQR instruction to take the square root of a value and store
oo the result in the destination. The source can be a value or an address.
sSUARE co0T If the source value is negative, the processor takes its absolute value
Source and performs the square root function. See Table 4.T for status flags
Destination for SQR instruction.

Important: The SQR instruction executes once for each scan as
long as the rung is true; if you only want values
computed once, include the ONS command (see
chapter 13).

Table 4.7

Updating Arithmetic Status Flags for a SQR Instruction

With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated during floating-point
to integer conversion; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) always resets
Example:
| 012 — SOR
- SQUARE ROOT
| 10 Source N7:3
Destination N7:20

If input word 12, bit 10 is set, take the square root of the value in N7:3 and store the result in N7:20.

021-87700210

4-26 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Sort File (SRT)
(Enhanced PLC-5 Processors Only)

Description: The SRT instruction sorts a set of values into ascending order. This
instruction is executed on a false-to-true transition.

SRT
SORT FILE (e) Important: Make sure the file length value you specify in the

?::mm L (on) instruction does not cause the indexed address to exceed
Length the file bounds. The processor does not check this

Position unless you exceed the data file area of memory.

If the indexed address exceeds the data file area, the
processor initiates a run-time error and sets a major
fault. The processor does not check to see whether the
indexed address crosses file types, such as N7 to F8.

Entering Parameters

To program the SRT instruction, you must provide the processor with
the following:

Parameter: Definition:

file the address that contains the first value to be sorted. This address can be
floating point or integer.

control the address of the control structure in the control area (R) of processor
memory. The processor stores information such as the length, position
and status, and uses this information to execute the instruction.

length the number of words in the file (1-1000).

position points to the element that the instruction is currently using.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-27

Using Status Bits

To use the SRT instruction correctly, the ladder program must
examine status bits in the control structure. You address these bits

by mnemonic.

This Bit:

Is Set:

Enable .EN (bit 15)

on a false-to-true rung transition to indicate that the instruction is
enabled. The instruction follows the rung condition.

Done .DN (bit 13)

after the instruction finishes operating. After the rung goes false,
the processor resets the .DN hit on the next false-to-true rung
transition.

Error .ER (bit 11)

when the length value is less than or equal to zero or when the
position value is less than zero.

ATTENTION: The SRT instruction manipulates the
offset value stored at S:24. Make sure you monitor or
load the offset value you want prior to using an indexed
address. Otherwise, unpredictable machine operation
could occur with possible damage to equipment and/or
injury to personnel.

Example:
1:012 — SRT
1 SORT FILE —(EN)
10 File #N7:1
Control R6:0
Length 4 _(DN)
Position 0
R6:0 0:010
] L (\
1 L \ 7
EN 5
R6:0 0:010
ik ()
DN 7

If input word 12, hit 10 is set, the SRT instruction is enabled. The elements N7:1, N7:2, N7:3, and N7:4 are sorted into ascending
order. When the sort operation is complete, output word 10, bit 7 is set.

021-87700210

NIC SANET

2 g

4-28 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Standard Deviation (STD)
(Enhanced PLC-5 Processors Only)

Description: The STD instruction calculates the standard deviation of a set of

sD values and stores the result in the destination. This instruction is

sTanDARD DEVIATION (BN)}~ executed on a false-to-true transition. See Table 4.U for status flags
File for STD instruction.

Destination —(DN)

fg:;f}' The standard deviation is calculated according to the following
Position formula:

Standard . 2
Deviation = «/(SUM(()((;I__AIX)/E(XI)))

Where:

e SUM() - summation function of the enclosed variables
* AVE () —average function of the enclosed variables

* xi—variable elements of the data file

* N —number of elements in the data file

Important: Make sure the file length value you specify in the
instruction does not cause the indexed address to exceed
the file bounds. The processor does not check this
unless you use an indexed indirect address or exceed the
data file area of memory. If the indexed address exceeds
the data file area, the processor initiates a run-time error
and sets a major fault. The processor does not check to
see whether the indexed address crosses file types, such
as N7 to F8.

Table 4.U
Updating Arithmetic Status Flags for an STD Instruction

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) sets if overflow generated; otherwise resets
Zero (2) sets if result is zero; otherwise resets

Sign (S) always resets

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-29

There are two ways an overflow can occur:

* the intermediate sum exceeds the maximum floating point value
(floating point values are: +1.1754944% 8 to +3.4028237°"3%)

* the destination is an integer address and the final value is greater
than 32,767

If an overflow occurs, the processor stops the calculation, sets the .ER
bit, and leaves the destination unchanged. The position identifies the
element that caused the overflow. When you clear the .ER bit, the
position resets to 0 and the standard deviation is recalculated.

Important: Use the RES instruction to clear the status bits.

Entering Parameters

To program the STD instruction, you must provide the processor with
the following:

Parameter: Defines:

file the address that contains the first value to be calculated. This address
can be floating point or integer.

destination the address where the result of the instruction is stored. This address
can be floating point or integer.

control the address of the control structure in the control area (R) of processor
memory. The processor stores information such as the length, position
and status, and uses this information to execute the instruction.

length the number of words in the file (1-1000).

position points to the element that the instruction is currently using.

Using Status Bits

To use the STD instruction correctly, examine status bits in the
control structure. You address these bits by mnemonic.

This Bit: Is Set:

Enable .EN (bit 15) on a false-to-true rung transition to indicate that the instruction
is enabled. The instruction follows the rung condition.

Done .DN (bit 13) after the instruction finishes operating. After the rung goes
false, the processor resets the .DN bit on the next false-to-true
rung transition.

Error .ER (bit 11) when the operation generates an overflow. The instruction
stops until the ladder program resets the .ER bit.

021-87700210

NIC SANAT {"‘
D S

4-30

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Important: The STD instruction calculates the standard deviation
using floating point regardless of the type specified for

the file or destination parameters.

ATTENTION: The STD instruction manipulates the
offset value stored at S:24. Make sure you monitor or
load the offset value you want prior to using an indexed
address. Otherwise, unpredictable machine operation
could occur with possible damage to equipment and/or

injury to personnel.

Example:
1:012 — STD
] STANDARD DEVIATION L(EN —
10 File #NT:1
Destination N7:0
Control R6:0 (DN)
Length 4
Position 0
R6:0 0:010
] ()
EN 5
R6:0 0:010
] ()
DN 7
R6:0
(
(RES)

If input word 12, bit 10 is set, the STD instruction is enabled. The elements N7:1, N7:2, N7:3, and N7:4 are used to calculate the
standard deviation. When the calculation is complete, output word 10, bit 7 is set. Then the RES instruction resets the status bits of

the control file R6:0.

www.nicsanat.com

021-87700210

NIC SANAT

=

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-31

Subtract (SUB)

Description: Use the SUB instruction to subtract one value (Source B) from

U another value (Source A) and place the result in the destination.

SUBTRACT Source A and Source B can be values or addresses that contain
Source A values. See Table 4.V for status flags for SUB instruction.

Source B

Destination Important: The SUB instruction executes once for each scan as

long as the rung is true; if you only want values
subtracted once, include the ONS command (see
chapter 13).

Table 4.V
Updating Arithmetic Status Flags for a SUB Instruction

With this Bit: The Processor:

Carry (C) sets if borrow generated; otherwise resets

Overflow (V) sets if underflow generated; otherwise resets

Zero (2) sets if result is zero; otherwise resets

Sign (S) sets if result is negative; otherwise resets

| 1:012 — SUB
1 I SUBTRACT
| 10 Source A N7:3

Source B N7:4
Destination N7:20

If input word 12, it 10 is set, subtract the value in N7:4 from the value in N7:3 and store the result in N7:20.

021-87700210

4-32 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Tangent (TAN)
(Enhanced PLC-5 Processors Only)

Description: Use the TAN instruction to take the tangent of a number (Source in
. radians) and store the result in the Destination. See Table 4. W for
TANGENT status flags for TAN instruction.
So“r_ce _ The value in the Source must be greater than or equal to —102943.7
pestnaton and less than or equal to 102943.7. If it is not in this range, the
processor returns a ! INF ! result in the Destination. The resulting
value in the Destination is always a real number.
Important: For greatest accuracy, the source data should be greater
than or equal to —t/2 and less than or equal to 7/2.
Table 4.W
Updating Arithmetic Status Flags for an TAN Instruction
With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (2) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| 1012 — TAN
: TANGENT
| Source F8:15
0.7853982
Destination F8:16
1.000000

If input word 12, hit 10 is set, take the tangent of the value in F8:15 and store the result in F8:16.

021-87700210

Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY 4-33

X to the Power of Y (XPY)
(Enhanced PLC-5 Processors Only)

Description:

XPY
X TO POWER OF Y

Source A
Source B
Destination

Use the XPY instruction to raise a value (Source A) to a power
(Source B) and store the result in the Destination. If the value in
Source A is negative, the exponent (Source B) should be an integer
value; if the exponent is not an integer (for example, if it is a floating
point value), the overflow bit is set and the absolute value of the base
is used in the calculation. See Table 4.X for status flags for XPY
instruction.

The XPY instruction uses the following algorithm:
XPY =10 ** (Y * log (X))

If any of the intermediate operations in this algorithm produce an
overflow, the arithmetic minor fault bit is set (S:10/14). The
arithmetic status flag bit is set only if the final result is an overflow.

Important: Keep in mind that x0 is equal to 1; 0x is equal to 0. For
floating point numbers, 00 is equal to !NAN! (an
invalid mathematical value) and for integers, 00 is equal
to—1.

Table 4.X
Updating Arithmetic Status Flags for an XPY Instruction

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) sets if overflow generated; otherwise resets

Zero (2) sets if result is zero; otherwise resets

Sign (S) sets if result is negative; otherwise resets

1:012 — XPY

I X TO POWER OF Y

10 Source A N7:4
5

Source B N7:5
2

Destination N7:6
25

If input word 12, bit 10 is set, take the value in N7:4, raise it to the power of the value in N7:5, and stores
the result in N7:6.

021-87700210

NIC SANET

2 g

4-34 Compute Instructions CPT, ACS, ADD, ASN, ATN, AVE, CLR, COS, DIV, LN, LOG, MUL, NEG, SIN, SRT, SQR, STD, SUB, TAN, XPY

Notes:

021-87700210

NIC SANAT r‘
AR =

Chapter 5

Using Logical Instructions

Logical Instructions AND, NOT, OR, XOR

These instructions (Table 5.A) perform logical operations.

Table 5.A
Available Logical Instructions

If You Want to: Use this Instruction: Found on Page:
Perform an AND operation AND 5-2
Perform a NOT operation NOT 5-3
Perform an OR operation OR 5-4
Perform an XOR operation XOR 5-5

The parameters you enter are program constants or direct logical
addresses.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

Using Arithmetic Status Flags

The arithmetic status bits are in word 0 bits 0-3 in the processor status
file (S). Table 5.B lists the status flags:

Table 5.B
Arithmetic Status Flags

This Bit: Description:

S:0/0 Carry (C)
S:.0/1 Overflow (V)
S:0/2 Zero (2)
S:0/3 Sign (S)

021-87700210

NIC SANAT r‘
AR =

5-2

Logical Instructions AND, NOT, OR, XOR

AND Operation (AND)

N9:3
N10:4

Description: Use the AND instruction to perform an AND operation using the bits
in the two source addresses.
AND
BITWISE AND Table 5.C .
Source A Truth Table for an AND Operation
Source B
Destination SourceA SourceB Result
0 0 0
1 0 0
0 1 0
1 1 1
Table 5.D
Updating Arithmetic Status Flags for an AND Instruction
With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) always resets
Zero (2) sets if result is zero; otherwise resets
Sign (S) sets if most-significant bit is set;
otherwise resets
Example:
| 1:012 — AND
] AND
| 10 Source A
Source B
Destination

N12:3

If input word 12, bit 10 is set, the processor performs an AND
operation on N9:3 and N10:4 and stores the result in N12:3.

Source A
o olo[o]o]oofo]o|1]o|1|o|1[o] 1|0
Source B
Mo ololo]o]olofo]o|1]|1]|z|0]1|o] 1|2
Destination 15fg10l0]0|ofo]o|1]o|1|o|1[0] 1|0
N12:3

021-87700210

NIC SANET

2 g

Logical Instructions AND, NOT, OR, XOR

5-3

NOT Operation (NOT)

Description:
NOT
NOT
Source
Destination
Example:

1:012

10

Use the NOT instruction to perform a NOT operation using the bits in
the source address. This operation is also know as a bit inversion.

Important: The NOT instruction is not available on PLC-5/15
series A processors.

Table 5.E
Truth Table for a NOT Operation

Source Result

0 1

1 0
Table 5.F

Updating Arithmetic Status Flags for a NOT Instruction

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) always resets

Zero (2) sets if result is zero; otherwise resets

Sign (S) sets if most-significant bit is set;
otherwise resets

— NOT
NOT
Source N9:3
Destination N10:4

If input word 12, bit 10 is set, the processor performs a
NOT operation on N9:3 and stores the result in N10:4

Source
Nos olololo]o]ofofo|1]ol1|o|1[o]1]0
Destination f114f1f1f1{1]1]1]o[1]0]1]0]1|o0]1
N10:4

021-87700210

NIC SANAT r‘
AR =

5-4

Logical Instructions AND, NOT, OR, XOR

OR Operation (OR)

Description: Use the OR instruction to perform an OR operation using the bits in

OR

the two sources (constants or addresses).

BITWISE INCLUSIVE OR
Source A

Source B

Destination

Table 5.G
Truth Table for an OR Operation

Source A Source B Result

0 0 0

1 0 1

0 1 1

1 1 1
Table 5.H

Updating Arithmetic Status Flags for an OR Instruction

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) always resets

Zero (2) sets if result is zero; otherwise resets

Sign (S) sets if most-significant bit is set;
otherwise resets

Example:
| 1:012 — OR
1 F INCLUSIVE OR
| 10 Source A N9:3
Source B N10:4
Destination N12:3

If input word 12, bit 10 is set, the processor performs
an OR operation on N9:3 and N10:4 and stores the
result in N12:3.

S ™ lolofo]ofo]ofo]o[1[o[2| o] z|o[1]0
Source B
o ” [o]ololo]ofofo]oz|2[2[0] 1]0] 1|2
Destination fo1g(0l00]olofof1|1]1|0|1[o]1]1
N12:3

021-87700210

NIC SANET

2 g

Logical Instructions AND, NOT, OR, XOR

5-5

Exclusive OR Operation (XOR)

Description: Use the XOR instruction to perform an exclusive OR operation using
‘oR the bits in the two sources (constants or addresses).
BITWISE EXCLUSIVE OR Table 5.1
Source A Truth Table for an XOR Operation
Source B
Destination Source A Source B Result
0 0 0
1 0 1
0 1 1
1 1 0
Table 5.J
Updating Arithmetic Status Bits for an XOR Instruction
With this Bit: ~ The Processor:
Carry (C) always resets
Overflow (V) always resets
Zero (2) sets if result is zero; otherwise resets
Sign (S) sets if most-significant bit is set; otherwise resets
Example:
| [:012 — XOR
] F EXCLUSIVE OR
| 10 Source A N9:3
Source B N10:4
If input word 12, bit 10 is set, the processor performs Destination N12:3

an XOR operation on N9:3 and N10:4 and stores the

result in N12:3.

Source A
N9:3

Source B
N10:4

Destination
N12:3

o

o

o

021-87700210

NIC SANET

2 g

5-6

Logical Instructions AND, NOT, OR, XOR

Notes:

021-87700210

NIC SANET

2 g

Chapter 6

Using the Conversion Instructions

Conversion Instructions FRD and TOD,
DEG and RAD

The conversion instructions convert integer to BCD and convert BCD
to integer (using TOD and FRD). For example, use TOD and FRD for
signals to/from BCD 1/O devices, for display purposes, or for number
compatibility with PLC-2 family processors. You can also convert
radians to degrees and degrees to radians (using DEG and RAD). For
example, you can use DEG and RAD with the trigonometric
instructions (see chapter 4).

Table 6.A lists the available conversion instructions.

Table 6.A
Available Conversion Instructions

If You Want to: Use this Instruction: Found on Page:
Convert from integer to BCD ~ TOD 6-2
Convert from BCD to integer ~ FRD 6-2
Convert radians to degrees DEG* 6-3
Convert degrees to radians RAD* 6-4

* These instructions are only supported by Enhanced PLC-5 processors.

The parameters you enter are program constants or logical addresses
of the values you want.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

Using Arithmetic Status Flags

The arithmetic status flags are in word 0 bits 0-3 in the processor
status file (S2). Table 6.B lists the status flags:

Table 6.B
Arithmetic Status Flags

This Bit: Description:
S:0/0 Carry (C)
S:0/1 Overflow (V)
S:0/2 Zero (2)

S073 Sign)
021-87700210

6-2

Conversion Instructions FRD and TOD, DEG and RAD

Convert to BCD (TOD)

Description: Use the TOD instruction to convert an integer value to a BCD value.
If the integer value is greater than 9999, the processor stores 9999 and
o sets the overflow bit. If the integer value is negative, the processor
ToBCh stores 0 in the destination and sets the overflow and zero status bits.
Source
Destin Table 6.C
estmation Updating Arithmetic Status Flags for a TOD Instruction
With this Bit: The Processor:
Carry (C) always resets
Overflow (V) sets if integer value is outside the range
0-9999; otherwise resets
Zero (2) sets if destination value is negative or
zero; otherwise resets
Sign (S) always resets
Example:
| [:012 - TOD
! TO BCD
| 10 Source N7:3
Destination D9:3

If input word 12, bit 10 is set, convert the value in N7:3 to a BCD value and store the result in D9:3.

Convert from BCD (FRD)

Description:

FRD
FROM BCD
Source

Destination

Use the FRD instruction to convert a BCD value to an integer value.
Convert BCD values to integer values before you manipulate those
values with ladder logic because the processor treats BCD values as
integer values. The actual BCD value may be lost or distorted.

Table 6.D
Updating Arithmetic Status Flags for a TOD Instruction

With this Bit: ~ The Processor:

Carry (C) always resets

Overflow (V) always resets

Zero (Z) sets if destination value is zero; otherwise resets
Sign (S) always resets

021-87700210

Conversion Instructions FRD and TOD, DEG and RAD

6-3

Example:

The FRD instruction will convert a non-decimal number without any
error condition. For example, if a “C” is in the source, it is converted
to “12,” even though “C” is not a valid decimal number.

[:012 - FRD
: FROM BCD
Source D9:3
Destination N7:3

If input word 12, bit 10 is set, convert the value in D9:3 to an integer value and store the result in N7:3.

Degree (DEG)
(Enhanced PLC-5 Processors Only)

Description: Use the DEG instruction to convert radians (Source) to degrees and
- store the result in the Destination (Source times 180/T).
RADIANS TO DEGREE Table 6.E
Source Updating Arithmetic Status Flags for an DEG Instruction
Destination
With this Bit: The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| 1:012 — DEG
; RADIANS TO DEGREE
| 10 Source F8:7
0.7853982
Destination F8:8
45

If input word 12, it 10 is set, convert the value in F8:7 to degrees and store the result on F8:8.

021-87700210

NIC SANET

2 g

6-4 Conversion Instructions FRD and TOD, DEG and RAD

Radian (RAD)
(Enhanced PLC-5 Processors Only)

Description: Use the RAD instruction to convert degrees (Source) to radians and

RAD store the result in the Destination (Source times 7t/180).
DEGREES TO RADIANS Table 6.F
Source Updating Arithmetic Status Flags for an RAD Instruction
Destination
With this Bit: The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example:
| [:012 — RAD
1 F DEGREES TO RADIANS
| 10 Source N7:9
45
Destination F8:10
0.7853982

If input word 12, bit 10 is set, convert the value in N7:9 to radians and store the result on F8:10.

021-87700210

Chapter 7

Using Bit Modify and Move
Instructions

Bit Modify and Move Instructions
BTD, MOV, MVM

The bit modify and move instructions let you modify and move bits.
Table 7.A lists the available move instructions.

Table 7.A
Available Bit Modify and Move Instructions

If You Want to: Use this Instruction: ~ Found on Page:
Move bits within a word or between words ~ BTD 7-2
Copy the value in one word to another word ~ MOV 7-3
Copy the desired part of a 16-bit value by MVM 7-4

masking the rest of the value with a mask

These instructions operate on 16-bit integer, binary or floating point
numbers to move or copy bits between words. The MVM instruction
uses a mask to either pass or block source data bits. A mask passes
data when the mask bits are set (1); a mask blocks data when the
mask bits are reset (0). The mask must be the same word size as the
source and destination.

When rounding floating point numbers during a move to an integer
word, the processor does not correctly round numbers less than —1.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

021-87700210

NIC SANAT r‘
AR =

7-2

Bit Modify and Move Instructions BTD, MOV, MVM

Bit Distribute (BTD)

Description: The BTD instruction is an output instruction that moves up to 16 bits
of data within a word or between words. The Source remains
B unchanged. The instruction writes over the Destination with the
BITFELD DISTRIE specified bits. If the length of the bit field extends beyond the
igﬂzi " Destination word, the processor does not save the overflow bits.
Destination These overflow bits are lost; they do not wrap into the next word.
Destination bit
Length On each scan, when the rung that contains the BTD instruction is true,
the processor moves the bit field from the source word to the
destination word. To move data within a word, enter the same address
for the source and destination.
Entering Parameters
To program the BTD instruction, you must provide the processor with
the following:
Parameter: Definition:
Source the address of the source word in binary or integer. The source
remains unchanged.
Source bit the number of the bit (lowest bit number) in the source word from
which to start the move.
Destination the address of the destination word in a binary or integer file. The
instruction writes over any data already stored at the destination.
Destination bit the number of the bit (lowest bit number) in the destination word
where the processor starts copying the bits from the source word.
Length the number of bits to be moved.
Example:
Moving Bits Within a Word
— BTD
Destination Bit Source Bit
BIT FIELD DISTRIB N70:22/10 N70:22/3
Source _ N70:22 15 * 08107 * 00
Source bit 3 '
Destination N70:22 1joj1|1fofz| [z]o|1|1]|0|1L N70:22
Destination bit 10
Length 6 |] | J
<

13384

021-87700210

NIC SANAT r‘
AR =

Bit Modify and Move Instructions BTD, MOV, MVM 7-3

Example:
Moving Bits Between Words
— o o
— BITFELD DISTRIB 15 08107 v 00
Source . N7:20 ol 11112l ol2l2l2l 0l 1 N7:20
Source bit 3
Destination N7:22 L |
Destination bit 5 Destination Bit
Length 10 N7:022/5
15 08|07 * 00
ol1f1]1|of1|1|zfo]1 N7:22

13384

Important: Bits are lost if they extend beyond the end of the
destination word; the bits are not wrapped to the next
higher word.

Move (MOV)

Description: The MOV instruction is an output instruction that copies the Source
address to a Destination. As long as the rung remains true, the

Mov . .
JovE instruction moves the data each scan.
Source Table 7.B describes how the processor updates the arithmetic status
Destination ﬂags.
Table 7.B
Updating Arithmetic Status Flags for a MOV Instruction
With this Bit: The Processor:
Carry (C) always resets
Overflow (V) sets if overflow generated during floating
point-to-integer conversion; otherwise resets
Zero (Z) sets if result is zero; otherwise resets
Sign (S) sets if result is negative; otherwise resets
Example: To program this instruction, you must provide the processor with the
following:
Mov
MOVE
Source N7:0 Parameter: Definition:
Destination N7:2
source is a program constant or data address from which the instruction
reads an image of the value.
You can also use a symbol, as long as the symbol name is more
than 1 character. The source remains unchanged.
destination the data address to which the instruction writes the result of

the operation. The instruction writes over any data stored at
the destination.

w.nicsanat.com

021-87700210

7-4

Bit Modify and Move Instructions BTD, MOV, MVM

Masked Move (MVM)

Description:

MVM
MASKED MOVE
Source

Mask
Destination

Example:

The MVM instruction is an output instruction that copies the Source
to a Destination, and allows portions of the data to be masked. As
long as the rung remains true, the instruction moves data each scan.

You can use the MVM instruction to copy I/O image, binary, or
integer values. For example, use MVM to extract bit data such as
status or control bits from an element that contains bit and word data.

Table 7.C describes how the processor updates the arithmetic
status flags.

Table 7.C
Updating Arithmetic Status Flags for a MVM Instruction

With this Bit: The Processor:

Carry (C) always resets

Overflow (V) always resets

Zero (Z) sets if result is zero; otherwise resets

Sign (S) sets if result is negative; otherwise resets

Entering Parameters

To program this instruction, you must provide the processor with
the following:

Parameter: Definition:

Source a program constant or data address from which the instruction reads an
image of the value. The source remains unchanged.

Mask an address or hexadecimal value that specifies which bits to pass or
block.

You must set (1) mask bits to move data. Moved data overwrites
destination data. Bits at the destination that correspond to zeros in the
mask are not altered.

If you want the ladder program to change the mask value, store the mask
at a data address. When you enter a value in this field, make sure that
you include the data type, file number and word number. For example,
type B100: 0.

Otherwise, enter a hexadecimal value for a constant mask value. For
example, type F800.

Destination the data address to which the instruction writes the result of the
operation. The instruction writes over any data stored at the destination.

021-87700210

NIC SANAT r‘
AR =

Bit Modify and Move Instructions BTD, MOV, MVM

7-5

MVM

MASKED MOVE
Source
Mask
Destination

N7:0
1111000011110000
N7:2

Destination
N7:2 Before Move
11111 N I 1 I I A O I O
Source Mask
N7:0 FOFO
oj1foj1fof1fof1joj1jojrjoj1jo|1 111({1|1fofofjofof1j1|2|1|0|O0fO|O
Destination
N7:2 After Move
ofrjof1f1fafajarjojrfojafafafaf1
13360

021-87700210

NIC SANET

2 g

7-6

Bit Modify and Move Instructions BTD, MOV, MVM

Notes:

021-87700210

NIC SANET

2 g

Chapter 8

Concepts of File Operation

Entering Parameters

— FAL
FILE ARITH/LOGICAL

Control
Length
Position
Mode
Destination
Expression

(o)
(o)
()

File Instruction Concepts

This chapter presents concepts of block operation for the File
Arithmetic and Logical (FAL) and File Search and Compare (FSC)
instructions.

The FAL instruction performs arithmetic and logical operations on
blocks of words. The FSC instruction performs comparison
operations on blocks of words. For specific information about the
FAL or FSC instruction, see chapter 9.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

You need to provide the processor with the following information
when you enter a file instruction:

Parameter: Definition:

Control the address of the control structure in a control type (R) file. The
processor uses this information to run the instruction. See “Using the
Control Structure” on page 8-2.

Length the number of words in the data block on which the file instruction
operates. Enter any decimal number 1-1000.

Position the current word within the data block that the processor is accessing.
You generally enter a zero to start at the beginning of a block.

Mode the number of file words operated on each time the rung is scanned in
the program. The mode lets you distribute operation on the complete
block of words. Specify one of the following:

 for All mode, type an A
 for Numerical mode, type a decimal number (1-1000)
« for Incremental mode, type an |

For more information about the different modes, see “Choosing Modes of
Block Operation” on page 8-5.

Destination the address where the processor stores the result of the operation. The
instruction converts to the data type specified by the destination address.

Expression contains addresses, program constants, and operators that specify the
source of data and the operations to be performed.
If you enter the index prefix (#) for a destination or expression address,
the processor accepts it as the address of the first word of a block to be
operated upon. The processor assigns and uses the offset value in
module status to process the block address. If you omit the # prefix, the
processor accepts this as the address of a single work to be operated
upon.

021-87700210

8-2

File Instruction Concepts

Using the Control Structure

Important: Make sure the index value (positive or negative) does
not cause the indexed address to exceed the file type
boundary. The processor does not check this unless you
use an indexed indirect address or exceed the data table
area of memory. If the indexed address exceeds the data
table area, the processor initiates a run-time error and
sets a major fault. The processor does not check to see
whether the indexed address crosses file types, such as
N7 to F8.

ATTENTION: Instructions with a # sign in an address
manipulate the offset value stored at S:24. Make sure
you monitor or load the offset value you want prior to
using an indexed address. Otherwise unpredictable
machine operation could occur with possible damage to
equipment and/or injury to personnel.

For more information on indexed addressing, see the chapter on
addressing data table files in your software user manual.

The control structure (file type R) controls the operation of the file
instruction. Similar to a counter, it controls the file by length, position
and status and control bits (Figure 8.1). You enter the control
structure address (for example R6:0) in the Control field when you
program a FAL or FSC instruction.

Figure 8.1
Example Control File R6:0

Memory Control Structure Address

Status
Length R6:0

Position —

Status]
Length R6:1

Position —

Status —
Length R6:2

Position —

13370

ATTENTION: Do not use the same control address for
more than one instruction. Duplication of a control

address could result in unpredictable operation, possibly
causing damage to equipment and/or injury to personnel.

021-87700210

File Instruction Concepts 8-3

The control structure stores the following information:

» Status bits

* Length (.LEN) of the block (1-1000 words)

e Position (.POS) of the words that the processor is operating on
The FAL instruction and FSC instruction each has its own set of

status bits. See chapter 9 for the FAL or FSC instruction for a
description of these status bits.

Manipulating File Data Typical data manipulations with file instructions include:

e Copying data from a
* source word to a destination block
» source block to a destination block
» source block to a destination word
e Operating on data from multiple sources such as
e source words
* source blocks
» Storing the result in a
e destination block
* destination word
The # prefix for a destination or expression address establishes it as
the address of the first word of a block to be operated upon. The

absence of the # prefix establishes it as the address of a single word to
be operated upon.

— FAL
FILE ARITH/LOGICAL —(EN
Control R6:5
Length 4
Position o HoN)
Mode ALL
Dest #N28:0 The # prefix for the destination address and the
Expression N27:3 |'< ER) absence of a # prefix for the expression address
i establish this as a word-to-block operation.
— FAL
FILE ARITH/LOGICAL —(EN
Control R6:5
Length 4
DN
Position 0 _()
Mode ALL
Dest N28:0 +—(ER) The absence of a # prefix for the destination
Expression #N27:3 | address and the # prefix for the expression address
) establish this as a block-to-word operation.
— FAL
FILE ARITH/LOGICAL —(EN
Control R6:5
Length 4
DN
Position 0 _()
Mode ALL
Dest #N28:0 1= ER) The # prefix for the destination address and the
Expression #N27:3 | # pre;;ilx for the expression address establish this
T as a 0O a? a1 Fa 5 ang aYal
www.nicsanat.com

021-87700210

NIC SANAT r‘
AR =

8-4 File Instruction Concepts

The following example shows generic data manipulations used with
file instructions (E = expression, D = destination, x = operation).

Moving Data
E D E D E D

——=t B

Word to Block Block to Block Block to Word

Operating on Data

E D E D
E j
Block X Word = Result Word X Block = Result
E D E D
Word X Word = Result Block X Block = Result
E D E D
Word X Block = Result Block X Word = Result
E D
16617a
Block X Block = Result

021-87700210

NIC SANRT

- - E “II'

File Instruction Concepts

8-5

Choosing Modes of Block
Operation

The block mode tells the processor how to distribute the block
operation over one or more program scans. Select one of the
following modes:

All Mode

In the All mode, the entire file is operated on before continuing on to
the next rung of the program. Type an A for the mode parameter
when you enter the instruction.

/\4 Word
D

ata File
512 One Scan
14 Word File
-« 525
/\~/ 16639

Operation begins when the rung goes from not true to true. The
position (.POS) value in the control structure points to the word in the
data block that the instruction is currently using. Operation stops
when the function completes or when the processor detects an error.

The following timing diagram shows the relationship between status
bits and instruction operation. When the instruction execution is
complete, the done bit is turned on. The done and enable bits are not
turned off, and the position value is not zeroed until the rung
conditions are no longer true. Only then can another operation be
triggered by a not-true-to-true transition of the rung conditions.

One
program
scan
Condition of rung that 4,—\—
controls file/block instruction
Enable (bit 15) 4,—\—
Done (bit 13) f

A The processor turns
t————————— off status bits and
H H H zeroes position value.

Execution of the instruction

) 16640
Operation complete

021-87700210

NIC SANAT

- - E “-r

‘a

File Instruction Concepts

Numerical Mode

Numerical mode distributes the file operation over a number of
program scans. To select the numerical mode, enter the number of
words per scan (1-1000) for the mode parameter when you enter the
file instruction. The number of words you enter must be less than or
equal to the file length.

Execution is triggered when the rung conditions go from not true
to true. Once triggered, the instruction is executed continually each
time the rung is scanned in the program for the number of scans
necessary to complete operation on the entire file. Once triggered,
rung logic can change repeatedly without interrupting execution of
the instruction.

Each time the rung is scanned, the instruction operates on the number
of words equal to the rate you entered for the mode value, until it has
operated on the number of words you specified by the length value. In
the last scan of the rung, the processor may operate on less than the
number of words you entered.

/\4 File

Word Scan #1
512
5 words
Scan #1 516 Scan #2
< s
14-Word Block 5 words
Scan #2 521 Scan #3
R e v
| Remaining —
Scan #3) 4 words 1 e
«—
/\/ 16641

Important: Avoid using the results of a file instruction operating in
numeric mode until the done bit is set because the data
will be incomplete.

The following timing diagram shows the relationship between status
bits and instruction operation.

Rung is true at completion Rung is not true at completion

Multiple program
scans

Multiple program
scans

Condition of rung that

controls file instruction ‘ ‘
Enable (bit 15) 4,—\—
Done (bit 13)

s

Execution of instruction H H H H H H H H H
Operation complete J t The processor turns off Operation complete J AL The processor
enable and done bit and turns off done
zeroes position value. bit and zerog

position vall

021-87700210

File Instruction Concepts

8-7

When the instruction execution is complete, the done bit is turned on.

If the rung is true at completion, the enable bit and done bit are not
turned off until the rung is no longer true. When the rung is no longer
true, these bits are turned off and the position value is zeroed.

If the rung is not true at completion, the enable bit is turned off
immediately, and one scan after the enable bit is turned off, the done
bit is turned off and the position value is zeroed.

Only after the enable and done bits are turned off can another
operation be triggered by a not-true-to-true transition of the
rung conditions.

Incremental Mode

Incremental mode manipulates one word of the file each time the
rung goes from not true to true. Type an I for the mode parameter
when you enter the instruction.

.

Word
) File Word
1-Word Operation 1st Rung Enable
< - Word #0 512 2nd Rung Enabl
R i nd Rung Enable
1-Word Operation Word #1 513 <€ e QE ;
1-Word Operation rd Rung Enable
< EperEon Word #2 514 €
Word #3 515
Word File ~L L
1-Word Onerati Word #12 524
-Word Operation
47‘3 Word #13 (last word) 525 M

The following timing diagram shows the relationship between status
bits and instruction operation.

One or more

program
scans
Condition of rung that
controls file instruction

Done (bit 13) s
¢

H |
| :
t The processor j

) The processor turns
turns off enable bit. off status bits and

Operation complete zeroes position value.

Enable (bit 15)

F

Execution of instruction

L

16644

021-87700210

8-8

File Instruction Concepts

Execution occurs only in a program scan in which the rung goes from
not true to true. Each time this does occur, only one word of the file is
operated on. The enable bit is on when rung logic is true. The done bit
is turned on when the last word in the file has been operated on. When
the last word in the file has been operated on and the rung goes from
true to not true, the enable and done bits are turned off and the
position value is zeroed. If the rung remains true for more than one
program scan, the file instruction is not executed in subsequent scans
after the transition.

Important: Ifyou are operating on an entire file, avoid using the
results of a file/block instruction using incremental
mode until the done bit is on (the data will
be incomplete).

Special Case, Numerical Mode with Words Per Scan = 1

The difference between numerical mode with a rate of 1 word per
scan and incremental mode is:

* Numerical mode with any number of words per scan, only one
not-true-to-true rung transition is required for continual execution
of the instruction until operation is complete on the entire file.

e Incremental mode requires a not-true-to-true rung transition for
each word in the file.

021-87700210

Chapter 9

Using File Instructions

File Instructions FAL, FSC, COP, FLL

The file instructions perform operations on file data and compare file
data. Table 9.A lists the available file instructions.

Table 9.A
Available File Instructions

If You Want to: Use this Operation: Founq on
Page:

Perform arithmetic, logic, shift, and FAL 9-2

function operations on file data

Perform search and compare operationson ~ FSC 9-14

file data

Copy the contents of a file into another file ~ COP 9-19

Fill a file with specific values FLL 9-20

If you have not already done so, review the basic concepts of file
operation in the previous chapter. For more information on using
indexed addresses, see your software user manual.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see

Appendix C.

021-87700210

NIC SANAT r‘
AR =

9-2

File Instructions FAL, FSC, COP, FLL

File Arithmetic and Logic (FAL)

FAL

FILE ARITH/LOGICAL
Control

Length

Position

Mode

Destination
Expression

Description:

(o)
()
(=)

The FAL instruction performs copy, arithmetic, logic, and function
operations on the data stored in files. The FAL instruction performs
the same operations as the CPT instruction. The difference is that the
FAL instruction performs operations on multiple words, while the
CPT instruction handles single words.

The FAL instruction is an output instruction that performs the
operations defined by source addresses and operators you write
in the expression. The instruction writes the results into a
destination address.

Select how the processor distributes the operation over one or more
program scans by your selection of instruction mode. For more
information about modes of file operation, see chapter 8.

The FAL instruction automatically converts the data type at the
source addresses to the data type that you specify in the destination
address.

You can use this instruction to perform operations such as:

e zero afile

e copy data from one file to another

* make arithmetic or logic computations on data stored in files

* unload a file of error codes one at a time for display

ATTENTION: Instructions with a# sign in an address
manipulate the offset value stored at S:24. Make sure
you monitor or load the offset value you want prior to
using an indexed address. Otherwise unpredictable
machine operation could occur with possible damage to
equipment and/or injury to personnel.

021-87700210

File Instructions FAL, FSC, COP, FLL 9-3
Table 9.B
FAL Operations
Type Operator ~ Description Example Operation
Copy none copy from Ato B enter source address in the expression enter
destination address in destination
Clear none set a value to zero 0 (enter 0O for the expression)
Arithmetic ~ + add 2+3
2+3+7 (Enhanced PLC-5 processors)
- subtract 12-5
(12-5)-1 (Enhanced PLC-5 processors)
* multiply 5*2
6*(5*2) (Enhanced PLC-5 processors)
divide 246
(2416)*2 (Enhanced PLC-5 processors)
- negate —N7:0
SQR square root SQR N7:0
* exponential 10**3
(x to the power of y) (Enhanced PLC-5 processors only)
Bitwise AND bitwise AND D9:3 AND D10:4
OR bitwise OR D9:4 OR D9:5
XOR bitwise exclusive OR ~ D10:10 XOR D10:11
NOT bitwise complement ~ NOT D9:4
Conversion FRD convert from BCD FRD D14:0
to binary
TOD convert from binary ~ TOD N7:0

to BCD

021-87700210

9-4 File Instructions FAL, FSC, COP, FLL

Using Status Bits

To use the FAL instruction correctly, examine and control status bits
in the control element. You address these bits by mnemonic.

This Bit: Is Set:

Enable .EN (bit 15) by a false-to-true rung transition and indicates the instruction is
enabled.
In incremental mode, the .EN bit follows the rung condition.
In numerical and ALL modes, the .EN bit remains set until the
instruction completes its operation, regardless of the rung
condition. The .EN bit is reset when the rung goes false and the
instruction completes its operation.

Done .DN (bit 13) after the instruction has operated on the last set of words.
In numerical mode if the instruction is false at completion, it resets
the .DN bit one program scan after the operation is complete. If
the instruction is true at completion, the .DN bit is reset when the
instruction goes false.

Error .ER (bit 11) when the operation generates an overflow. The instruction stops
until the ladder program resets the .ER bit.
When the processor detects an error, the position value stores the
number of the word that faulted.

With the FAL instruction, a maximum of 80 characters of the
expression can be displayed. If the expression you enter is near this
80 character maximum, when you accept the rung containing the
instruction, the processor may expand it beyond 80 characters. When
you try to edit the expression, only the first 80 characters are
displayed and the rung is displayed as an error rung. The processor
does contain the complete expression, however, and the instruction
runs properly.

To work around this display problem, export the processor memory
file and make your edits in the PC5 text file. Then import this text
file. See your programming manual for more information on
importing/exporting processor memory files.

021-87700210

File Instructions FAL, FSC, COP, FLL

9-5

FAL Copy Operations

File-to-File Copy Example:

FAL

FILE ARITH/LOGICAL
Control

Length

Position
Mode

Destination
Expression

R6:5

ALL
#N28:0
#N27:3

o)
o)
(<)

The FAL copy operation copies data:
* Dbetween files
* from a word to a file

e from a file to a word

To copy data with the FAL copy operation, enter the source address
or program constant in the expression and the destination address in
the destination.

File #N27 File #N28
Element 3 9732 e 9732 0 Element
4 1015 —> 1015 1
2000 — 2000
5 2
5 19000 —> 19000 3
13366
This Parameter: Tells the Processor:
Control (R6:5) What control structure controls the operation.
This parameter is controlled by the rung condition, the state of
the .EN and .DN hits, and by the mode (incremental, numeric, or
all). It contains the location of the last value written to by the FAL
instruction.
For example, if, in incremental mode, position = 0 and length =
4, the last word written to by the FAL instruction would be word
3 since the instruction starts at location 0.
Length (4) To move four words
Position (0) To start at the source address
Mode (ALL) To execute the length in one program scan

Destination (#N28:0) Where to write the data (the # indicates that the operation is to
be performed on a file)

Expression (#N27:3) Where to read the data (the # indicates that the operation is to
be performed on a file)

When the rung goes true, the processor reads four elements of integer
file N27 word by word starting at element 3, and writes the image to
integer file N28 starting at element 0. It writes over any data in the
destination file.

021-87700210

NIC SANET

2 g

9-6 File Instructions FAL, FSC, COP, FLL

File-to-Word Copy Example:

1st move

FAL oo , . Word 29:5
FILE ARITH/LOGICAL _(EN)_ File # N29:0 # B
Control R6:6
Length 5 -(DN) Word 0 E /: I Word
Position 0
Mode INC 1
Destination N29:5 ‘(ER)
Expression #N29:0 2
3 5th move
4th move
4 3rd move
13372
This Parameter: Tells the Processor:
Control (R6:6) What control structure controls the operation
Length (5) To copy five words
Position (0) To start at the source address

Mode (incremental) To copy one word each time the rung goes true

Destination (N29:5) Where to write the data (word address)

Expression (#N29:0) Where to read the data (the # indicates that the
operation is to be performed on a file)

With each false-to-true rung transition, the processor reads one
element of integer file N29 starting at element 0, and writes the image
into element 5 of integer file N29. The instruction writes over any
data in the destination.

A word-to-file move is similar except that the instruction copies data
from a word address into a file. The word address can be in the same
or a different file.

021-87700210

NIC SANAT r‘
AR =

File Instructions FAL, FSC, COP, FLL 9-7

FAL Arithmetic Operations You can perform multiple arithmetic operations on file data (integer
or floating point) with the following operators:

Operator: Meaning: || Operator: Meaning:

+ add [divide
- subtract - negate
* multiply 0 clear

For more information about order of operation, see chapter 4.

Upper and Lower Limits

The limits of data being mathematically manipulated depend
on the type of file in which the data is stored. The following
guidelines apply:

» all data except floating point is signed integer
* negative values are stored in two’s complement

* floating point numbers are formatted as a subset of IEEE
single-precision floating point

Type of File: Range Stored in Word:

bit —32,768 to +32,767 for integers
integer —32,768 to +32,767

timer 0to +32,767

counter -32,768 to +32,767

control 0to +32,767

floating point +1.1754944e738 to +3.4028237¢*%8

An error occurs when the result of an operation exceeds either the
lower or upper limit of the destination word in which it is stored. The
overflow bit is set in the processor’s status file (S:0/1). The
instruction also sets the error bit in the status byte of its control word.

021-87700210

File Instructions FAL, FSC, COP, FLL

Addition Example: When the rung goes true, the processor adds 100 values in file #N11:0

N — to the corresponding values in file #N12:0, using the numerical mode
FILE ARITH/LOGICAL Hen)- of 10 words per scan. The operation is performed in 10 scans and the
| R6:
Egﬂgt% g (o) instruction sequentially adds the values in the expression, storing the
Position 0 result in file #N13:0.
Mode 10
Dest #N13:0 '(ER)
Expression
#N1L:0 + #N12:0
File # N11:0 * File # N12:0 = File # N13:0
328 0 10 0 338 0
150 1 32 1 182 1
10 2 1 2 11 2
. 32 3 147 3 179 3
First Scan
45 5 572 5 617 5
1579 6 300 6 1879 6
620 7 42 7 662 7
800 8 19 8 819 8
1243 9 1000 9 2243
Second Scan next 10 words
Third Scan next 10 words
Fourth Scan next 10 words
Tenth Scan last 10 elements 99 99 99
13386
This Parameter: Tells the Processor:
Control (R6:0) What control structure controls operation
Length (100) To operate on one hundred elements
Position (0) To start at the source address
Mode (10) To execute the data in 10 words per scan

Destination (#N13:0) Where to write the result data

Expression The operators, program constants, and
(#N11:0 + #N12:0) source addresses

021-87700210

File Instructions FAL, FSC, COP, FLL 9-9
Subtraction Example:
oL File #N14 -256 = File #N14
FILE ARITH/LOGICAL EN
Control R6:1 -()- 328 0 7 10
Length 8 -
Lenah ; —(on) 150 1 106 11
Mode ALL 10 2 -246
Dest #N15:10 '(ER) 12
Expression One 32 3 -224 13
#N14:0 - 256 Scan 0 4 256 14
Required e 5 211 15
1579 6 1323 16
620 7 364 17

This Parameter:

16655a

Tells the Processor:

Control (R6:1)

What control structure controls operation

Length (8) To operate on eight words
Position (0) To start at the source address
Mode (ALL) To execute the data in one program scan

Destination (#N15:10)

Where to write the result data

Expression
(#N14:0 — 256)

The operators, program constants, and
source addresses

When the rung goes true, the processor reads eight elements of
integer file N14 word by word starting at element 0, subtracts a
program constant (256) from each, and writes the result into
destination file N15 starting at element 10, all in one scan.

021-87700210

9-10

File Instructions FAL, FSC, COP, FLL

Multiplication Example:

— FAL
FILE ARITH/LOGICAL _(EN)_
Control R6:2
Length 16
Position 0 _(DN)
Mode INC
Dest #F8:16 —(ER)
Expression
#F8:0 * #N17:0
File #F8:0
First Transition 0.01
Second Transition 0.1
Third Transition 1.0
Fourth Transition 100

© 0 ~N o o B W N = O

15

* File #N17:0

314

315

316

317

1t

This Parameter:

= File #F8:16
0 3.14 16
1 315 17
2 316 18
3 3170 19
4 20
5 21
6 22
7 23
8 24
9 25
15 31

15290

Tells the Processor:

Control (R6:2)

What control structure controls operation

Length (16)

To operate on sixteen words

Position (0)

To start at the source address

Mode (incremental)

To execute using incremental mode

Destination (#F8:16)

Where to write the result data

Expression
(#F8:0 * #N17:0)

The operators, program constants, and
source addresses

When the rung goes true, the processor multiplies 16 values in file
#F8:0 by the corresponding values in file #N17:0, using incremental
mode. One multiplication is performed for each false to true
transition. The operation requires 16 transitions, storing the result in

file #F8:16.

021-87700210

File Instructions FAL, FSC, COP, FLL

9-11

Division Example:

—FAL
FILE ARITHILOGICAL (e)~
Control R6:2
Length 16 —(DN)
Position 0
Mode INC
Destination #N13:0 '(ER)
Expression

#N11:0 | #N12:0

File N11:0

First Transition

60

Second Transition

175

Third Transition

1128

Fourth Transition

45

File N12:0 = File N13:0

Word Word

0 12 0 5
1 5 1 35
2 8 2 141
3 9 3 5
4 4

5 5

6 6

7 7

8 8

9 9

15 15

This Parameter:

Tells the Processor:

=
o
=)
o

© 0o ~N oo o B W N B O

15
17955

Control (R6:2)

What control structure controls operation

Length (16)

To operate on sixteen words

Position (0)

To start at the source address

Mode (incremental)

To execute using incremental mode

Destination (#N13:0)

Where to write the result data

Expression
(#N11:0 | #N12:0)

The operators and source addresses

When the rung goes true, the processor starts to divide 16 values
starting at N11:0 by the corresponding values in file #N12:0, using
incremental mode. One division is performed for each transition to
true. The operation requires 16 transitions, storing the result in a
16-word file starting at N13:0.

021-87700210

NIC SANET

2 g

File Instructions FAL, FSC, COP, FLL

File Square Root Example:

—FAL

FILE ARITH/LOGICAL
Control R6:4
Length 64
Position 0
Mode
Destination #N23:4
Expression

SQR #N22:25

(o)
(=)

e

FAL Logic Operations

When rung conditions go true, the instruction obtains the positive
square root of the value at the source. The rate is determined by the
mode you select. The result of each square root operation is stored in
the corresponding word in the destination, one word at a time.

The processor takes the square root of the absolute value (if the sign

is negative, the processor disregards the sign).

This Parameter: Tells the Processor:

Control (R6:4) What control structure controls the operation

Length (64) To take the square root of 64 words
Position (0) To start at the source address
Mode (4) To operate on 4 words each scan

Destination (#N23:4) Where to write the result data

Expression (SQR #N22:25) The operator and source address

After rung goes true, the square root of the first 4 words in the file
beginning at N22:25 is calculated, and the result is written in the
destination file beginning at N23:4. Every time the rung is scanned
thereafter, the next four words are calculated and the result written
to the destination file. The processor requires a total of 16 scans
(length = 64 / mode = 4) to complete the instruction.

Perform multiple logic operations on binary file data with the
following bitwise logic operators:

« AND
« OR

« XOR
e NOT

To perform multiple logic operations, you enter the operators, source
addresses, or program constants in the expression, and the result
address in the destination.

021-87700210

File Instructions FAL, FSC, COP, FLL 9-13
Logical OR Example:
—FAL
FILE ARITH/LOGICAL _(EN)_
Control R6:4
Length 6
Position 0 -(DN)
Mode 2
Destination #B5:24 '(ER)
Expression
#:000 OR #B3:6
File 1:000 Word File B3 Word File B5 Word
. 0000000000000000 |0 1010101010101010 |6 1010101010101010 |24
FistSean < 1 111111111111111 |1 1111111100000000 |7 1111111111111111 |25
1111000011110000 |2 0000000000000000 |8 1111000011110000 |26
Second Sean <\ 4 470101010101010 |3 1100110011001100 |9 1110111011101110 |27
4 10 28
Third Scan 5 1 29

16618a

This Parameter: Tells the Processor:

Control (R6:4) What control structure controls the operation

Length (6) To OR 6 words
Position (0) To start at the source address
Mode (2) To move 2 words each scan

Destination (#B5:24) Where to write the result data

Expression
(#1:000 OR #B3:6)

The operator(s) and source addresses

After rung goes true, the processor performs a logical or operation on
two words beginning at [:0 and B3:6. The result is written in the
destination file beginning at B5:24. Every time the rung is scanned
thereafter, the next two words are calculated and the result written to
the destination file. The processor requires a total of 3 scans

(length = 6 / mode = 2) to complete the instruction.

The processor executes logic operators in a predetermined order. For
more information about order of operations, see chapter 4.

021-87700210

9-14

File Instructions FAL, FSC, COP, FLL

FAL Convert Operations

— FAL

FILE ARITH/LOGICAL
Control R6:2
Length 12
Position 0
Mode ALL
Destination #N14:0
Expression
TOD #N7:0

Example: Convert to BCD

[(e1)-
(o)
(=)

Example: Convert from BCD

File Search and Compare (FSC)

Description:

FSC

FILE SEARCH/COMPAR
Control

Length

Position

Mode

Expression

o)
(o)
=)

The FAL instruction can perform these convert operations:
* convert from integer to BCD (TOD)
* convert from BCD to integer (FRD)

When rung conditions go to true, the processor converts the value in
the source from integer to BCD. The rate is determined by the mode
that you select. The result of the operation is stored in the
corresponding word in the destination.

When rung conditions go to true, the processor converts the value in
the source from BCD to integer. The rate is determined by the mode
that you select. The result of the operation is stored in the
corresponding word in the destination.

Important: Convert BCD values to integer before manipulating
them; if you do not convert the values, the processor
manipulates them as integer and their BCD value is lost.

The FSC instruction performs search and compare operations.

These are the same operations as the CMP instruction, including
complex expressions (Enhanced PLC-5 processors only). The
difference is that the FSC instruction performs logical operations on
files, while the CMP instruction operates on a single word. Also, the
FSC instruction is an output instruction, while the CMP instruction is
an input instruction.

The FSC instruction is an output instruction that compares values in
source files, word by word, for the logical operations you specify in
the expression. When the processor finds the specified comparison is
true, it sets the found bit .FD, and records the position .POS where the
true comparison was found. The inhibit bit .IN is set to prevent any
further searching of the files.

Your ladder program must examine the found bit .FD and the position
.POS to take appropriate action. Reset the inhibit bit .IN, so the
instruction can continue.

Select how the processor distributes the operation over one or more
program scans by your selection of instruction mode. For more
information about modes of file operation, see chapter 8.

Use this instruction to perform operations such as:
» set high and low process alarms for multiple analog inputs

» compare batch variables against a reference file before starting a

batch operation
021-87700210

File Instructions FAL, FSC, COP, FLL

9-15

Using Status Bits

To use the FSC instruction correctly, your ladder program must
examine and control status bits in the control structure. You must
address these bits by mnemonic.

This Bit: Is Set:

Enable .EN (bit 15) by a false-to-true rung transition and indicates the instruction
is enabled.
In incremental mode this bit follows the rung condition. In
Numerical and All modes, this bit remains set until the instruction
completes its operation, regardless of the rung condition. The .EN
bit is reset when rung conditions go false, but only after the
instruction has set the .DN bit.

Done .DN (bit 13) after the instruction has operated on the last set of words.

In numerical mode if the instruction is false at completion, it
resets the .DN hit one program scan after the operation is
complete. If the instruction is true at completion, the .DN bit is
reset when the instruction goes false.

Error .ER (bit 11) when the operation generates an overflow. The instruction stops
until the ladder program resets this bit.
When the processor detects an error, the position value stores
the number of the element that faulted.

Inhibit .IN (bit 9) when the processor detects a true comparison.
Your ladder program must reset this bit to continue the search
after taking an action initiated by examining the .FD bit. The
ladder program must reset this bit to continue operation.

Found .FD (bit 8) when the processor detects a true comparison. The processor
stops the search and also sets the inhibit .IN bit. The .FD bit is the
output of the FSC instruction.

With the FSC instruction, a maximum of 80 characters of the
expression can be displayed. If the expression you enter is near this
80 character maximum, when you accept the rung containing the
instruction, the processor may expand it beyond 80 characters. When
you try to edit the expression, only the first 80 characters are
displayed and the rung is displayed as an error rung. The processor
does contain the complete expression, however, and the instruction
runs properly.

To work around this display problem, export the processor memory
file and make your edits in the PC5 text file. Then import this text
file. See your programming manual for more information on
importing/exporting processor memory files.

021-87700210

NIC SANET

2 g

9-16

File Instructions FAL, FSC, COP, FLL

The following timing diagram for All mode shows relationships
between status bits and instruction execution when the instruction
finds two true conditions.

Scan Markers

N)J

Done Bit (.DN)

Enable Bit (.E

Only ! !
1 Scan — | ‘ ‘ ‘ | !
| | | | | ‘ |
Rung Condition J 1
[
\
|
i
|

Instruction Execution

[|
— |

T

Inhibit (.IN) and Found (.FD) Bit

L

Comparison Found

Ladder Program T
Resets Inhibit (.IN) Bit

16656

For more information about how the FSC instruction responds when
it finds no true comparisons, see the timing diagrams in chapter 8.

(www.nicsanat.com
021-87700210

NIC SANET

2 g

File Instructions FAL, FSC, COP, FLL 9-17

FSC Search and Compare The FSC instruction performs these comparisons on file data
Operations according to how you specify them in the Expression. (Complex
expressions are valid in Enhanced PLC-5 processors only.)

Comparison: Example Expression:
Search Equal #N50:0 = #N51:0
Search Not Equal #N52:0 <> N52:11
Search Less Than #B3:100 < #N53:0
Search Less Than or Equal #F60:0 <= F60:12
Search Greater Than #N54:0 > 256

Search Greater Than or Equal F60:10 >=#N61:0

Data Conversion

The processor compares files of different data types by internally
converting data into its binary equivalent before performing the
comparison. The processor treats the following data types as integer:
timer, status, bit, counter, input, ASCII, control, output, BCD.

Important: When you compare floating point and integer values in
the FSC instruction, limit the comparisons to “less than
or equal” and “greater than or equal.”

Important: Use ASCII and BCD for display only, and not as values.
Since the processor interprets them as integer, they may
lose their meaning if you enter them as values.

For the order in which the instruction performs logical operations, see
the section “Determining the Order of Operation” in chapter 4.

File Search Operation

When the rung condition goes to true, the desired comparison is
performed on data addressed in the expression. Words are compared
in ascending order, starting at the beginning. The rate is determined
by the mode of operation that you specify.

The .DN bit (bit 13) is set after the processor has compared the last
pair. If the rung is true at completion, the .DN bit is turned off when
the rung is no longer true. In numerical mode, however, if the rung is
not true at completion, the .DN bit stays on one program scan after
the operation is complete.

021-87700210

9-18

File Instructions FAL, FSC, COP, FLL

Example of Search Not Equal:
— FSC

FILE SEARCH/COMPARE —(EN)_
Control R6:0

Length 90
Position 0 _(DN)
Mode 10

Expression _(ER)

#B4:0 <> #B5:0

File B4 Word < > File B5 Word
0000000100000000(100) |0 0000000100000000(100) |0
0000000000000001(1) 1 0000000000000001(1) 1
First scan 0000000000000010(2) 2 0000000000000010(2) 2
0000000000000110(6) 3 0000000000000110(6) 3 Processor stops and
0000000000000111(7) |4 0000000000000110(6) | 4 sets the found and
inhibit bits. To continue,
the program must reset
the inhibit bit.
10 10
Second scan Next 10 words Next 10 words
. Next 10 words Next 10 words
L]
Ninth scan L q d
ast 10 words 89 Last 10 words 89
16620a
This Parameter: Tells the Processor:
Control (R6:0) What control structure controls the operation
Length (90) To search through 90 words
Position (0) To start at source addresses
Mode (10) To search 10 words per program scan
Expression The comparison to perform and the source addresses
(#B4:0 <> #B5:0)

When a rung containing the FSC instruction goes to true, the
processor performs the not-equal-to comparison between words,
starting at B4:0 and B5:0. The number of words compared per
program scan (10 in this example) is determined by the mode
you select.

When the processor finds that corresponding source words are not
equal (words B4:4 and B5:4 in this example), the processor stops the
search and turns on the found .FD and inhibit .IN bits so your ladder
program can take appropriate action. To continue the search
comparison, you must turn off the .IN bit.

021-87700210

File Instructions FAL, FSC, COP, FLL

9-19

File Copy (COP)

cop
COPY FILE

Source
Destination

Length

Description:

The COP instruction is an output instruction that copies the values in
the source file into the destination file. The source remains
unchanged. The COP instruction does not use status bits. If you need
an enable bit, program a parallel output that uses a storage address.

The COP instruction does not write over file boundaries. Any
overflow data is lost. Also, no data conversion occurs if the source
and destination files are different data types; use files of the same data
type for each.

If the destination is in a file of words (such as an integer file) you
specify the length in words. If the destination is in a file of structures
(such as a counter file) you specify the length in structures. For
example, if the source is in an integer file, the destination is in a
counter file, and you specify a length of 5, 15 integer words are
copied into 5 counter structures.

Entering Parameters

To program the COP instruction, you must provide the processor with
the following:

Parameter: Definition:

Source the starting address of the source file. The source remains unchanged.

Destination address of the destination file. The instruction writes over any data
already stored at the destination.

Length the number of the words/structures to overwrite in the destination file.

ATTENTION: Ifyou use the COP instruction with an
Enhanced PLC-5 processor, series A-D, file boundaries
might become crossed if the destination parameter is
indirectly addressed.

If the indirect address is written to the program area,
the Enhanced PLC-5 processor, series A-D, displays
major fault code 11 (bad user program checksum). If
the indirect address is written outside of the program
area, unexpected results could occur.

If you use the COP instruction with an Enhanced
PLC-5 processors, series E and higher, this condition is
correctly identified by either major fault code 20
(indirect address out of range high) or major fault
code 21 (indirect address out of range low).

021-87700210

9-20 File Instructions FAL, FSC, COP, FLL

Example:
| 1:012 — COP
] E COPY FILE
| 10
Source #NT:0
Destination #N12:0
Length 5

If input word 12, bit 10 is on, copy the values
of the first five words starting at N7:0 into the first
five words of N12:0.

File Fill (FLL)

Description: The FLL instruction is an output instruction that fills the words of a

L file with a source value. The source remains unchanged. The FLL

instruction does not use status bits. If you need an enable bit, program
FILLFILE a parallel output that uses a storage address.
Source
Destination The FLL instruction does not write over file boundaries. Any
Length overflow data is lost. Also, no data conversion occurs if the source

and destination files are different data types; use files of the same data
type for each.

If the destination is in a file of words (such as an integer file) you
specify the length in words. If the destination is in a file of structures
(such as a counter file) you specify the length in structures. For
example, if the source word is an integer file, the destination is in a
counter file, and you specify a length of 5, the source word is copied
15 times to fill the 5 counter structures.

The FLL instruction is level sensitive.

Entering Parameters

To program the FLL instruction, you must provide the processor with
the following:

Parameter: Definition:

Source the address of the source word or a program constant. The source
remains unchanged.

Destination the starting address of the destination file. The instruction writes over
any data already stored at the destination.

Length the number of the words/structures to fill in the destination file

021-87700210

NIC SANAT r‘
AR =

File Instructions FAL, FSC, COP, FLL

9-21

Example:

ATTENTION: Ifyou use the FLL instruction with an
Enhanced PLC-5 processor, series A-D, file boundaries
might become crossed if the destination parameter is
indirectly addressed.

If the indirect address is written to the program area,
the Enhanced PLC-5 processor, series A-D, displays
major fault code 11 (bad user program checksum). If
the indirect address is written outside of the program
area, unexpected results could occur.

If you use the FLL instruction with an Enhanced
PLC-5 processors, series E and higher, this condition is
correctly identified by either major fault code 20
(indirect address out of range high) or major fault
code 21 (indirect address out of range low).

| 1:012 AL
1 FILL FILE “
w
Source N7:0
Destination #N12:0
Length 5
If input word 12, bit 10 is on, copy the value

of word N7:0 into the first five words
starting at N12:0

Words are copied from the specified source file into the specified
destination file every scan that the rung is true. They are copied (in
ascending order with no transformation of data) up to the specified
number or until the last word of the destination file is reached,
whichever occurs first.

Accurately specify the starting address and length of the data block
you are filling. The instruction will not write over a file boundary

(such as between files N16 and N17) at the destination. The overflow

would be lost.

021-87700210

NIC SANRT

s - E “-r

‘a

9-22 File Instructions FAL, FSC, COP, FLL

Notes:

021-87700210
NIC SENAT

e

.

Chapter 1 0

Using Diagnostic Instructions

Diagnostic Instructions FBC, DDT, DTR

The diagnostic instructions let you detect problems with data in your
programs. Table 10.A lists the available diagnostic instructions.

Table 10.A
Available Diagnostic Instructions

If You Want to: Use this Operation: Found on Page:

Compare /0 data against a known, good FBC 10-2
reference and record any mismatches

Compare /0 data against a known, good DDT 10-2
reference, record any mismatches, and

update the reference file to match the

source file

Pass source data through a mask and DTR 10-8
compare the result to reference data, and

then write the source word into the

reference address of the next comparison.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

021-87700210

NIC SANAT r‘
AR =

10-2

Diagnostic Instructions FBC, DDT, DTR

File Bit Comparison (FBC) and

Diagnostic Detect (DDT)

— FBC
FILE BIT COMPARE
Source
Reference
Result
Compare Control
Length

Position
Result control

Length
Position

Description:

EN
DN
FD
IN
ER

The FBC and DDT diagnostic instructions are output instructions
that you use to monitor machine or process operations to
detect malfunctions.

Table 10.B
Available Diagnostic Instructions

If You Want to Detect Malfunctions By: Use this Instruction:

Comparing bits in a file of real-time inputs with a FBC
reference hit file that represents correct operation

Change-of-state diagnostics DDT

Both the FBC and DDT instructions compare bits in a file of real-time
machine or process values (input file) with bits in a reference file,
detect deviations, and record mismatched bit numbers. These
instructions record the position of each mismatch found and place this
information in the result file. If no mismatches are found, the .DN bit
is set but the result file remains unchanged.

The difference between the DDT and FBC instruction is that each
time the DDT instruction finds a mismatch, the processor changes the
reference bit to match the source bit. The FBC instruction does not
change the reference bit. Use the DDT instruction to update your
reference file to reflect changing machine or process conditions.

Selecting the Search Mode

Select whether the diagnostic instruction searches for one mismatch
at a time or whether it searches for all mismatches during one
program scan.

One Mismatch at a Time

With each false-to-true rung transition, the instruction searches for
the next mismatch between the input and reference files. Upon
finding a mismatch, the instruction stops and sets the found .FD bit.
Then the instruction enters the position number of the mismatch into
the result file.

The DDT instruction also changes the status of the reference bit to
match the status of the corresponding input bit. The instruction resets
the found bit when the rung goes false.

021-87700210

Diagnostic Instructions FBC, DDT, DTR

10-3

When the instruction reaches the end of the file, the done bit (bit 13
DN of the compare control element) is set. Then, when the rung goes
false, the instruction resets:

* enable bit

» found bit (if set)

e compare done bit

» result done bit (if set)

¢ both control counters

To enable this mode of operation, set the inhibit bit (.IN = 1) either by
ladder program or manually before program execution.

All Per Scan

The instruction searches for all mismatches between the input and
reference files in one program scan. Upon finding mismatches, the
instruction enters the position numbers of mismatched bits into the
result file in the order it finds them. After reaching the end of the
input and reference files, the instruction sets the .FD bit if it finds at
least one mismatch. Then the instruction sets the .DN bit.

If you use aresult file that cannot hold all detected mismatches (if the
result file fills), the instruction stops and requires another false-to-true
rung transition to continue operation. The instruction wraps the new
mismatched bit positions into the beginning of the result file writing
over the old.

After completing the comparison and when the rung goes false, the
instruction resets:

* enable bit

o found bit (if set)

e compare done bit

* result done bit (if set)

e both control counters

To enable this mode of operation, reset the inhibit bit (.IN = 0) by
ladder program or manually before program execution.

021-87700210

10-4

Diagnostic Instructions FBC, DDT, DTR

Entering Parameters

To program these instructions, you need to provide the processor with
the following information:

Parameter:

Description:

Source

the indexed address of your input file.

Reference

the indexed address of the file that contains the data with which you
compare your input file.

Result

the indexed address of the file where the instruction stores the position
(bit) number of each detected mismatch.

Cmp Control

the address of the comparison control structure (R) that stores status
hits, the length of the source and reference files (both should be the
same), and the current position during operation. Use the compare
control address with mnemonic when you address these parameters:
Length (.LEN) is the decimal number of bits to be compared in the
source and reference files. Remember that bits in I/O files are
numbered in octal 00-17, but that bits in all other files are numbered in
decimal 0-15.

Position (.POS) is the current position of the bit to which the instruction
points. Enter a value only if you want the instruction to start at an
offset concurrent with a control file offset for one scan.

Result Control

the address of the result control structure (R) that stores the bit
position number each time the instruction finds a mismatch between
source and reference files.

Use the result control address with mnemonic when you address
these parameters:

Length (.LEN) is the decimal number of elements in the result
file. Make the length long enough to record the maximum
number of expected mismatches.

Position (.POS) is the current position in the result file. Enter a
value only if you want the instruction to start at an offset
concurrent with a control file offset for one scan.

ATTENTION: Do not use the same address for more
than one control structure. Duplication of these
addresses could result in unpredictable operation,
possibly causing equipment damage and/or injury to
personnel.

021-87700210

Diagnostic Instructions FBC, DDT, DTR

10-5

Bit:

Using Status Bits

To use the FBC or DDT instruction correctly, examine and control
bits in both the comparison and result control elements. You address
these bits by mnemonic.

Function:

Comparison
Control Bits

Enable .EN (bit 15) starts operation on a false-to-true rung transition

If the .IN bit is set for one-at-a-time operation, the ladder program
must toggle the .EN bit after the instruction detects each mismatch.

Done .DN (bit 13) is set when the processor reaches the end of the source and reference files

Error .ER (bit 11) is set when the processor detects an error and stops operation of
the instruction
For example, an error occurs if the length (.LEN) is less than or equal to zero
or if the position (.POS) is less than zero. The ladder program must reset the
.ER bit if the instruction detects an error.

Inhibit .IN (bit 09) determines the mode of operation

When this bit is reset, the processor detects all mismatches in one scan.
When this bit is set, the processor stops the search at each mismatch and
waits for the ladder program to re-enable the instruction before continuing
the search.

Found .FD (hit 08) is set each time the processor records a mismatch bit number in the result file
(one-at-a-time operation) or after recording all mismatches (all per scan).

Result
Control Bits

Done .DN (bit 13) is set when the result file fills

The instruction stops and requires another false-to-true rung transition to
reset the result .DN bit and then continue. If the instruction finds another
mismatch, it wraps the new position number around to the beginning of the
file, writing over previous position numbers.

After the FBC or DDT instruction sets the compare .DN bit, the
instruction is reset when the rung’s input conditions go false. The
instruction resets its status bits and both control elements.

021-87700210

NIC SANET

2 g

10-6

Diagnostic Instructions FBC, DDT, DTR

Example: The DDT instruction above compares the bits in the source file
_ DOT (#1:030) with the bits in the reference file (#B3:0), recording the
DIAGNOSTIC DETECT EN mismatched bit positions in the result file (#N10:0):
Source #0030 |+{(DN
Reference #B3:0
Result #N10:0 [F\FD
Compare control R6:0 IN
Length 48
Position 0 ER
Result control R6:1
Length 10
Position 0
Input Reference Result File 2
File) File® (mismatched bit #s)
#:030 bit 3 #83 #N10
17 10 |07 00 15 08 |07 00
1111111100001‘000 1111111100000‘000 0 8
r>1‘011001100110011 0‘011001100110011 ! 31
2
s 1111000‘11111000‘1 1111000‘01111000‘0 82
T /4 3 40
, bit32
hit 40 9

The FBC and DDT instructions detect mismatches and record their locations by bit number in a result file.

! The DDT instruction changes the status of the corresponding bit in the reference file to match the input file
when it detects a mismatch.

? The length of the result file is the length that you enter for RESULT CONTROL.

This Parameter:

16657a

Tells the Processor:

Source (#1:030)

Where to find input data for comparison

Reference (#B3:0)

Where to find the reference file

Result (#N10:0)

Where to store mismatched bit numbers

CMP Control (R6:0)

What control structure controls the comparison

Length (48)

The number of bits to be compared

Position (0)

To start at the beginning of the file

Result Control (R6:1)

What control structure controls the result

Length (10)

The number of words reserved for mismatches

Position (0)

To start at the beginning of the file

021-87700210

Diagnostic Instructions FBC, DDT, DTR

Important: The FBC and DDT instructions may cause any
Enhanced PLC-5 processor to fault if the indexed
addressing offset contains a value that exceeds data
table boundaries. To work around this, add a ladder
rung that clears S:24 (indexed addressing offset)
immediately before an FBC or DDT instruction.

— CLR
1 L
1 € Clear
Destination S:24
— FBC
(BN)
Source #10:30
Reference #B3:0 —(DN)
| Result #NL0O | ey
| Compare Control R6:0
or | Length 48 [IN)
Position 0
ER
| Result Control R6:1 —(R)
| Length 10
Position 0
|
| — DDT o)
EN
| Source #10:30
| Reference #B3:0 —(DN)
Result #N10:0
FD
Compare Control R6:0 _()
Length 48 (IN)
Position 0
ER
Result Control R6:1 _()
Length 10
Position 0

021-87700210

NIC SANET

2 g

10-8

Diagnostic Instructions FBC, DDT, DTR

Data Transitional (DTR)

Description:

DTR
DATA TRANSITION

Source
Mask
Reference

Example:

DTR
DATA TRANSITION

Source
Mask
Reference

1:002
OFFF
NB3:11

The DTR instruction is an input instruction that passes a source value
through a mask and compares the result to a reference value. Use this
instruction to detect and identify invalid inputs and to prevent invalid
inputs from shutting down a batch processor or machine operation.

The DTR instruction compares a source word through a mask with a
reference word. The instruction also writes the source word into the
reference address for the next comparison. The source word remains
unchanged.

When the masked source differs from the reference, the instruction
goes true for only one scan. The processor writes the masked source
value into the reference address. When the masked source and the
reference are the same, the instruction remains false.

ATTENTION: Online programming with this
instruction can be dangerous. If the destination value is
different from the source value, the instruction goes true.
Use caution if you insert this instruction when the
processor is in Run or Remote Run mode.

Entering Parameters

To program the DTR instruction, you need to provide the processor
with the following information:

Parameter: Definition:

Source the address of the input word, typically real inputs.

Mask the hexadecimal value or address that contains the mask value

Reference the address of the reference word
The reference contains the source data from the last DTR scan

The DTR instruction above passes the source (1:002) through a mask
of OFFF and compares the result to the reference word (N63:11). The
source word is then written into the reference address for the next
comparison (the source remains unchanged).

021-87700210

Diagnostic Instructions FBC, DDT, DTR

10-9

15 08] 07 00
1 8 3
15 08| 07 00
ojofofofryrjafafryfry1j2 111
v v v
c 15 08 07 00
urrent
Scan 1 8 3
Previous 1 8 3
Scan

Rung remains false as long as
input value does not change

Source Word 1 08] 07 ®
1:002 1 8 7
15 08] 07 00
Mask Value
OFFF 0 (O 0 I I 111
15 08| 07 00
Reference Word 1 8 7 (Siggrr?nt
N63:11
1 8 3 Previous
Scan

Rung goes true for one scan
when change is detected

13385

021-87700210

NIC SANET

2 g

10-10 Diagnostic Instructions FBC, DDT, DTR

Notes:

021-87700210

NIC SANAT r‘
AR =

Chapter 1 1

Applying Shift Registers

Shift Register Instructions BSL, BSR, FFL,
FFU, LFL, LFU

Use the shift register instruction to simulate the movement or flow of
parts and information.

If You Use a Shift Register for: Data in the Shift Register Could Represent:

Tracking parts through an assembly line Part types, quality, size, and status

Controlling machine or process operations The order in which events occur

Inventory control Identification numbers or locations

System diagnostics A fault condition that caused a shutdown

Table 11.A lists the available shift instructions.

Table 11.A
Available Shift Instructions

If You Want to: Use these Instructions: Found on Page:
Load bits into, shift hits through, and unload bits from a bit array one hitat ~ BSL, BSR 11-2

a time, such as for tracking bottles through a bottling line where each bit

represents a hottle

Load and unload values in the same order, such as for tracking parts FFL, FFU 11-5

through an assembly line where parts are represented by values that have

a part number and assembly code

Load and unload values in reverse order, such as tracking stacked LFL, LFU * 11-8

inventory in a warehouse, where goods are represented by serial number

and inventory codes

* These instructions are only supported by Enhanced PLC-5 processors.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

021-87700210

11-2

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU

Using Bit Shift Instructions

Description:
BSL ————
BIT SHIFT LEFT _(EN)_
File
Control

DN

Bit address _()
Length

Bit shift instructions shift all bits within the specified address
one bit position with each false-to-true rung transition. These
instructions are:

« Bit Shift Left (BSL)
« Bit Shift Right (BSR)

Entering Parameters

To program a bit shift instruction, you need to provide the processor
with the following information:

Parameter:

Definition:

File

the address of the bit array you want to manipulate. You must start the
array at a 16-hit word boundary. For example, use bit 0 of word number
1, 2, 3, etc. You can end the array at any bit number up to 15,999.
However, you cannot use the remaining bits in that particular element
because the instruction invalidates them.

Control

The address of the control structure (48 bits — three 16-bit words) in the
control area (R) of memory that stores the instruction’s status bits, the
size of the array (number of bits), and the bit pointer.

Position

the current position of the bit to which the instruction points. Enter a
value only if you want the instruction to start at an offset concurrent with
a control file offset for one scan. Use the control address with mnemonic
when you address this parameter.

Bit Address

the address of the source bit. The instruction inserts the status of this bit
in either the first (lowest) bit position (for the BSL instruction) or the last
(highest) bit position (for the BSR instruction) in the array.

Length

the decimal number of bits to be shifted. Remember that bits in /0 files
are numbered in octal 00-17, but that bits in all other files are numbered
in decimal 0-15. Use the control address with mnemonic when you
address this parameter.

ATTENTION: Do not use the same control address for
more than one instruction. Unexpected operation could
result in possible equipment damage and/or personal

injury.

021-87700210

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU 11-3

Using Status Bits

To use the BSL or BSR instruction correctly, examine status bits in
the control element. You address these bits by mnemonic.

Bit: Definition:

Enable .EN (bit 15) is set when the rung makes a false-to-true rung transition to

indicate the instruction is enabled.

Done .DN (bit 13) is set to indicate that the bit array shifted one bit position

Error .ER (bit 11) is set to indicate that the instruction detected an error, such as if

you entered a negative file length

Unload .UL (bit 10) is the instruction’s output.

The .UL bit stores the status of the bit removed from the array
each time the instruction is enabled. Avoid using the .UL bit when
the .ER bit is set.

Important: When enabled, the bit pointer is set to the value of the
length the bit array is shifted. After all of the bits are
shifted, the instruction resets the .EN, .ER and .DN bits
and the bit pointer when input conditions go false.

Bit Shift Left (BSL) Example:

Source
BSL 151413 (12]11]10| 9 |8 |7 |6 |5 |4 |3 |2 |1 |o | 102212
BIT SHIFT LEFT (en)
File 4831 31 16 g
Control R6:53 L <
Bit address 1:022/12 _(oN) e
Length 58 S I O O O O K -
— 58-Bit
e #B3/16
ss] [[[T [T T [[T 1T [T [[48]] (31
ey
Unload Bit invalid LA O I O O I X
CI‘_//A/L <
95[94[93[92[91 9089 |88 [87 [86 [85[84 [83 [82[81[80
16658

This Parameter: Tells the Processor:

File (#B3:1) The location of the bit array

Control (R6:53) The instruction’s address and control element

Bit Address (1:022/12) The location of the source bit (bit 12 of input word 22)

Length (58) The number of bits in the bit array

021-87700210

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU

When a rung containing the BSL instruction goes from false to true,
the processor sets the .EN bit. Then the processor shifts 58 bits in bit
file B3, starting with bit 16, to the left (higher bit number) one bit
position. The last bit shifts out at bit position 73 into the .UL bit. The
specified source bit, bit 12 of input word 22, shifts into the first bit
position, bit 16 of bit file B3.

After the processor completes the shift operation in one program
scan, when the rung goes false, the instruction resets the .EN, .ER (if
set) and .DN bits, and resets the pointer.

For wrap-around operation, make the source address the same as the
highest (outgoing) bit address. You can omit using the .UL bit in
wrap-around operation.

Bit Shift Right (BSR) Example:

BSR

BIT SHIFT RIGHT
File

Control

Bit address
Length

#B3:2
R6:54
1:023/06
38

—(EN)- 15 (14|13 (12 (11{10|9 (8 |7 |6 |5 |4 |3 |2 |1 |0
L (on) 31(30(29 (28|27 (26|25 /24 |23|22(21(20(19 (18|17 |16
47

Unload Bit

~—_ = R 38-Bit

‘ ‘ ‘43 Array

Bit >R .
Address ‘_/—\ (#B3:2)

#B3/32

1:023/06

invalid 69 | [[64

N

R

95/9419392|91/90|89 (88 86 (85(84|83/82|81(80
[94[93[92[91[90[80 88187 [86 [85[84[83[82[81]

16659

This Parameter: Tells the Processor:
File (#B3:2) The location of the bit array
Control (R6:54) The instruction’s address and control element

Bit Address (1:023/06) The source bit address (bit 06 in input word 23)

Length (38) The number of bits in the bit array

When a rung containing the BSR instruction goes from false to true,
the processor sets the .EN bit. Then the processor shifts 38 bits in bit
file B3 to the right (to a lower bit number) one bit position starting
with the highest bit position 69. The lowest bit (bit 32) shifts out of
the bit array into the .UL bit. The specified source, bit 06 of input
word 23, shifts into the highest bit position 69.

After the processor completes the shift operation in one program
scan, when the rung goes false, the instruction resets the .EN, .ER
(if set) and .DN bits, and resets the pointer.

For wrap-around operation, make the source address the same as the
lowest (outgoing) bit address. You can omit using the .UL bit in

wrap-around operation.
021-87700210

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU

11-5

Using FIFO and LIFO Instructions

— FFL
FIFO LOAD

Source
FIFO
Control
Length
Position

Description:

(o)
()
(s4)

— FFU

FIFO UNLOAD
FIFO

Destination
Control
Length
Position

(c)-
(o)
(o)

Use FIFO instructions, First In — First Out (FFL and FFU) and LIFO
instructions, Last In — First Out (LFL and LFU) in pairs to store and
retrieve data in a prescribed order.

These Instructions: Retrieve Data:

FFL and FFU In the order stored (first in, first out)

LFL and LFU * In reverse of the order stored (last in, first out)

* Available in Enhanced PLC-5 processors only

When used in pairs, these instructions establish an asynchronous shift
register (stack).

Entering Parameters

When you program a FIFO or LIFO stack, use the same file and
control addresses, length, and position values for both instructions in
the pair. You need to provide the processor with the following
information:

e Source is the address that stores the “next in” value to the
stack. The FIFO or LIFO load instruction (FFL or LFL) retrieves
the value from this address and loads it into the next word in
the stack.

e Destination is the address that stores the value that exits from
the stack.

This Instruction: Unloads the Value from:

FIFO’s FFU Word zero

LIFO’'s LFU The last word entered

e FIFO or LIFO is an indexed address of the stack. Use the
same FIFO address for the associated FFL and FFU
instructions; use the same LIFO address for the associated
LFL and LFU instructions.

* Control is the address of the control structure (48 bits — three
16-bit words) in the control area (R) of memory. The control
structure stores the instruction’s status bits, stack length, and
next available position (pointer) in the stack.

Use the control address with mnemonic when you address the
following parameters:

* Length ((LEN) is the maximum number of elements in
the stack.

* Position (.POS) indicates the next available location whex

the instruction loads data i
021-87700210

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU

* Length specifies the maximum number of words in the stack.
Address the length value by mnemonic .LEN.

» Position indicates the next available location where the
instruction loads data into the stack. Address the position value
by mnemonic .POS.

Enter a position value only if you want the instruction to start at
an offset at power-up. Otherwise, enter 0. Your ladder program
can change the position if necessary.

ATTENTION: Except when pairing stack
instructions, do not use the same control address for any
other instruction. Unexpected operation could result
with possible equipment damage and/or personal injury.

Using Status Bits

To use the FIFO and LIFO instructions correctly, examine status bits
in the control structure. You address these bits by mnemonic.

This Bit:

Is Set:

Enable Load .EN (bit 15) when the rung makes a false-to-true rung transition to

indicate the instruction is enabled (used in FFL and LFL
instructions).

Note: During prescan, this bit is set to prevent a false load
when the program scan begins.

Enable Unload .EU (bit 14) when rung conditions are true to indicate the instruction is

enabled (used in FFU and LFU instructions).

Note: During prescan, this hit is set to prevent a false
unload when the program scan begins.

Done .DN (bit 13) by the processor to indicate that the stack is full. The .DN

bit inhibits loading the stack until there is room.

Empty .EM (bit 12) by the processor to indicate that the stack is empty. Do not

enable the FIFO or LIFO unload commands if the .EM bit is
set.

021-87700210

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU 11-7
FIFO Load (FFL) and FIFO Unload (FFU)
Example:
—f — DESTINATION File #N60:3 Word
FIFO LOAD —(EN)— NGO:2 3
Source NB0:1 4
E‘;?ml #:gosi _(DN) FIFO Unload removes data from stack 5
Length 64 6
Position 0 —(EM) 7
8 64 words
) — 9 allocated
FIFO UNLOAD -(Eu)— SOURCE 10 for FIFO
FIFO #NG0:3 N60:1 | - 11 stack at
Destination N60:2 —(DN)] #N60:3
Control R6:51 FIFO Load enters data into
;Zﬁ::n 53 —(ev) stack at next position
I 66
16660a
This Parameter: Tells the Processor:
Source (N60:1) The location of the “next in” source word
FIFO (#N60:3) The location of the stack (FIFO file)
Destination (N60:2) The location of the “exit” word
Control (R6:51) The instruction’s address and control structure
Length (64) The maximum number of words you can load
Position (0) To start at the FIFO file address

FIFO Load Description:

FIFO Unload Description:

When the rung that contains the FFL instruction goes from false to
true, the processor sets the .EN bit and loads the source element
(N60:1) into the next available element in the stack as pointed to by
the control structure’s position. The processor loads an element each
time the rung goes from false to true, until it fills the stack. When the
stack becomes full, the processor sets the .DN bit. The ladder
program should detect that the stack is full and inhibit further loading
of data from the source.

You may want to load the stack in advance, or enable the load
instruction while inhibiting the unload instruction until the stack
contains the desired data.

When the rung that contains the FFU instruction goes from false to
true, the processor sets the .EU bit and unloads data from the first
element stored in the FIFO stack into the destination word N60:2. At
the same time the processor shifts all data in the stack one position
toward the first word. The processor unloads one word each time the
rung goes from false to true until it empties the FIFO stack.

021-87700210

NIC SANET

2 g

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU

LIFO Load (LFL) and LIFO Unload (LFU)
Example:
(Enhanced PLC-5 processors only)

— LFL

When the stack becomes empty, the processor sets the .EM bit.
Thereafter, the processor transfers a zero value for each false-to-true
rung transition until the FFL instruction loads new values. Your
ladder program should detect that the stack is empty and inhibit other
instructions from using zero values stored at the destination.

With a FFU instruction, you can unload data from a word other than
the first word of the stack by changing the FIFO address to the
address of the desired word and changing the length accordingly.

LIFO LOAD
Source
LIFO
Control
Length
Position

N70:1
#N70:3
R6:61

— LFU

LIFO UNLOAD
LIFO
Destination
Control
Length
Position

#N70:3
N70:2
R6:61

File #N70:3
Word
o))
4
DN
i (o) :
o Hev) 6
7
8
(EU) 9 64 words allocated for
10 LIFO stack at #N70:3
—(on) 1
SOURCE N70:1 DESTINATION N70:2
: B -
o [H{e) >
LIFO Load enters 63 LIFO Unload removes
data into stack at [data from stack in
next position reverse order
16621
This Parameter: Tells the Processor:
Source (N70:1) the location of the “next in” source word
LIFO (#N70:3) the location of the stack (LIFO file)
Destination (N70:2) the location of the “exit” word
Control (R6:61) the instruction’s control structure
Length (64) the maximum number of words you can load

Position (0) to start at the LIFO file address

Important: The difference between FIFO and LIFO stack operation

is that the LFU instruction removes data in the reverse
order to the order it is loaded (last-in-first-out).
Otherwise, LIFO instructions operate identical to
FIFO instructions.

021-87700210

NIC SANET

2 g

Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU

11-9

LIFO Load Description:

LIFO Unload Description:

When the rung that contains the LFL instruction goes from false to
true, the processor sets the .EN bit and loads the source word (N70:1)
into the next available word in the stack as pointed to by the control
structure’s position. The processor loads an element each time the
rung goes from false to true until it fills the stack. When the stack
becomes full, the processor sets the .DN bit. The ladder program
should detect that the stack is full and inhibit further loading of data
from the source.

You may want to load the stack in advance or enable the load
instruction while inhibiting the unload instruction until the stack
contains the desired data.

When the rung that contains the LFU instruction goes from false to
true, the processor sets the .EU bit and unloads data starting with the
last word stored in the LIFO stack into the destination word N70:2.
The processor unloads one word each time the rung goes from false to
true until it empties the LIFO stack.

When the stack becomes empty, the processor sets the .EM bit.
Thereafter, the processor transfers a zero value for each false-to-true
rung transition until the load instruction loads new values. Your
ladder program should detect that the stack is empty and inhibit other
instructions from using zero values stored at the destination.

With a LIFO unload instruction, you can unload data from a word
other than the first word of the stack by changing the LIFO address to
the address of the desired word and changing the length accordingly.

021-87700210

11-10 Shift Register Instructions BSL, BSR, FFL, FFU, LFL, LFU

Notes:

021-87700210

NIC SANAT r‘
AR =

Chapter 12

Applying Sequencers

Sequencer Instructions SQO, SQI, SQL

Sequencer instructions are typically used to control automatic
assembly machines that have a consistent and repeatable operation.
Use the sequencer input instruction to detect when a step is complete;
use the sequencer output instruction to set output conditions for the
next step. Use the sequencer load instruction to load reference
conditions into the sequencer input and output file.

Table 12.A lists the available sequencer instructions.

Table 12.A
Available Sequencer Instructions

If You Want to: Use this Instruction: Found on Page:

Control sequential machine operations by SQO 12-5
transferring 16-bit data through a mask to
output image addresses

Monitor machine operating conditions for SQl 12-7
diagnostic purposes by comparing 16-hit

image data (through a mask) with data in a

reference file

Capture reference conditions by manually SQL 12-8
stepping the machine through its operating

sequences and loading I/0 or storage data

into destination files

Sequencer instructions can conserve program memory. These
instructions monitor and control multiples of 16 discrete outputs at a
time in a single rung.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

021-87700210

NIC SANAT r‘
AR =

Sequencer Instructions SQO, SQI, SQL

— sQl

Using Sequencer Instructions

Description:

SEQUENCER INPUT
File

Mask

Source

Control

Length

Position

Use the SQI and SQO instructions in pairs to respectively monitor
and control a sequential operation. Use the SQL instruction to load
data in the sequencer file.

— SQ0
SEQUENCER OUTPUT —EN)— [SQL
File SEQUENCER LOAD _(EN)_
Mask i
Destination _(oN) glclJirce _(DN)
Control Control
Length Length
Position Position

These instructions operate on multiples of 16 bits at a time. Place SQI
instructions in series and SQO instructions in parallel in the same
rung for 32-, 48-, 64-, or other bit operations.

Important: Each SQO instruction increments the control structure,
so corresponding SQI instructions may miss parts of the
source file.

Entering Parameters

When programming SQI and SQO instructions in pairs, use the same
control address, length value, and position value in each instruction.
The same applies when using multiple instructions in the same rung
to double, triple, or further increase the number of bits.

To program sequencer instructions, you need to provide the processor
with the following information:

* File is the indexed address of the sequencer file to or from which
the instruction transfers data. Its purpose depends on the
instruction:

In this Instruction: The Sequencer File Stores Data for:

SQO Controlling outputs

SQl Reference to detect completion of a
step or a fault condition

SQL Creating the SQO or SQI file

021-87700210

NIC SANET

2 g

Sequencer Instructions SQO, SQI, SQL

12-3

e Mask (for SQO and SQI) is a hexadecimal code or the address of

the mask element or file through which the instruction moves
data. Set (1) mask bits to pass data; reset (0) mask bits to prevent
the instruction from operating on corresponding destination bits.
Specify a hexadecimal value for a constant mask value. Store the
mask in an element or file if you want to change the mask
according to application requirements.

* Source (for SQI and SQL) is the address of the input element or
file from which the instruction obtains data for its sequencer file.

* Destination (for SQO, only) is the destination address of the
output word or file to which the instruction moves data from its
sequencer file.

Important: If you use a file for the source, mask, or destination of a
sequencer instruction, the instruction automatically
determines the file length and moves through the file
step-by-step as it moves through the sequencer file.

* Control is the address of the control structure in the control area
(R) of memory (48 bits — three 16-bit words) that stores the
instruction’s status bits, the length of the sequencer file, and the
instantaneous position in the file.

Use the control address with mnemonic when you address the
following parameters:
* Length (.LEN) is the length of the sequencer file.

* Position (.POS) is the current position of the word in the
sequencer file that the processor is using.

For this Instruction: The Control Structure Is Incremented:
SQO and SQL By the instruction itself
SQl Externally, either by the paired SQO with the same

control address, or by another instruction

ATTENTION: Except for paired instructions, do not
use the same control address for any other purpose.
Duplication of a control element could result in
unpredictable operation, possibly causing equipment
damage and/or injury to personnel.

021-87700210

NIC SANAT r‘
AR =

12-4

Sequencer Instructions SQO, SQI, SQL

* Length is the number of steps of the sequencer file starting at
position 1. Position 0 is the start-up position. The instruction
resets to position 1 at each completion.

Important: The address assigned for a sequencer file is step zero.
Sequencer instructions use (length + 1) words of data
for each file referenced in the instruction. This also
applies to the source, mask, and destination values if
addressed as files.

* Position is the word location in the sequencer file. The position
value is incremented internally by SQO and SQL instructions.

Important: Your ladder program can externally increment the
position value of the SQI instruction. One way to do this
is to pair it with the SQO instruction and assign the
same control structure to both instructions.

In earlier series processors, if the .POS value was out of range,
the .POS value was automatically set to 1, which is the first step
in the sequence. There was no indication that this occurred. In
series E and later processors, if the .POS value exceeds the
number of words in the file, the .ER bit is set, no data is written,
and the .POS value remains the same.

Using Status Bits

To use the sequencer instructions correctly, the ladder program must
examine status bits in the control element. You address these bits
by mnemonic.

This Bit: Is Set:

Enable .EN (bit 15) (SQO or SQL) is set on a false-to-true rung transition to indicate
that the instruction is enabled. The instruction follows the rung
condition.

Note: During prescan, this hit is set to prevent a false increment of
the table pointer when the program scan begins.

Done .DN (bit 13) (SQO or SQL) is set after the instruction finishes operating on the
last word in the sequencer file. After the rung goes false, the
processor resets the .DN bit on the next false-to-true rung
transition.

Error .ER (bit 11) when the length value is less than or equal to zero or when the
position value is less than zero

021-87700210

NIC SANAT
e o

‘g

Sequencer Instructions SQO, SQI, SQL

12-5

Sequencer Output (SQO) Example:

SQ0
SEQUENCER OUTPUT
File

Mask

Destination

Control

Length

Position

2 7
#NT:1
OFOF .
o —(DN) N7:2
R6:20 N7:3
4
2
N7:4
N7:5
Destination 0:014
Output Module (s)

File #N7:1
17 10 |07 00 o
Sequencer
10 10 00 10(11 1101 01 | 1 goniew
11 11‘01 0101 00‘10 10 |] 2
01 01 01 0101 010001 3 Gyrentstep
00 10 01 00 10 01 00 10| 4
17 10 |07 00
00 00‘11 1100 00‘11 11 Vask
Value
OFOF
17 10 |07 00
00 00‘01 0100 00@0 10
e =No Change
17161514131211107 6 54 3 2 1 0 Rack 1 o =Off
OO0 0000000 OO0 0O 0 |/Ogroup4 x:on
0
1
2
3
. 4
. 5
T 6
. 7
» 10
11
12
- 13
. 14
15
. 16
. 17

SQO instruction moves the data of the current step through a mask to an output word for controlling

multiple outputs.

16645a

021-87700210

NIC SANAT

Ly

=

12-6

Sequencer Instructions SQO, SQI, SQL

This Parameter: Tells the Processor:
File (#N7:1) The location of the sequencer file
Mask (OFOF) The fixed hexadecimal value of the mask

Destination (0:014) The output image address to be changed

Control (R6:20) The structure that controls the operation
Length (4) The number of words to step through
Position (2) The current position

The SQO instruction steps through the sequencer file of 16-bit output
words whose bits have been set to control various output devices.

When the rung goes from false to true, the instruction increments to
the next step (word) in the sequencer file #N7:1. The data in the
sequencer file is transferred through a fixed mask (OFOF) to the
destination address O:014. Current data is written to the destination
element every scan that the rung remains true.

At start-up when you switch the processor from Program mode to
Run mode, instruction operation depends on whether the rung is true
or false on the first scan:

* If'the rung is true and POS = 0, the instruction transfers data in
step 0.

* Ifrung is false, the instruction waits for the first false-to-true rung
transition and transfers data in step 1.

After transferring the last word of the sequencer file, the processor
sets the .DN bit. On the next false-to-true rung transition, the
processor resets the .DN bit and sets the position to step 1.

Resetting the Position of SQO

Each time the processor goes from Program to Run mode, you should
reset the position of any SQO instruction. To do this, use the

following ladder logic:
S1 — MOV
] | MOVE
15 Source 0
The bit S:1/15 s the "first pass" bit. This bit is set when the processor Dest R6:20.POS

first scans a program. When this rung goes true, the processor moves
the value of 0 to the position word of the SQO instruction. After the
position is set to 0, the next false to true transition will cause the
processor to run step 1.

021-87700210

NIC SANET

2 g

Sequencer Instructions SQO, SQI, SQL 12-7

Sequencer Input (SQI) Example:

sql

SEQUENCER INPUT .

o a7 Sequencer Reference File #N7:11

Mask FFFO

Soausrce 1:031 Word |15 08 | 07 00 Step

Control R6:21 N7:11 0

Length 4

Position 2 12 1

13‘ 00 10‘01 00‘10 01‘ 1010 ‘ 2

Input Word (Source) Mask Value FFFO 1 3

17 10| 07 00 15 08 |07 00

00 10[01 00]10 01]11 01 |»17 11[11 11]11 1100 00 | 4

1 Mask bits are reset j

SQl instruction is true when it detects that an input word matches
(through a mask) its corresponding reference word.
1 These bits are not compared. Therefore, the instruction is true in this example.

16646a

This Parameter: Tells the Processor:

File (#N7:11) The location of the reference file

Mask (FFFO) The fixed hexadecimal value of the mask
Source (#:031) The input image address to be compared
Control (R6:21) The element that controls the operation
Length (4) The number of elements to step through
Position (2) The current position

The SQI instruction compares a file of input image data (1:031),
through a mask (FFF0), to a file of reference data (N7:11) for
equality. When the status of all non-masked bits of the word at that
particular step match those of the corresponding reference word, the
instruction goes true. Otherwise, the instruction is false.

Important: You can use the SQI instruction with the control
structure of the SQO instruction. Program the SQI as the
condition instruction in the same rung with the SQO.
Assign the same control address and length to both
instructions so they track together.

Using SQI Without SQO

Another application of the SQI instruction is machine diagnostics
where you load the reference file with data representing the desired
sequence of machine operation. When operating, if the real time
sequence of operation does not match the desired sequence of
operation stored in the reference file, enable a fault signal. In this
case, the ladder program externally increments the SQI instruction.

021-87700210

NIC SANAT r‘
AR =

12-8

Sequencer Instructions SQO, SQI, SQL

To externally increment the sequencer file, use a CPT instruction to
move a new position value into the SQI instruction’s control element.
Do this to increment each step in the SQI instruction’s file. Rung 0
increments the SQI instruction. Rung 1 resets the position value after
stepping through the file.

— SQI — ADD
Rung 0
SEQUENCER INPUT ADD |
File #N7:0 Source A R6:0.POS
Mask FOFF Source B 1
Source 1:005 Destination R6:0.POS
Control R6:0 0
Length 20
Position 0
Rung 1 — GTR — MOV
GREATER THAN MOVE
Source A R6:0.POS Source 0
Source B R6:0.LEN Destination R6:0.POS
0
Sequencer Load (SQL) Example:
sQL
SEQUENCER LOAD _(EN)
File #N7:20
ggﬁ{ﬁ; R‘Gogg ‘(DN) Source Word 1:002
Length 5 17 10 | 07 00
Position 3
Input Module (s) 00 00(10 1011 0011 01 Source 1:002
o0 0
o0 1
o0 2 Destination File #N7:20
o 3 15 08 |07 00
o © g Word
© 6 N70:20 0
00
o0 7 Sequencer
1 >€q
e 10 21 Destination
o0 11 29 2 File #N7:20
oo 12
o0 13 23I 00 00 10 10(11 00 11 01 ||3
oC 14
o0 5 24 4™ Current Step
0 16
17 5

Rack 0 1/0 Group 2

SQL instruction loads data from the input word into a destination
file from where it can be moved to other sequencer files.

16661a

021-87700210

NIC SANET

Sequencer Instructions SQO, SQI, SQL

12-9

This Parameter: Tells the Processor:

File (#N7:20) The location of the destination file
Source (1:002) The input image address to be read
Control (R6:22) The structure that controls the operation
Length (5) The number of words to step through
Position (3) The current step

When the rung goes from false to true, the SQL instruction
increments to the next step in the sequencer file and loads data into it,
one step for each rung transition. The SQL instruction loads current
data each scan that the rung remains true. A mask is not used.

At start-up, when you switch the processor from Program to Run
mode, the instruction operation depends on whether the rung is true or
false on the first scan:

e Ifthe rung is true, the instruction loads data into step 0.

e Ifthe rung is false, the instruction waits for the first false-to-true
rung transition and loads data into step 1.

After loading the last step, the processor sets the .DN bit. On the next
false-to-true transition, the processor resets its .DN bit, resets the
position to step 1, and loads data into that word.

021-87700210

12-10 Sequencer Instructions SQO, SQI, SQL

Notes:

021-87700210

NIC SANAT r‘
AR =

Chapter 1 3

Selecting Program Flow
Instructions

Program Control Instructions MCR, JMP,
LBL, FOR, NXT, BRK, JSR, SBR, RET, TND,
AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

Program flow instructions change the flow of ladder program
execution. Use Table 13.A to select the program control instruction or
group of instructions that fit your programming requirements.

Table 13.A
Available Program Control Instructions

If You Want to: Then Use_ these Found on
Instructions: Page:

Turn off all non-retentive outputs in a section MCR 13-2

of ladder program

Jump over a section of a program that does JMP, LBL 13-3

not always need to be executed

Loop through a set of rungs for a preset FOR, NXT, BRK 13-5

number of times

Jump to a separate subroutine file, pass data ~ JSR, SBR, RET 13-8

to the subroutine, perform an operation, and

return the results

Mark a temporary end that halts program TND 13-13

execution beyond it

Disable a rung AFI 13-13

Trigger a one-shot event based ona change in ~ ONS, OSR,* OSF* 13-14 (ONS),

rung condition 13-15 (OSR),

13-16 (OSF)

Reset a sequential function chart SFR* 13-17

End a transition file EOT 13-18

Enable or disable user interrupts UIE,* UID* 13-19 (UID),

13-20 (UIE)

*These instructions are only supported by Enhanced PLC-5 processors.

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see

Appendix C.

021-87700210

NIC SANAT r‘
AR =

13-2 Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

Master Control Reset (MCR)

Description:

—(MCR)H

Use MCR instructions in pairs to create program zones that turn off
all the non-retentive outputs in the zone. Rungs within the MCR zone
are still scanned, but scan time is reduced due to the false state of
non-retentive outputs. Non-retentive outputs are reset when their rung
goes false.

If the MCR Rung

that Starts the Then the Processor:

Zone Is:

True Executes the rungs in the MCR zone based on each rung’s
individual input conditions (as if the zone did not exist).

False Resets all non-retentive output instructions in the MCR zone

regardless of each rung’s individual input conditions.

MCR zones let you enable or inhibit segments of your program, such
as for recipe applications.

When you program MCR instructions, note that:
¢ You must end the zone with an unconditional MCR instruction.
e You cannot nest one MCR zone within another.

* Do not jump into an MCR zone. If the zone is false, jumping into
it activates the zone.

» Ifan MCR zone continues to the end of the ladder program, you
do not have to program an MCR instruction to end the zone.

Important: The MCR instruction is not a substitute for a hard-wired
master control relay that provides emergency stop
capability. You still should install a hard-wired master
control relay to provide emergency 1/0
power shutdown.

ATTENTION: Do not overlap or nest MCR zones.
Each MCR zone must be separate and complete. If
overlapped or nested, unpredictable machine operation
could occur with possible damage to equipment and/or
injury to personnel.

ATTENTION: Ifyou start instructions such as timers
or counters inan MCR zone, instruction operation ceases
when the zone is disabled. Re-program critical
operations outside the zone if necessary.

021-87700210

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-3

Example: When the rung containing the first MCR instruction is true, the
processor executes the rungs in the MCR zone based on the rung
input conditions. Otherwise, the processor resets the non-retentive
output instructions within the MCR zone.

1:012 1:012 1:012

1L 1F 1T (\ Beginning of zone

1 [1 0 1 0 { MCR) ginming
01 02 03
1:012 0:013 \

1 T (\
1 L \])
When the first MCR
04 01 h o
instruction is true, the

1:012 1:012 0:013 processor executes

L 1T (\ the rungs in the zone.
r 1 U \]
11 12 02 }

1012 When the first MCR
/ instruction is false, the
03 processor resets all

non-retentive outputs

1:012 1:012 0:013 in the zone.

1L 1L (\ J

1 [1 \ /

13 10 03
(MCR) End of zone

Jump (JMP) and Label (LBL)

Description: Use JMP and LBL instructions in pairs to skip portions of the ladder

P)—| program.
H LBL —

If the Jump Rung Is: Then the Processor:

True Skips from the JMP rung to the LBL rung and continues
executing the program. You can jump forward or backward.

False Ignores the JMP instruction

Jumping forward to a label saves program scan time by omitting a
program segment until needed. Jumping backward lets the processor
repeat iterations through a program segment until its logic

is complete.

Important: Be careful not to jump backwards an excessive number
of times. The watchdog timer could time out, which
would fault the processor.

021-87700210

NIC SANAT r‘
AR =

13-4

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

Using JMP

The JMP instruction lets the processor skip rungs. You can jump to
the same label from one or more JMP instructions.

ATTENTION: Jumped timers and counters are not
scanned. Re-program critical operations outside the
jumped zone.

Using LBL

The LBL instruction is the target of the JMP instruction that has the
same label number. Place the LBL instruction first on the rung to
where you want the processor to jump.

Important: Make sure that the LBL instruction is the first
instruction on the rung. (The software currently lets you
to create a branch around an LBL instruction; this will
cause the processor to operate incorrectly.)

Valid Amount Per

If You Have this Processor: Valid LBL Numbers: -
Program File:

Enhanced PLC-5 000-255 256

Classic PLC-5 0-31 32

If you modify and accept a rung containing a label while on line with
the processor in Run mode, the software creates an I/R pair. If you
modify the I rung before assembling the edits, the processor will fault
with a duplicate label error.

There are four ways to avoid this problem:

» Edit the rung with the processor in Program mode.

* Cancel the edits and re-edit the rung.

e Let the fault occur, then clear the fault after assembling the edits.

* Assemble the first edit, then modify the rung again to make the
second change. If you are editing on line, the processor may
execute the rung with the first edit and may cause the processor to
fault or run improperly.

021-87700210

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

13-5

JMP and LBL Example:

When the rung containing the JMP instruction goes true, the
processor jumps over successive rungs until it reaches the rung that
contains the LBL instruction with the same number. The processor
resumes executing at the LBL rung.

1:012 [:012 0:013
ERR 1T (\
L 1L {)
10 11 01
1:012 20
H (e)
13 When input 1:012/13 is set, the processor jumps to
label 20 and continues program execution. It does not
execute the rungs between these two points.
T4:0 — TON
—/ L TIMER ON' DELAY —(EN }—
DN Timer T4:0
Time base 1.0 |~(DN)
Preset 100
Accum 0
1:012 0:013
_] [()
L \ 7
° / r
20 1:012 0:013
—{ LBL}— F ()
17 02
The timer (TON) will not update as long as 1:012/13 is true.
For Next Loop (FOR, NXT),
Break (BRK)
Description: Use FOR, BRK and NXT instructions to create your own
FOR programming routines where you control the number of times the
FOR — loop is executed.
Label number . . . L.
Index Important: During prescan, ladder instructions within the
'T”e'tr'r?:i:::ﬁ,ue FOR/NXT loop are prescanned (not skipped).
Step size
" NXT . . .
NEXT | ATTENTION: Using FOR and NXT instructions
Label Number within an output branch can cause unpredictable

machine operation.

When using the FOR and NXT instructions within a
branch in a ladder program, the execution of the
FOR/NXT loop may not occur as expected. Do not
use the FOR or NXT instructions when
programming within a branch in a ladder program.

021-87700210

NIC SANET

2 g

13-6 Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

Parameter:

Entering Parameters

To program the FOR instruction, you must provide the processor with
the following information:

Definition:

Label number

the unique label number that marks the location of the FOR instruction. Enter a unique
number. Classic PLC-5 processors support label numbers 0-31; Enhanced PLC-5
processors support label numbers 0-255.

Index

the logical address where the instruction stores the index value it computes. The index
value is the sum of the initial value plus the accumulating step values. The FOR
instruction uses the index value to determine the number of times the loop is executed.

When you enable the FOR instruction, the processor sets the index value equal to the
initial value. Then, if the index values is less than or equal to the terminal value, the
processor loops through the following instructions. If the index is greater than the
terminal value, the processor jumps to the NXT instruction.

When the processor encounters a NXT instruction, it returns to the corresponding FOR
instruction, then it compares the index with the terminal value. If the index is less than
or equal to the terminal value, the processor jumps back to the FOR instruction.
Otherwise it steps to the following instruction. If the processor encounters a BRK on a
true rung, the processor skips to the instruction following the NXT.

Initial value

(index value) is an integer value or integer address that represents the starting value for
the loop.

Terminal value

(reference value) is an integer value or integer address that represents the ending value
for the loop.

Step size

(constant) is an integer value that specifies the amount to increment the index value.
You can change the step value from the ladder program.

Using FOR

When the rung is true, the FOR instruction executes the rungs
between the FOR and NXT repeatedly in one program scan until it
reaches the preset number of loops, or a BRK instruction aborts the
operation. The FOR instruction repeats this operation each scan its
rung is true. The FOR instruction does not require a rung transition to
begin operation.

When the rung is false, the processor jumps to the rung following the
NXT instruction.

Important: Be careful not to loop too many times in the single
program scan. An excessive number of calls causes the
watchdog timer to time out, which faults the processor.

You can change the initial and terminal values from the main
program before executing the FOR instruction. You should not
change the index value.

ATTENTION: Changing the index value could cause
the instruction to execute the loop an unexpected number
of times with possible damage to equipment and/or

ININVACES LG www.nicsanat.com

021-87700210

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-7

FOR, BRK, and NXT Example:

Also, if you edit a FOR/NXT instruction in Remote RUN mode,
make sure that you make the corresponding changes to both rungs
before assembling edits. For example, if you want to change the label
number for the FOR/NXT pair, change the label in the FOR
instruction and in the NXT instruction; then assemble the edits. If
you assemble edits after changing only one of the instructions in

the FOR/NXT pair, the processor causes a run-time error or
watchdog timeout.

Using BRK

The BRK instruction stops the FOR instruction’s operation. Place the
BRK rung anywhere between the FOR and NXT rungs. When the
rung goes true, it returns the processor to the next highest loop (if you
are using nested loops) or to the following instruction after the
corresponding NXT instruction in the main program.

Use BRK to exit the loop whenever the processor detects an error or
to avoid prolonged loops that could cause the watchdog timer to time
out, which would fault the processor.

Using NXT

The NXT instruction must be programmed on an unconditional rung
that is the last rung to be repeated by the For-Next loop. The NXT
instruction returns the processor to the corresponding FOR
instruction (identified by the label number specified in the

NXT instruction).

If integer file 7, word 10, bit 5 is false,

N7:10 skip to the rung following the NXT instruction. PR
L
H —— D —— FOR —
5 If integer file 7, word 10, bit 5 is true, initialize N7:0 to Label b 0
zero and execute the rungs until the NXT. When the I ‘2 €l number NT0
processor encounters the NXT, increment N7:0 and naex '
rung jump back to the FOR instruction. As long as N7:0 Initial value 0
rung is less than or equal to 10, keep executing the loop. Terminal value 10
rung When N7:0 is greater than 10, jump to the rung Step size 1
following the NXT.
N7:10
1/ 1 [1 |
I 17k { BRK] 1
5 integer file 7, word 10, bit 5 ever goes true,
rung break out of the loop and jump to the rung
rung following the NXT instruction.
rung - NXT ——r
i NEXT —
Label Number 0
rung
rung
rung

021-87700210

NIC SANET

2 g

13-8 Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

Jump to Subroutine (JSR),
Subroutine (SBR), and
Return (RET)

Description:

JSR

=1 JUMP TO SUBROUTINE
Prog file number

Input parameter
Return parameter

|

SBR =——————
SUBROUTINE
Input parameter

- RET
RETURN ()
Return parameter

The JSR, SBR, and RET instructions direct the processor to go to a
separate subroutine file within the ladder program, scan that
subroutine file once, and return to the point of departure.

The JSR instruction directs the processor to the specified subroutine
file, and if required, defines the parameters passed to and received
from the subroutine. The optional SBR instruction is the header
instruction that stores incoming parameters. Use SBR only if you
want to pass parameters. The RET instruction ends the subroutine,
and if required, stores parameters to be returned to the JSR instruction
in the main program.

Important: If you use the SBR instruction, the SBR instruction
must be the first instruction on the first rung in the
program file that contains the subroutine.

Use a subroutine to store recurring sections of program logic that can
be accessed from multiple program files. A subroutine saves memory
because you program it only once.

Update critical I/O within subroutines using immediate input and/or
output instructions (IIN, 10T), especially if your application calls for
nested or relatively long subroutines. Otherwise, the processor does
not update 1/O until it reaches the end of the main program (after
executing all subroutines). Outputs in subroutines are left in their
last state.

Passing Parameters

Pass selected values to a subroutine before execution so the
subroutine can perform mathematical or logical operations on the
data and return the results to the main program.

For example, you can write a generic subroutine for multiple recipe
operations. Then pass preset values for each recipe to the subroutine
in advance, or have the main program specify and pass presets
according to application requirements.

021-87700210

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-9

You can pass the following types of parameters:

Type: Example:

Program constant (integer) 256

Program constant (floating point) 23.467

Logical element address N7:0

Logical structure address C5:0.ACC

If you pass floating point data to an integer address, the fractional part
of the value is truncated (lost).

Important: Do not mix floating point and integer data and addresses
when passing data or you will lose accuracy.

Example of Passing Parameters: The following diagram shows the passing of parameters between a
main program file and a subroutine file.

Main Ladder Program
°

— L] —
-1 -
— JSR
} [JUMP TO SUBROUTINE
Prog file number 90 Program constants and values
Input parameter N16:23 stored at logical addresses are
Input parameter N16:24 — passed to the SBR instruction
Values are Input parameter 231 when execution jumps to the
returned Return parameter N19:11 Subroutine f|Ie.’/
> Return parameter N19:12
> — 3/E ()
°
°
L~ Execution resumes L

Subroutine File 090

A T — SBR
» SUBROUTINE _] [_(
Values and program constants N43:0

. Input parameter
are stored at logical addresses putp

in the subroutine as subroutine Input parameter N43:1
execution begins. Input parameter N10:3
°
°
T — RET
Values stored at logical RETURN ()
addresses are returned to the
addresses that you specified in Y Return parameter N43:5
the JSR instruction when i) Return parameter N43:4
execution returns to the main -

ladder program.

021-87700210

NIC SANAT r‘
e o

13-10

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

Entering Parameters

To program these instructions, provide the processor with the
following information:

Parameter: Definition:

Program file number the program file number of the file that contains
the subroutine

Input parameter (JSR) a program constant or an address of a parameter to
be sent to the subroutine (optional)

Input parameter (SBR) an address where the subroutine stores the incoming
data (optional)

Return parameter (JSR) an address that stores the data received from the
subroutine (optional)

Return parameter (RET) a program constant or an address of a parameter
to be returned to the JSR instruction in the main
program (optional)

When entering input and return parameters:

* When you enter the JSR instruction, the programming software

prompts you for input parameters. After you enter an input

parameter, press [Enter]. The software prompts you for another

input parameter. When you do not have any more input

parameters to enter, press [Enter] again. Then the programming
software prompts you for return parameters in the same manner

as it did for the input parameters. You cannot enter more than
eight input and return parameters combined.

* Make the number of JSR inputs to your subroutine greater than or

equal to the number of input parameter addresses in the SBR

instruction. Fewer inputs than addresses to receive them causes a

run-time error.

* Make the number of RET return parameters greater than or equal

to the number of JSR return addresses to receive them. Fewer
outputs than addresses to receive them causes a run-time error.

Nesting Subroutine Files

You can nest up to eight subroutines within a program file. This
means you can direct program flow from the main program to a
subroutine and on to another subroutine, as long there are no more
than 7 levels of subroutines.

021-87700210

NIC SANET

2 g

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-11

Main Program
90

/% O s

The path back is the reverse. At RET, the processor automatically
returns to the next instruction after the previous JSR instruction. The
processor follows this procedure until it returns to the main program.

Level 1 Level 2 Level 3
Subroutine File 90 Subroutine File 91 Subroutine File 92

91 92

RET RET RET

15294

Using JSR

The JSR instruction directs the processor to the specified subroutine
file, and if required, defines the parameters passed to and received
from the subroutine.

When programming the JSR, keep the following in mind:

* Each subroutine that is external to the main program file must
have its own file, identified by a unique file descriptor.

* You cannot jump into any part of the subroutine file except for
the first (SBR) instruction in that file.

* You can nest up to eight subroutine files.

Using SBR

The optional SBR instruction is the header instruction that stores
incoming parameters. Use SBR only if you want to pass parameters.
When you pass parameters, the SBR instruction must be the first
instruction in the first rung of the subroutine. This rung must also
have an output instruction. The SBR instruction stores the program
constants and data table values passed from the JSR instruction.

Important: If you use the SBR instruction, the SBR instruction
must be the first instruction on the first rung in the
program file that contains the subroutine.

021-87700210

13-12

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

JSR, SBR, and RET Example:

Using RET

The RET instruction ends the subroutine, and if required, stores
parameters to be returned to the JSR instruction in the main program.
The RET instruction concludes subroutine execution. The RET
instruction directs the processor back to the instruction following the
corresponding JSR instruction. The RET instruction also returns data
to the previous subroutine or main program.

Every subroutine must contain an executable RET instruction if you
want to return values from the subroutine. The rung that contains the
RET instruction can be conditional. If you use this method, you can
program the processor to execute only a part of the subroutine if
certain conditions are true. However, be sure to program another RET
instruction in an unconditional rung at the end of the subroutine to
guarantee a valid return from the subroutine when the conditions on
the first RET instruction are false.

Important: To avoid a processor fault, only use the RET instruction
in your program when you are returning parameters. If
you are not returning parameters, let the end statement
in the subroutine do the return to the main program.

When the rung that contains the JSR instruction goes true, the
processor jumps to the subroutine file specified by the JSR
instruction. The processor also passes three values to the subroutine
(value stored at N16:23, value stored at N16:24, and constant 231).
Then the processor runs the subroutine logic.

When the processor runs the RET instruction in the subroutine, the
processor returns to the instruction following the previous JSR
instruction in the main program. The subroutine returns two values to
the main program: the value stored at N43:3 is transferred to N19:11,
the value stored at N43:4 is transferred to N19:12.

r JSR
L
|_] C JUMP TO SUBROUTINE —
Prog file number 90
Input par N16:23
Input par N16:24
Balance of Main Program Input par 231
Return par N19:11
Subroutine Return par N19:12
SBR
SUBROUTINE () l
Input par N43:0
Input par N43:1
Input par N43:2
(Enter your own logic operation) RET
L
I RETURN ()

Return par
Return par

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-13

Temporary End (TND)

Description:

—(TND }—

Example:

012 1012

|%O4P]OS : D)—|

Always False (AFI)

Description:

Example:

HvH H

When the processor encounters the TND instruction, the processor
resets the watchdog timer (to zero), performs an I/O update, and
begins running the ladder program at the first instruction in the
main program.

Insert the TND instruction when debugging or troubleshooting your
ladder program. The TND instruction lets your program run only up
to this instruction. Move it progressively through your program as
you debug each new section. Also use the TND instruction as a
boundary between the main program and local subroutines. You can
program the TND instruction unconditionally, or condition its rung
according to your debugging needs.

Important: Do not confuse the TND instruction with the
end-of-program symbol (EOP). You cannot place
instructions on the rung that has the EOP symbol.

The AFI instruction is an input instruction that makes the rung false
when inserted in the condition side of the rung. You can use the AFI
instruction to temporarily disable a rung when you debug a program.

(www.nicsanat.com
021-87700210

13-14

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

One Shot (ONS)

Description:

H ONS —

The ONS instruction is an input instruction that makes the rung true
for one program scan upon a false-to-true transitions of the conditions
preceding the ONS instruction on the rung.

Use the ONS instruction to start events that are triggered by a
pushbutton, such as pulling values from thumbwheel switches or
freezing rapidly displayed LED values. You must enter a bit address
for the bit. Use either a binary file or integer file address. A unique bit
must be dedicated to each ONS. You can program an output address
for the ONS, but be aware of the following:

ATTENTION: On-line programming with this
instruction can be dangerous because the output may
turn on immediately when the rung is scanned. Set the
bit address value to 1 before entering the instruction;
then, the rung must go from false to true before
energizing its output.

Important:

During prescan, the bit address is set to inhibit false
triggering when the program scan begins.

Example:
1:011 N7:10 B3 |
L [1 (\
C L ONS | { }
04 10 5 |

When the input condition goes from false to true, the ONS conditions the rung so that
the output turns on for one scan. The output turns off for successive scans until the
input goes from false to true again.

021-87700210

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-15

One Shot Rising (OSR)

(Enhanced PLC-5 Processors Only)

OSR
ONE SHOT RISING

Storage BIt
Output Bit
Output Word

Description: The OSR instruction is an output instruction that triggers an event to
occur one time. The OSR instruction sets the following bits:

()~
()

This Bit:

Changes State as Follows:

Output .0B

Is set for one program scan when the rung goes from false to true

Note: During prescan, this bit is cleared to inhibit false triggering
when the program scan begins.

Storage .SB

Follows the rung status
Note: During prescan, this bit is cleared to inhibit false triggering
when the program scan begins.

Use the OSR instruction whenever an event must start based on the
change of state of the rung from false to true, not continuously when
the rung is true. You must enter a bit address for the output bit and
storage bit. Use either a binary file or integer file address.

Entering Parameters

To program these instructions, you must provide the processor with
the following information:

Parameter:

Definition:

Storage bit

the address where you want the storage bit status stored. For
example, B3/17

Output hit

the bit position in the output word where you want the output
bit status stored. For example 5

Output word

the word address where you want the output bit status
stored. For example, N7:0

021-87700210

13-16 Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

One Shot Falling (OSF)

(Enhanced PLC-5 Processors Only)

OSF

Description:

ONE SHOT FALLING

Storage BIt
Output Bit
Output Word

108
Hs)

The OSF instruction is an output instruction that triggers an event to
occur one time when the rung transitions from true to false. The OSF
instruction sets the following bits:

This Bit; Changes State as Follows:
Output .OB Is set for one program scan when the rung goes from true to false
Storage .SB Follows the rung status

Use the OSF instruction whenever an event must start based on the
change of state of the rung from true to false, not on the resulting rung
status. You must enter a bit address for the output bit and storage bit.
Use either a binary file or integer file address.

Entering Parameters

To program these instructions, you must provide the processor with
the following information:

Parameter: Definition:

Storage bit the address where you want the storage bit status stored. For
example, B3/17

Output hit the hit position of the output word where you want the output
bit status stored. For example 5

Output word the word address where you want the output bit status
stored. For example, N7:0

021-87700210

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-17

Sequential Function Chart Reset
(SFR)
(Enhanced PLC-5 Processors Only)

Description:

SFR

SFC Reset
Prog file number

Restart step at

Example:

SFR

SFC Reset
Prog file number 2
Restart step at N7:5

The SFR instruction resets the logic in a sequential function chart.
When an SFR instruction goes true, the processor performs a
postscan/lastscan on all active steps and actions in the selected
file, and then resets the logic in the SFC on the next program scan.
The chart remains in this reset state until the SFR instruction goes
false. The SFR instruction also resets all retentive actions that are
currently active.

Entering Parameters

To program this instruction, you must provide the processor with the
following information:

Parameter: Definition:

Program File Number a valid SFC program file number

Restart Step at enter one of the following:

= avalid step reference number, 0 to 32767 (entering a 0
defaults to restarting at the initial step)

« avalid step name
= an integer address (that stores a step reference number)

= an address symbol (of an integer address that stores a step
reference number)

Important: The Restart Step at parameter is only available with
PLC-5/11, -5/20, -5/30 series A, and PLC-5/40, -5/40L,
-5/60, -5/60L series B and all Enhanced PLC-5 series C
processors. If you are using a PL.C-5/40 or -5/60
series A processor, the SFC resets to the initial step.

A step number is a software-assigned reference number associated
with each step. You must configure your SFC to display these
numbers. For information on configuring your display, see your
programming manual.

A step name is any name that you assign to the step. For more
information, see the section on assigning step and transition names in
your programming manual.

Important: Make sure that the step is actually a step and not a
transition or macro. This causes the processor to fault;
the software does not perform a check. Also make sure
that the step is not within a simultaneous branch or the
processor will fault.

021-87700210

13-18 Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

Important: Use only one SFR instruction to a single chart. Multiple
SFR’s in the same chart can produce undesired results
since true and false scans of the SFR cause different
program behavior.

An analogy would be using multiple TON timer instructions using the
same control file. If you want to reset a chart to different positions in
the chart based on different conditions, then load the ‘step to reset to’
into an integer data table location based of the condition and then
trigger the SFR.

End of Transition (EOT)

Description: The EOT instruction should be last instruction in a transition file. If
you do not place an EOT instruction in a transition file, the processor

Example: always evaluates the transition file as true.

I [EOT]‘I Important: During prescan, the EOT instruction is skipped so that
all ladder instructions can be prescanned.

021-87700210

NIC SANAT r‘
AR =

Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID 13-19

User Interrupt Disable (UID)
(Enhanced PLC-5 Processors Only)

Description: The UID instruction is used to temporarily disable interrupt
(uID) programs, such as Selectable Timed Interrupts (STI) or Processor
Input Interrupts (PII).

When the rung is true, the UID instruction increments an
internal-interrupt-disable counter. As long as this counter value
does not equal zero, the currently executing program cannot be
interrupted by an STI or a PII. Also, if you have a subroutine call
within a UIE/UID pair, that subroutine runs without interruption.

The UID instruction does not disable the user fault routine.

Important: Since the UID instruction makes a program
un-interruptible, the processor’s response time to an STI
or PII event may be affected. The UID/UIE section of
your program should be as short as possible. Leaving
STIs and Plls disabled for extended periods of time
eventually leads to STI and PII overlap errors.

Important: If you have any block transfer in an STI or PII and that
block transfer instruction is within a UID/UIE section of
your program, the main program scan stops until the
block transfer completes.

021-87700210

NIC SANAT r‘
e Sl

13-20 Program Control Instructions MCR, JMP, LBL, FOR, NXT, BRK, JSR, SBR, RET, TND, AFI, ONS, OSR, OSF, SFR, EOT, UIE, UID

User Interrupt Enable (UIE)
(Enhanced PLC-5 Processors Only)

Description:

—(UE)

The UIE instruction re-enables STI or PII interrupt programs.

When the rung is true and the internal interrupt-disable counter is
greater than zero, the interrupt-disable counter is decremented.

When the counter equals zero, the program currently executing is
then able to be interrupted again. If there are any interrupt programs
pending, they are executed at this time.

Example:
1:012 1:012 1:012 0:013
1 L 1 L 1T (\ Program can be interrupted
1 0 1 [1 0 \ /
01 02 03 02
(up }
1:012 1:012 0:013
[1L (\
C 1 [\ /
01 04 02 Program cannot
be interrupted
1:012
03
1:012 1:012 0:013
1L 1L (\
10 1 {))
04 02 03
(UIE) Program can be interrupted

021-87700210

NIC SANAT r‘
e Sl

Chapter 14

Using PID

Process Control Instruction PID

PID closed-loop control holds a process variable at a desired set
point. Figure 14.1 shows a flow-rate/fluid level example.

Figure 14.1
PID Control Example

FFWD
or
Bias
Set Point Error
_— ——» | PDEquation | ——» @

Flow
Rate Process gontrol
Variable utput
| Level v
Detector ; :

14271

In the above example, the PID equation controls the process by
sending an output signal to the control valve. The greater the error
between setpoint and process variable input, the greater the output
signal, and vice versa. An additional value (feedforward or bias)

can be added to the control output as an offset. The goal of PID
calculations is to maintain the process variable you are controlling at
the set point.

For programming considerations, see the end of this chapter.

For more information on the operands (and valid data types/values of
each operand) used by the PID instruction, see Appendix C.

021-87700210

14-2

Process Control Instruction PID

Using PID Equations

PID Features

The PID instruction lets the process monitor and control process
loops for such quantities as pressure, temperature, flow rate, and fluid
level. Features of the PID instruction include:

* PID equations expressed in ISA or Independent Gains
e input and output range from 0-4095 (12-bit analog)

e input scaling in engineering units

» zero-crossing dead band

» derivative term (can act on PV or error)

e direct or reverse acting control

e output alarms

* output limiting with anti-reset windup

¢ manual mode (with bumpless transfer)

« feedforward or output biasing

» displaying and monitoring PID values

The PID instruction has two specific formats, integer control block
type and PD control block type. Both formats use the same
computational mechanics for the base equation, but differ in
options and type of math performed, specifically, integer and
floating point math.

The base PID equation used in both cases is the standard parallel
position PID Algorithm, with option for entering gains as
‘independent’ or ‘dependent.” The latter option is recognized as
ISA standard format.

The processor gives you six choices of PID algorithms, as follows:
Standard equation with dependent gains (ISA standard):

Derivative of Error:

V=K [(E) Tj (Eydi+ T 2L)J+Bias

Derivative of PV:
cV =K [(E) + Tj (Eydr + T, 2LV

— J+Bias(E — SP—PV)

CcV =K [(E) 44 j (E)dt + Tdd(P)J + Bias(E = PV —SP)

021-87700210

Process Control Instruction PID

14-3

Independent gains equation:
Derivative of Error:

CV = Ku(E) +KiJ;(E)dt+ch% + Bias

Derivative of PV:
CV = Kp(E) +K, j; (E)dt—Kdd(P V)

dt

+ Bias (E=SP-PV)

t d(PV) .
CV = Kp(E) + K[(E)dt+ K~~~ + Bias (E = PV~SP)
Where:
K, = Proportional Gain (Unitless) SP = Set Point
Ki = Integral Gain (Seconds™) PV =Process Variable
Kq = Derivative Gain (Seconds) Error = (SP—PV)or (PV—SP)
1 Bias = Feed-Forward or External Bias
— = Reset Gain (Repeats/Minute)
T 1 cv = Qutput Control Variable
Tq = Rate Gain (Repeats/Minute) A = Loop Update Time

Conversion of Gain Constants

Convert from standard to independent gains constants by substituting
controller gain (Kc), reset (1/Ti), and rate (Td) values in the
following formulas.

Kp = Kc unitless

. Kc .
Ki = o nverse seconds

Kd = Kc(Td)60 seconds

Integral Term Implementation
Perform integration by maintaining an accumulated sum, S,

In the case of Independent Gains: S, = K(E)A, +S;_4

With Dependent Gains selected: S, = %(Ek)At +8,
i

021-87700210

14-4

Process Control Instruction PID

If the Integral or Reset Gain is zero, the accumulated sum continually
sets to zero in Auto mode.

Avoid ‘Integral Wind-up’ by preventing the running sum from
accumulating whenever the output (CV) reaches its maximum or
minimum values. These values are either 0% and 100% or the user
specified limits in output limiting. In this case, S; =S, _;.

The accumulated sum remains ‘frozen’ until the output drops below
its maximum value or rises above its minimum value; then normal
accumulation resumes.

When executing the PID instruction in manual mode, a ‘bumpless’
transfer back to Auto mode can be achieved by using the accumulated
sum to computationally track the manual output:

= CVtanuar — Bias —K,(E) =K/~

When you switch back to auto mode, the PID computation yields this
Manual Output value and no ‘jump’ in output occurs as a result of the
mode change.

Derivative Term

The following approximation is used to calculate the derivative term:

dQ)_ Dk~ k-1
dt A,

Where Q represents either Error or PV,
depending upon your settings.

The calculation is further enhanced by using a ‘derivative smoothing
filter.” This first order, low pass, digital filter eliminates large
derivative term ‘spikes’ caused by noise in the PV.

Adding this filter to the overall derivative term yields:

D, = (1 —a)[Kd%J+aDk_l
t
Where:

Ky = the derivative gain
Dy = the current derivative term
Dy_1 = the previous derivative term

Qx = (as previously definea)
1
b 16A’ +1
Kd

Ay = Loop Update Time

021-87700210

Process Control Instruction PID

14-5

Setting Input/Output Ranges

Implementing Scaling to
Engineering Units —
Integer File Type

The input module that measures the processor variable (PV) must
have a full-scale binary range of 0-4095. The processor ignores
the upper four most-significant bits of the 16-bit process variable
(integer PID only).

The control output has the same range of 0-4095. You can set limits
on the output to limit the output calculated by the PID instruction to
any value in the range of 0-4095.

The tieback input (output tracking) from a manual control station
must also have a range of 0-4095. The PID instruction uses the result
to calculate the integral accumulated value, which allows for
bumpless transfer from manual to automatic control.

The PID instruction also copies the tieback value into the control
output storage location when in manual mode. Tieback input is only
used when you use a hardware auto/manual station. Otherwise, set the
tieback value to zero.

You can scale the setpoint and zero-crossing dead band values to
engineering units for integer file types. You can also display the
process variable and error values in these same engineering units.

When you select scaling, the PID instruction scales the setpoint, dead
band, process variable, and error values. You also have:

1. Enter the maximum and minimum values S, and S,;;, in the
PID control block (words 7 and 8). The S,,,;,, value corresponds to
an analog value of zero for the lowest reading of the process
variable; the S, value corresponds to an analog value of 4095
for the highest reading of the process variable. These values
represent process limits. Set S,;;, and S, to 0 if you do not
want scaling.

For example, if you measure a scale of temperature from
—73 (PV=0) to +1156 (PV=4095), enter —73 for S,,;, and

1156 for S, ax-

If the analog input module is not configured to return a value
in the range 0-4095, see “Descaling Inputs” on page 14-27 in
this chapter.

2. Reset bit 5 of word 0 in the PID control block (integer file type
only). Set this bit only if you want to inhibit scaling the setpoint.
You must inhibit setpoint scaling of a cascaded inner loop while
scanning other loop variables.

021-87700210

14-6

Process Control Instruction PID

Setting the Dead Band

3. Enter the setpoint, word 2, and dead band, word 9 (integer file
type only), values in the same scaled engineering units. The
control output (word 16) displays as a percentage of the 0-4095
range. The output the processor transfers to the output module is
always unscaled.

ATTENTION: Do not change scaling when the
processor is in Run mode. The processor

could fault and cause an undesirable process response,
possible equipment damage, and

personal injury.

The adjustable dead band lets you select an error range above and
below the setpoint where output does not change as long as the error
remains within this range.

This dead band lets you control how closely the process variable
matches the setpoint without changing the output.

high alarm —4—
DB = = = = = = = = = - = = = -

process oo | _ _ - - o - - - - - - - - \\ error within

variable dead band range
DBF = = = = = = = = = - - - - - /

low alarm ——

time

Using Zero-Crossing

Zero-crossing is dead band control that lets the instruction use the
error for computational purposes as the process variable crosses into
the dead band until the process variable crosses the setpoint. Once the
process variable crosses the setpoint (error crosses zero and changes
sign) and as long as the process variable remains in the dead band, the
instruction considers the error value zero.

Enter your dead band value in word 9 of the control block (.DB word
of'a PD data file type). The dead band extends above and below the
setpoint by the value you specify. Enter 0 to inhibit the dead band. If
scaled, the dead band has the same scaled units as the setpoint.

021-87700210

Process Control Instruction PID

14-7

Selecting the Derivative Term (Acts
on PV or Error)

Setting Output Alarms

Using Output Limiting

Using No Zero Crossing

The series E processor added a no zero crossing feature, which is
useful for applications that run high inertia processes that slowly
move a high mass which is hard to stop. The no zero crossing feature
causes the CV output not to change value as long as the PV is inside
the deadband range, instead of only after reaching the setpoint value.
With the proper tuning, it is then possible to have the PV drift to the
setpoint value.

Derivative is a change of state variable. You can select whether the
derivative term in either PID equation acts on changes in the
processor variable or error value. Use bit 6 of word 0 in the control
block (.DO word of a PD data file type) to select the type of
derivative action you want.

You can set an output alarm on the control variable output at a
selected value above or below the setpoint. When the instruction
detects that the output has reached either value, the processor sets an
alarm bit (bit 10 for lower limit, bit 9 for upper limit) in word 0 of the
control block (.OLH and .OLL bits of a PD data file type). Alarm bits
are reset by the instruction when the output comes back inside the
limits. The instruction does not prevent the output from exceeding the
alarm values unless you select output limiting.

Enter the upper output alarm in word 11 ((MAXO) and the lower
output alarm in word 12 (.MINO) of the control block. The processor
handles output alarm values as a percentage of the output. If you do
not want alarms, enter 0% for the lower alarm and 100% for the
upper alarm.

You can set an output limit (percent of output) on the control output.
When the instruction detects that the output has reached a limit, it sets
an alarm bit (bit 10 .OLL for the lower limit, bit 9 .OLH for the upper
limit) in word 0 of the control block and prevents the output from
exceeding either value. The instruction limits the output to 0 and 4095
if you do not specify a limit.

To use output limits, set the limit enable bit (bit 03 of word 0) and
enter the upper limit in word 11 and the lower limit in word 12. Limit
values are a percentage (0-100%) of the output.

Important: Ifyou are using the PD data file type for the control
block, the processor performs this function without you
having to set bits.

021-87700210

14-8

Process Control Instruction PID

Main Control Station

Output
Tracking
(Tieback Input)

Output

o0

Anti-Reset Windup

Anti-reset windup is a feature that prevents the integral term from
becoming excessive when outputs reach a limit. When the sum of
the PID and bias terms in the output reaches a limit, the instruction
stops calculating the integral output term until the output comes back
into range.

Using a Manual Mode Operation (with Bumpless Transfer)

Manual operation lets an output from a manual control station or from
your ladder program override the calculated output of the
PID instruction.

With a manual control station, you control the output device directly
and override the PID instruction’s output. You must feed the output
value into the PID instruction’s tieback input (Figure 14.2). The PID
instruction uses this value to calculate the integral term value required
to achieve a bumpless transfer when you switch from manual to
automatic control.

Figure 14.2
Example Diagram for Moving Analog Inputs to a PID Instruction

Ladder Program

| I

__ BTR
12-bit BLOCK TRANSFER READ
Analog Input Module Rack 0 |HEN)
Group 0
DN
Module 0 _()
—+Q 1stchannel Control Block N7:0
input —-O (word 1) Block Transfer | Data File n7:100 [(ER)
— — — |Length 6
Continuous N
O 2nd channel
o (word?2)
__ PID
Module located in rack 0,
1/0 group 0, module slot 0 PID
Control block w N7:20
Process Variable N7:109
Tieback N7:110
Control variable N7:120
15297

Set Output

You can replace a manual control station with a thumbwheel and
pushbutton switches, and simulate the PID function with ladder logic.

Use the Set Output mode to enter a value representing a percentage of

the Control Variable output. Typically, it is desired to enter a value

from an operator interface. The table helow | ates the proced

to follow when Set Output mode i Wj;glcsqnq’r.com
021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-9

Table 14.A
Set Output Mode Procedure

Integer Control Block (N7:0) PD Control Block (PD10:0)

Select Automatic Mode Mode:0 (0:auto/1:manual) A/M Station Mode = Auto

(bit N7:0/1 = 0)

(bit PD10:0.MO = 0)

Select Set Output Mode SET OUTPUT MODE: 1 (0:no/1:yes) Software A/M Mode = Manual

(bit N7:0/4 = 1)

(bit PD10:0.SWM = 1)

Note: In data monitor, MODE=AUTO changes to
MODE=SW MANUAL.

Enter % in Set Output SET OUTPUT VALUE % SET OUTPUT %
Value (0-100%) (word N7:10 = %value) (word PD10:0.SO = % value)

Feedforward or Output Biasing

Resume Last State

If the set output value is greater than the upper CV limit or lower than
the lower CV limit and output limiting is enabled and the PID
instruction is in Set Output mode, the processor uses the actual output
(not the set output value) to calculate the integral accumulator term
for calculating bumpless transfer.

You can feedforward a disturbance from the system or bias output by
feeding either of these values into the PID instruction’s
feedforward/bias word (word 6 PD.BIAS) of the control block. Either
value must have a range of —4095 to +4095 (integer) or —100.0% to
+100.0% (floating point).

The feedforward value represents a disturbance fed into the PID
instruction before the disturbance has a chance to change the process
variable. Feedforward is often used to control processes with a
transportation lag. For example, a feedforward value representing
“cold water poured into a warm mix” could boost the output faster
than waiting for the process variable to change as a result of mixing.

A bias value can be used to compensate for a steady-state loss of
energy from the controlled process.

With the resume-last-state function, you can make full use of the
analog output module’s hold-last-state function. The
resume-last-state function lets the PID instruction resume calculating
the integral term of the PID algorithm from its last output value
(instead of zero) when returning to Run mode.

If you are using an integer data file for the control block, set the bits
according to the guidelines below. If you are using a PD data file type
for the control block, the processor saves the integral accumulator and
uses it when going from Program to Run mode.

021-87700210

NIC SANET

2 g

14-10

Process Control Instruction PID

PID Instruction

Description:
PID
PID
Control Block

Process variable
Tieback
Control variable

Use this function as follows:

Set word 0, bit 7 if you configured the analog output module to
hold last state if a fault occurs and when changing from Run to
Program mode

Reset word 0, bit 7 if you configured the analog output module
to turn off if a fault occurs and when changing from Run to
Program mode

ATTENTION: Ifyou want to use this function, set bit
7 only after the PID instruction has executed at least once
(at start-up) or when returning to Run mode. If you do
not let the PID instruction execute at least once,
unpredictable machine operation may occur causing
possible damage to equipment and/or injury to
personnel.

Resume Last State is available with the following processors:

Enhanced PLC-5 processors all series/all revs
PLC-5/12 series A/rev C and later
PLC-5/15 series B/rev H and later
PLC-5/25 series A/rev D and later

The PID instruction is an output instruction that controls physical
properties, such as temperature, pressure, liquid level, or flow rate of
process loops.

The PID instruction controls a PID loop with inputs from an analog
input module and an output to an analog output module. For
temperature control, you can convert the analog output to a time
proportioning on/off output for driving a heater or cooling unit.

Execute the PID instruction periodically at constant intervals using a
timer, a selectable timed interrupt (STI), or real-time sampling. The
ladder program can interact with the PID algorithm by changing
variables during operation, or you can change variables from a
programming terminal or from stations on a Data Highway™ or Data
Highway Plus™ communications link.

The PID instruction provides bumpless transfer even when not using
the integral gain. It does this by generating a bias term equal to the
difference between the proportional term and the manually adjusted
output as follows:

If you select manual mode with tieback:
BIAS = (TIEBACK — Pterm)— Dterm

If you select manual mode with setoutput:
BIAS = (SETOUTPUT mode www.nicsanat.com
021-87700210

Process Control Instruction PID 14-11

Normally, the processor reads the bias term value you specify in the
PID configuration block. However, under one condition, the
processor will write a value to the bias term. This occurs when the
integral gain equals zero and the mode of the loop is changed from
manual to auto. The processor back calculates the integral
accumulator in an attempt to provide a bumpless transfer when going
from manual to auto.

The bumpless transfer function is available with the following (or
greater) processor revision levels:

* Enhanced PLC-5 processors, all series, all revisions
e PLC-5/12 series A revision C
e PLC-5/15 series B revision H
* PLC-5/25 series A revision D

Processors with earlier revision levels provided bumpless transfer
only when the integral term was included in the PID algorithm.

Using No Back Calculation

The no back calculation feature is for applications where you do not
want the bias value for the CV output to be overwritten when in
manual or set output (software manual) mode. When you select no
back calculation and the mode is either of the manual modes and the
integral gain is zero, the PID instruction does not perform the back
calculation into the bias term. In this condition, a bump could occur in
the CV output.

Operational Status Bits

Integer Block

The Integer Block PID instruction uses an enable bit (.EN) to indicate
its qualifying rung conditions made a false-to-true transition. The
rung conditions have remained true, indicating the enable bit is true.
The only way that the enable bit becomes false again is if those same
qualifying conditions become false or the enable bit is purposely
“unlatched” through ladder logic. The Integer Block done bit (.DN)
becomes true when the PID instruction successfully completes
execution and remains true until the qualifying rung conditions
become false.

Rung True
State False | |
True

EN False J |_

Actual Execution of
| the PID Instruction

www.nicsanat.com

DN True

False

14-12

Process Control Instruction PID

PD Block

The PD Block PID instruction has only an enable bit (.EN) to indicate
operational status. This bit indicates that its qualifying rung
conditions are true, in which case the enable bit is true (a false-to-true
transition is not needed). The only way the enable bit becomes false
again is if these same qualifying conditions become false. The PD
block does not use a done bit.

Rung True
State
False I
True
.EN
False Actual Execution of —
the PID Instruction |

Important: Unlike the Integer Block version, the PD Block PID
executes again if the program scan encounters this rung
again while the rung state is still true.

Entering Parameters

When you enter the instruction, you must specify four addresses that
are fundamental to the operation of the instruction. After you enter
these addresses, the programming software displays a screen from
which you enter the operating parameters of the instruction.

The use of integer control blocks versus PD control blocks depends
on your processor. If you are using a Classic PLC-5 processor, the PD
control block is not available. In the Enhanced PLC-5 processors,
both the N and PD control blocks are available. The PD control block
gives you more flexibility (i.e., floating point variables, higher
resolution — 12 bit versus 16 bit).

021-87700210

Process Control Instruction PID

14-13

The addresses that you enter are:

Parameter:

Definition:

Control Block

a file that stores PID status and control bits, constants, variables,
and internally used parameters.

Based on the data type you use, a different configuration screen
appears for you to enter PID information (see the next sections for
more information).

If you have an Enhanced PLC-5 processor, you can use an integer
control block or a PD control block. Using a PD file, words 0, 1 are
the status words; words 2-80 store the PID values.

If you use an Integer control block, the PID calculations are
performed using integer values. If you use a PD control block, the
PID calculations are performed using floating point values.

If you have a Classic PLC-5 processor, you must use an integer file
(N) for your control block. Using an integer file, word 0 is the status
word; words 1-22 store the PID values.

Process Variable

a word address that stores the process input value.

Tieback

a word address used to implement bumpless transfer when using a
manual control station. The tieback is an output of a BTR instruction
from the station.

Control Variable

a word address to which the PID instruction sends its calculated PID
output value.

Note: If a value greater than 4095 is written to the “control variable”
location of the Integer Type PID instruction, the output of the PID
instruction obtains a permanent offset which can only be removed
by writing to the “control variable” with a value between 0 and
4095. This happens whether you write to this location via rung logic
or directly to the data table location.

Note: The file PD type PID instruction does not exhibit this behavior.

021-87700210

NIC SANET

2 g

14-14

Process Control Instruction PID

Using an Integer Data File Type for
the Control Block

Parameter:

When using an integer data file type for the control block, the data
monitor screen for the PID instruction shows the following
information, some of which is display only; some of which you
specify the values (Table 14.B).

Table 14.B
PID Parameter Descriptions (Integer Control Block)

Description:

Equation

Enter whether you want to use independent (0) or dependent (1) gains. Displays one of
the following:

INDEPENDENT (0) — for independent gains
DEPENDENT (1) — for dependent gains (ISA)

Use dependent gains when you want to use standard loop tuning methods. Use
independent gains when you want the three gain constants (P, I, and D) to
operate independently.

Mode

Displays operating mode:

AUTO (0) — automatic PID control
MANUAL (1) — control from a manual control station

Sets the use of the tieback parameter for manual operation

Error

Displays one of the following error value:
Reverse acting: 0 = SP-PV
Direct acting: 1 = PV-SP

Output Limiting

Displays whether or not the instruction clamps the output at the high and low limiting
values. Displays one of the following:

NO (0) — output not clamped
YES (1) — output clamped

The PID algorithm has an anti-reset windup feature that prevents the integral term from
becoming too large when the output reaches the high or low alarm limits. If the limits
are reached, the algorithm stops calculating the integral term until the output comes
back into range.

Set output mode

Selects the use of set output value % for manual operation

Setpoint scaling

Selects if the setpoint is to be interpreted as a value in the engineering units or an
unscaled (0 to 4095) value

Derivative input

Selects if derivative term is based on changes in PV or on changes in error

Last state resume

Selects if you want to resume last state or hold last state

(Continued)

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-15

Parameter:

Description:

Deadband status

Set if the PV is inside the selected deadband range; reset if it is not

Upper CV limit alarm

Set if calculated CV is greater than the CV upper limit word %

Lower CV limit alarm

Set if calculated CV is less than the CV lower limit word %

Setpoint out of range

Displays whether or not the setpoint is out of the range of engineering units you
selected on the PID Configuration screen. Displays one of the following:

NO (0) — SP within range
YES (1) — SP out of range

Note: A major processor fault occurs if the SP is out of range when the instruction is
first enabled.

PID done

Displays whether the PID instruction has completed (1 = done; O = not done).

PID enabled

Displays whether the PID instruction is enabled (1 = enabled; 0 = not enabled).

Feed forward

Enter a value between —4095 and 4095 for the amount of feed forward.

The ladder program can enter a feedforward value to bump the output in anticipation of
a disturbance. This value is often used to control a process with transportation lag.

Max scaled input

Enter the integer number (32,768 - 32,767) that is the maximum value available from
the analog module. For example, use 4095 for a module whose range is 0-4095.

Min scaled input

Enter the number that is the minimum value available from the analog module. For
example, use 0 for a module whose range is 0 to 4095.

Dead band

For an unscaled deadband, enter a value in the engineering units you selected on
the PID Configuration screen. Valid range is 0 to 4095 unscaled, —32,768 to
+32,767 scaled.

Note: The deadband is zero crossing.

Set output value %

Enter a percent (0-100%) to use as the CV Output when ‘set output mode’ is selected.

Upper CV limit %

Enter a percent (0-100) above which the algorithm clamps the output.

Lower CV limit %

Enter a percent (0-100) below which the algorithm clamps the output.

Scaled PV value

Displays data from the analog input module that the instruction scales to the same
engineering units that you selected for the setpoint.

Scaled error

Displays the current error in scaled engineering units

Current CV %

Displays current controlled variable output value as a percent

Setpoint

Enter an integer. Valid range is 0 to 4095 (unscaled) or Smin- Smax (scaled
engineering units).

Proportional gain
(Ke)

Enter an integer. Valid entry range is 0-32,767 (unitless) or K, 0-32,767. The
processor divides the entry value by 100 for calculations.

Reset time (T;)
minutes/repeat

Enter an integer. Valid entry range for T; is 0-32,767 (minutes times 100). The
processor automatically divides the entry value by 100 for calculations.

Valid entry range for K; is 0-32,767 (inverse seconds times 1000). The processor
automatically divides the entry by 1000 for calculations.

(Continued)

021-87700210

NIC SANET

2 g

14-16

Process Control Instruction PID

Parameter:

Description:

Derivative rate (T)

Enter an integer. Valid entry range is 0-32,767 or KD 0-32,767. The processor divides
the entry value by 100 for calculations.

Loop update time

Enter an update time (greater than or equal to 0.01 seconds) at 1/5 to 1/10 times the
natural period of the load (load time constant). Valid entry range is 1-32,767 seconds.
The processor divides the entry value by 100 for calculations. The load time constant
should be greater than:

1ms(algorithm) + block transfer time (ms)
Periodically enable the PID instruction at a constant interval equal to the update time.
For update times of less than 100 msec, use an STI. When update times are greater
than 100 msec, use a timer or a real-time sampling.
Note: If you omit an update time or enter a negative update time, a major fault occurs
the first time the processor runs the PID instruction.

Using Control Block Values
Word 0 of the control block contains status and control bits. Table
14.C shows the values stored in each word of the control block.

Table 14.C
PID Control Block (Integer Control Block)

Word: Contains: Term: Entry Range:
0 Bit 15 Enabled (EN)
Bit 13 Done (DN)
Bit 11 Set point out of range
Bit 10 Output alarm, lower limit
Bit 9 Output alarm, upper limit
Bit 8 DB, set when error is in deadband
Bit 7 Resume last state (0=yes; 1=hold last state)
Bit 6 Derivative action (0=PV, 1=error)
Bit 5 Setpoint descaling (0=no, 1=yes)
Bit 4 Set output (0=no, 1=yes)
Bit 3 Output limiting (0=no, 1=yes)
Bit 2 Control (O=reverse, 1=direct)
Bit 1 Mode (0=automatic, 1=manual)
Bit 0 Equation (O=independent, 1=ISA)
Note: During prescan, bits 8, 9, 10, in addition to the Integral
Accumulator and Derivative Error values, are cleared and the
error register value of previous scans is set to 32,767.
1 reserved
2 Setpoint SP 0-4095 (unscaled)

Smin—-Smax (scaled)

Note: Terms marked with an asterisk (*) are entered as Yy x 100. The term itself is Y,. The term marked with a double
asterisk (**) is entered as Yy, x 1000. The term itself is Y,,.

(Continued)

021-87700210

NIC SANET

2 g

Process Control Instruction PID 14-17
Word: Contains: Term: Entry Range:
3 Independent: Proportional gain x 100 (unitless) Kp* 0-32,767
ISA: Controller gain x 100 (unitless) Ke* 0-32,767
4 Independent: Integral gain x 1000 (1/sec) Ki** 0-32,767
ISA: Reset term x 100 (minutes per repeat) T* 0-32,767
5 Independent: Derivative gain x 100 (seconds) Kg* 0-32,767
ISA: Rate term x100 (minutes) Tg* 0-32,767
6 Feedforward or bias FF/Bias —4095-+4095
7 Maximum scaling Smax —-32,768-+32,767
8 Minimum scaling Smin -32,768-+32,767
9 Dead band DB 0-4095 (unscaled)
Shin—Smax (Scaled)
10 Set output SETOUT 0-100%
11 Maximum output limit (% of output) Lmax 0-100%
12 Minimum output limit (% of output) Lmin 0-100%
13 Loop update time x 100 (seconds) dt 0-32,767
14 Scaled PV value (displayed) Shin—Smax
15 Scaled error value (displayed) Shin—Smax
16 Output (% of 4095) cv 0-100%

17-22 internal storage; do not use

Note: Terms marked with an asterisk (*) are entered as Y, x 100. The term itself is Yy. The term marked with a double
asterisk (**) is entered as Yy, x 1000. The term itself is Yy.

021-87700210

NIC SANET

2 g

14-18

Process Control Instruction PID

Using a PD File Type for the
Control Block
(Enhanced PLC-5 Processors Only)

When using a PD file type for the control block, the data monitor
screen for the PID instruction shows the following information, some
of which is display only; some of which you specify the values
(Table 14.D).

Table 14.D

PID Parameter Descriptions (PD Control Block)

Parameter Address Description:
Mnemonic:
Setpoint .SP Enter a floating-point number in the same engineering units that are on the
PID Configuration screen. Valid range is —3.4 E+38 to +3.4 E+38.
Process Variable PV Displays data from the analog input module that the instruction scales to
the same engineering units that you selected for the setpoint.
Error .ERR Displays one of the following error values:
Reverse acting: Error = PV-SP
Direct acting: Error = SP-PV
Output % .ouT Displays the PID algorithm control output value (0-100%).
Mode .MO Displays operating mode:
.MO=0 AUTO — automatic PID control
.M0=1 MANUAL — control from a manual control station
SWM=1 SW MANUAL — simulated manual control from the data monitor or
ladder program
PV Alarm Displays whether the PV is within or exceeds the high or low alarm limits
PVHA=1 you selected on the PID Configuration screen. Displays one of the following:
PVLA=1 NONE — PV within alarm limits
' HIGH — PV exceeds high alarm limit (used with deadband)
LOW — PV exceeds low alarm limit (used with deadband)
Deviation Alarm Displays whether the error is within or exceeds the high or low deviation
alarms you selected on the PID Configuration screen. Displays one of the
DVPA=1 following:
DVNA=L NONE — error within deviation alarm limits
POSITIVE — error exceeds high alarm (used with deadband)
NEGATIVE — error exceeds low alarm (used with deadband)
Output Limiting .OLH=1 Displays whether or not the instruction clamps the output at the high and
.OLL=1 low limiting values (.MAXO and .MINO) you selected on the PID Configuration

screen. Displays one of the following:

NONE — output not clamped
HIGH — output clamped at the high end (.MAXO)
LOW — output clamped at the low end (.MINO)

The PID algorithm has a anti-reset-windup feature that prevents the integral
term from becoming too large when the output reaches the high or low
alarm limits. If the limits are reached, the algorithm stops calculating the
integral term until the output comes back into range.

(Continued)

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-19

Parameter Address Description:
Mnemonic:
SP Out of Range .SPOR=0 Displays whether or not the setpoint is out of the range of engineering units
.SPOR=1 you selected on the PID Configuration screen. Displays one of the following:
NO — SP within range
YES — SP out of range
Note: A major processor fault occurs if the SP is out of range when the
instruction is first enabled.
Error Within DB EWD=0 Displays whether the error is within or exceeds the deadband value
.EWD=1 you enter on this screen. The deadband is zero crossing. Displays one
of the following:
RESET — Error exits the deadband zone
SET — Error crosses the deadband centerline
PID Initialized INI=0 Each time you change a value in the control block, the PID instruction takes
ANI=1 over twice as long to execute (until initialized) on the first scan. Displays one
of the following:
NO — PID instruction not initialized after you changed control block values
YES — PID instruction remains initialized because you did not change any
control block values
Attention: Do not change the range of input or engineering units when
running. If you must do this, then you must reset this bit to re-initialize.
Otherwise, the instruction will malfunction with possible damage to
equipment and injury to personnel.
A/M Station Mode .M0O=0 Enter whether you want automatic (0) or manual (1) PID control. Displays
.M0=1 one of the following:
AUTO (0) — automatic PID control
MANUAL (1) — manual PID control
Manual control specified that an output from a manual control station
overrides the calculated output of the PID algorithm.
Note: Manual overrides Set Output Mode.
Software A/M Mode .SWM=0 Enter whether you want automatic PID (0) control or Set Output Mode (1), for
.SWM=1 software-simulated control. Displays one of the following:

AUTO (0) — automatic PID control
SW MANUAL (1) — software-simulated PID control

You can simulate a manual control station with the data monitor when you
program a single loop. To do this, set .SWM to SW MANUAL and enter a
Set Output Percent value.

You can simulate a manual control station with ladder logic, pushwheels,
and pushbutton switches when you program several loops. To do this, set
.SWM to SW MANUAL and move a value into the set output element .SO.

(Continued)

021-87700210

NIC SANET

2 g

14-20

Process Control Instruction PID

Parameter

Address

Mnemonic:

Description:

Status Enable

Enter whether to use (1) or inhibit (0) this bit which displays the rung
condition so you can see whether the PID instruction is operating. Displays
one of the following:

0 — instruction not executing
1 —instruction executing

Proportional Gain

KP

Enter a floating-point value. Valid range for independent or standard gains is
0 to 3.4 E*38 (unitless).

Integral Gain

Ki

Enter a floating-point value. Valid range for independent gains is 0 to 3.4
E*38 inverse seconds; valid range for standard gains is 0 to 3.4 E*38
minutes per repeat.

Derivative Gain

KD

Enter a floating-point value. Valid range for independent gains is 0 to 3.4
E*38 seconds; valid range for standard gains is 0 to 3.4E*38 minutes.

Output Bias %

.BIAS

Enter a value (100 to +100) to represent the percentage of output you want
to feed forward or use as a hias to the output. The bias value can
compensate for steady-loss of energy from the system.

The ladder program can enter a feedforward value to bump the output in
anticipation of a disturbance. This value is often used to control a process
with transportation lag.

Tieback %

TIE

Displays a number (0 to 100) representing the percent of raw tieback (0 —
4095) from the manual control station. The PID algorithm uses this number
to achieve bumpless transfer when switching from manual to auto mode.

Set Output %

.S0

Enter a percent (0 to 100), from this screen or a ladder program, to
represent the software-manually controlled output.

When you select software-simulated control (SWM=1), the PID instruction
overrides the algorithm with the set output value (0 - 4095) for transfer to
the output module, and copies it to .OUT for display as a percent. The
transfer to software-simulated control is bumpless because .SO (under your
control) starts with the last automatic algorithm output. Do not vary .SO until
after the transfer.

To achieve bumpless transfer when changing from software-simulated
control to automatic control, the PID algorithm changes the integral term so
that the output is equal to the set output value.

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-21

Parameter:

Address
Mnemonic:

When using a PD file type for the control block, the data monitor
screen for the PID instruction provides access to a PID configuration
screen. From the PID configuration screen, you can define the
following characteristics of the PID instruction (Table 14.E).

Table 14.E
PID Configuration Descriptions (PD Control Block)

Description:

PID Equation

Enter whether you want to use independent (0) or dependent (1) gains. Displays one of
the following:

INDEPENDENT (0) — for independent gains
DEPENDENT (1) — for dependent gains

Use dependent gains when you want to use standard loop tuning methods. Use
independent gains when you want the three gain constants (P, I, and D) to
operate independently.

Derivative of

Enter whether you want the derivative of the PV (0) or the error (1). Displays one of
the following:

PV (0) — for PV derivative
ERROR (1) — for error derivative

Select the PV derivative for more stable control when you do not change the setpoint often.
Select the error derivative for fast responses to setpoint changes when the algorithm can
tolerate overshoots.

Control Action

Enter whether you want reverse (0) or direct acting (1). Displays one of the following:

REVERSE (0) — for reverse acting (E = SP-PV)
DIRECT (1) — for direct acting (E = PV-SP)

PV Tracking

Enter whether you do not (0) or do (1) want PV tracking. Displays one of the following:

NO (0) — for no tracking
YES (1) — for PV tracking

Select no tracking if the algorithm can tolerate a bump when switching from manual to
automatic control. Select PV tracking if you want the setpoint to track the PV in manual
control for bumpless transfer to automatic control.

Update Time

.UPD

Enter an update time (greater than or equal to .01 seconds) at 1/5 to 1/10 the natural
period of the load (load time constant). The load time constant should be greater than:

3ms(algorithm) + block transfer time (ms)

Periodically enable the PID instruction at a constant interval equal to the update time.
When the program scan time is close to the required update time, use an STI to ensure a
constant update interval. When the program scan is several times faster than the required
update time, use a timer.

Attention: If you omit an update time or enter a negative update time, a major fault occurs
the first time the processor runs the PID instruction.

(Continued)

021-87700210

NIC SANET

2 g

14-22

Process Control Instruction PID

Parameter: Address Description:
Mnemonic:
Cascade Loop .CL=0 Enter whether this loop is not (0) or is (1) used in a cascade of loops. Displays one of the
CL=1 following:
NO (0) — not used in a cascade
YES (1) — used in a cascade
Cascade Type .CT=0 If this loop is part of a cascade of loops, enter whether this loop is the master (1) or a slave
CT=1 (0). Displays one of the following:
SLAVE (0) — for a slave loop
MASTER (1) — for a master loop
Master to .ADDR If this loop is a slave loop in a cascade, enter the control block address of the master.
this Slave
Tieback is ignored in the master loop of a cascade. When you change cascaded loops to
manual control, the slave forces the master into manual control. When PV tracking is
enabled, the order of events is:
Slave.SP > Master.TIE > Master.OUT > Slave.SP
When you return to automatic control, change the slave first, then the master.
Engineering .MAXS Enter the floating-point value in engineering units that corresponds to the analog module’s
Unit Max full scale output. Valid range is —3.4 E*38 to +3.4 E*38,
Attention: Do not change this value during operation because a processor fault
might occur.
Engineering Unit .MINS Enter the floating-point value in engineering units that corresponds to the analog module’s
Min zero output. Valid range is —3.4 E*°8 to +3.4 E*38 (post-scaled number).
Attention: Do not change the maximum scaled value during operation because a
processor fault might occur.
Input MAXI Enter the floating-point number (=3.4 E*38 to +3.4 E*38) that is the unscaled maximum
Range Max value available from the analog module. For example, use 4095 for a module whose range
is 0-4095.
Input MINI Enter the floating-point number (-3.4 E*38 to +3.4 E*38) that is the minimum unscaled
Range Min value available from the analog module. For example, use O for a module whose range is
0-4095.
Output Limit .MAXO Enter a percent (0-100) above which the algorithm clamps the output.
High %
Output Limit .MINO Enter a percent (0-100) below which the algorithm clamps the output.
Low %
PV Alarm High PVH Enter a floating-point number (~3.4 E+38 to +3.4 E*38) that represents the highest
PV value that the system can tolerate.
PV Alarm Low PVL Enter a floating-point number (-3.4 E*38 to +3.4 E+388) that represents the lowest
PV value that the system can tolerate.
PV Alarm .PVDB Enter a floating-point number (0-3.4 E*38) that is sufficient to minimize nuisance alarms.
Deadband This is a one-sided deadband. The alarm bit (.PVH or .PVL) is not set until the PV crosses

the deadband and reaches the alarm limit (DB zero point). The alarm hit remains set until
the PV passes back through and exits from the deadband.

{Continued)

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-23

Parameter: Address Description:
Mnemonic:
Deviation Alarm .DVP Enter a floating-point number (0-3.4 E*38) that specifies the greatest error deviation above
(+) the setpoint that the system can tolerate.
Deviation Alarm .DVN Enter a floating-point number (-3.4 E+38-0) that specifies the greatest error deviation
) below the setpoint that the system can tolerate.
Deviation Alarm .DVDB Enter a floating-point number (0-3.4 E+38) that is sufficient to minimize nuisance alarms.
Deadband
This is a one-sided deadband. The alarm bit (.DVP or .DVN) is not set until the error crosses
the deadband and reaches the alarm limit (DB zero point). The alarm bit remains set until
the error passes back through and exits from the deadband.
No Zero Crossing .NOZC=0 Enter whether to use (1) or inhibit (0) the no zero crossing feature:
.NOzC=1
0 — no zero crossing disabled
1 —no zero crossing enabled
No Back .NOBC=0 Enter whether to use (1) or inhibit (0) the no back calculation feature:
Calculation .NOBC=1
0 —no back calculation disabled
1 —no back calculation enabled
No Derivative .NDF=0 Enter whether to use (1) or inhibit (0) the filter in the derivative calculation.
Filter .NDF=1
0 - no filter used in derivative calculation
1 —filter used in derivative calculation
Using Control Block Values
Words 0 and 1 of the control block contains status and control bits.
Table 14.F shows the values stored in each word of the control block.
Table 14.F
PID Control Block
Word: Contains: Range:
0 Control/Status Bits

Bit 15
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 2
Bit 1
Bit 0

Enabled (EN)

No back calculation (O=disabled, 1=enabled)
No zero crossing (O=disabled, 1=enabled)
Cascade selection (master, slave)

Cascade loop (0=no, 1=yes)

Process variable tracking (0=no, 1=yes)
Derivative action (0=PV, 1=error)

No derivative filter (O=disabled, 1=enabled)
Set output (0=no, 1=yes)

Control action (0=SP-PV, 1=PV-SP)

Mode (0=automatic, 1=manual)

Equation (O=independent, 1=ISA)

(Continued)

021-87700210

14-24

Process Control Instruction PID

Word: Contains: Range:
1 Status Bits

Bit 12 PID initialized (O=no, 1=yes)

Bit11 Set point out of range

Bit 10 Output alarm, lower limit

Bit 9 Output alarm, upper limit

Bit 8 DB, set when error is in DB

Bit 3 Error is alarmed low

Bit 2 Error is alarmed high

Bit 1 Process variable (PV) is alarmed low

Bit 0 Process variable (PV) is alarmed high

Note: During prescan, bit 12 is cleared.
2,3 Setpoint —3.4E"® 10 +34E*8
4,5 Independent; Proportional gain (unitless) 0to+3.4E38

ISA: Controller gain (unitless) Oto +3.4 E*38
6,7 Independent: Integral gain (1/sec) Oto +3.4 E*38

ISA: Reset term (minutes per Oto +3.4 E*38

repeat)

8,9 Independent: Derivative gain (seconds) 0to+3.4E™38

ISA: Rate term (minutes) Oto+3.4E*38
10,11 Feedforward or bias -100 to +100%
12,13 Maximum scaling —34E*8 10 +3.4 ET38
14,15 Minimum scaling —34E"B 10 +3.4EF38
16,17 Dead band Oto +3.4 E+38
18,19 Set output 0-100%
20,21 Maximum output limit (% of output) 0-100%
22,23 Minimum output limit (% of output) 0-100%
24,25 Loop update time (seconds)
26,27 Scaled PV value (displayed)
28,29 Scaled error value (displayed)
30,31 Output (% of 4095) 0-100%
32,33 Process variable high alarm value —3.4E"8 10 +34 "8
34,35 Process variable low alarm value —3.4E"B1t0+34 E*38
36,37 Error high alarm value 0to+3.4E38
38,39 Error low alarm value —3.4E*8100
40,41 Process variable alarm deadband Oto+3.4 E*3®
42,43 Error alarm deadband 0to+3.4E"38

021-87700210

NIC SANAT r‘
e o

(Continued)

Process Control Instruction PID 14-25

Word: Contains: Range:

44,45 Maximum input value —34E"B 1o +3.4 38

46,47 Minimum input value —34E"B 1o +3.4EF38

48,49 Tieback value for manual control (0-4095) 0-100%

51 Master PID file number 0-999; 0-9999 for
Enhanced PLC-5
processors only

52 Master PID element number 0-999; 0-9999 for
Enhanced PLC-5
processors only

54-80 internal storage; do not use

Programming Considerations

021-87700210

NIC SANAT

bemd T

=

'8

When you program a PID instruction, do not change the following
values when the processor is in Run mode:

» choice of ISA or independent gains equation because the PID
gains constants are not directly interchangeable

» scaling values S,;;, and S, because a change could place the
setpoint out of range and could change the dead-band range

» choice of derivative action based on change in PV or change in
error because internal values will change

Run Time Errors

If the setpoint (SP) is out of range (SP < S,;;;, or SP> S, ..), the
processor produces a run time error when it executes the instruction.

If you change SP, S,,;;n, Or S,,ax to create the latter condition, the
PID instruction first tries to use the previously valid setpoint,
continues PID control, and sets the setpoint out of range error bit.

If the instruction finds no previously valid setpoint, it produces a run
time error.

If you enter negative values for Kp, Ky, Kp, K¢, Ty, or T, the PID
instruction substitutes zero for the negative value. This inhibits that
term in the equation without producing a run time error.

Transferring Data to the PID Instruction

Use block transfer instructions to transfer data between analog 1/0
modules and the PID instruction. Use a BTR instruction for input
values (process variable and tieback); use a BTW instruction for the
control output.

Make each block transfer file address (data file entry) the same
address in the PID for the process variable, tieback, and control
output, respectively.

14-26

Process Control Instruction PID

Loop Considerations

Not all Allen-Bradley analog input modules enter data in the same
format. You must determine where to store channel data. For
example, temperature sensing modules (such as the 1771-IR and
1771-1XE) place status words in front of the words that contain
channel data. For information about where an analog module stores
channel data, see the documentation for the module.

The number of PID loops, loop update time, and location of 12-bit
analog input modules are important considerations for using the
PID instruction.

Number of PID Loops

The number of PID loops that the processor can handle depends on
the update time required by the loops. The longer the update time and
the less sophisticated the loop control, the more loops the processor
can control.

The sum of the worst-case block transfer time associated with the
analog inputs plus the time required for one program scan should be
less than the update time required by the loops.

Loop Update Time

The PID instruction calculates a new control output whenever its rung
changes from false to true when using an integer data file for the
control block. A PID instruction with a PD control block will execute
every scan in which the rung is true. You can use a one shot
instruction to force the PID instruction with a PD control block to
only execute on a false to true transition. See the examples at the end
of this chapter. For the instruction to operate predictably, the update
time must be equal to the rate at which the PID rung changes between
false and true. Deviation in toggle rate from the update time
substantially degrades the accuracy of PID calculations.

You should program fast response loops (update times less than 100
ms) in the selectable timed interrupt (STI) along with the
corresponding block transfer instructions. Unlatch the PID enable bit
to force execution every STI scan (if you are using a PD data file for
the control block you do not have to unlatch the enable bit). You must
place corresponding analog I/0 modules in the local chassis when
you see this configuration.

Program slower response loops (update times of greater than 100 ms)
in the main ladder program and use timers or real-time sampling to
control the update time.

021-87700210

Process Control Instruction PID

14-27

Descaling Inputs

The PID instruction must use unscaled (0-4095) data from analog
input modules. The analog input modules you can use may have
either scaled or unscaled ranges. When possible, select the unscaled
range of 0-4095.

However, some modules such as the 1771-IR and 1771-1XE
temperature sensing modules, cannot generate data in an unscaled
range. For these modules, you must program arithmetic logic to
convert the scaled output to the unscaled range for the PID
instruction. If you are using a PD data file for the control block, the
processor performs this descaling internally (see the descriptions of
.MAXI and .MINI in the PID configuration characteristics,

page 14-22).
Use this equation to convert scaled outputs:
4095
M, = (M,-S._.)
2 1 minl
(Smaxl o Sminl)

Variable Description

M2 calculated output

M1 measured value from the module in scaled units

Smaxt scaled maximum value from the module

Smin1 scaled minimum value from the module

Smax1 — Smin1 scaled range from the module

For example, the reading from a 1771-1XE module for type J
thermocouple is 170°. To convert this to an unscaled value, use
these values:

4095
1200 — (—200)]

M, = [170 - (-200)];

M, = 1082 unscaled

(www.nicsanat.com
021-87700210

14-28

Process Control Instruction PID

If you are sure that the temperature of your process will always

remain within a specific range, you can set the limits for S,;,; and
Siax instead of the minimum and maximum values for the
thermocouple module. This technique improves the resolution of

the process variable.

ATTENTION: Ifyousetthe limits instead of using the
lower and upper temperature limits of the thermocouple
or RTD module, you must keep the process within the
limits you specify. Failure to keep the process within the
limits could cause unpredictable operation, damage to
equipment, or injury to personnel.

Figure 14.3 shows the ladder logic you need to add to your PID
program. Table 14.G lists the variables in this example.

Figure 14.3
Descaling PID Values Example

__ FAL
FILE ARITHMETIC/LOGIC
Control R6:2 [EN)}
Length 6
Position 0
Mode ALL —(DN)
Destination #N19:0
Expression —(ER)
#N17:0 - #N18:.0

__ FAL
FILE ARITHMETIC/LOGIC
Control R6:5 (EN)}
Length 6
Position 0
Mode aL [(ON)
Destination #N21:0
Expression —(ER)
#N19:0 * #N20:0

www.nicsanat.com

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-29

PID Examples

Integer Block (N) Examples

Table 14.G
Variables for the Descaling PID Values Example

Variable Description
Siax maximum scaling value
Stin minimum scaling value
K = 4095 constant for each channel
Smax o Sm1n
#N17:0 contains M values for each channel
#N18:0 contains Smin constants for each channel
#N19:0 contains the result of M{-S,,;, for each channel
#N20:0 location where you store K for each channel
#N21:0 contains the resulting unscaled value for each channel

The following examples assume that the channel data is stored
starting at the beginning (first word) of the block transfer file.

Main Program File

When you place the PID instruction in the main program file,
control the sample time with a timer, where the PID Loop Update
Time = timer preset.

Timer based execution uses a free-running timer for event
coordination. When the timer’s accumulated value reaches its preset
value, it triggers the loop update sequence. The timer immediately
resets and restarts to maintain a consistent update interval. Use timer
based execution in “slower” loop applications or in applications with
relatively few loops. See Figure 14.4 for programming example.

The accuracy of the timer depends on the time base and the total scan
time of the processor. Always choose the 0.01 second time base for
this PID application. Duplicate the timer instruction elsewhere in the
program if the processor scan time (local I/O scan plus program scan)
is greater than 2.5 seconds.

Because block transfers in the local chassis occur asynchronously
during main program scan, you need a storage bit to ensure that the
state of the PID input condition remains constant during the entire
program scan. Condition all PID instructions using this storage bit.

021-87700210

14-30

Process Control Instruction PID

Figure 14.4
Example PID Programming Conditioned by a Timer in the Main Program
__ TON
T10:0 T!MER ON DELAY _(EN)_
/L Timer T10:0
] L Time base 0.01
DN Preset 10 DN)
Accum 0
__ BTR
BLOCK TRANSFER READ
T10:0 —
r Rack 0 _(EN)
_] L Group 1
DN Module 0l ¢(pn
Control Block BT9:0 _()
Data file N7:104
Length 5 ER)
Continuous N
BT9:0 B3
] . (
L ()_
DN 0
— PID
B3 PID
_] [Control Block N7:20
0 Process variable N7:104
Tieback 0
Control variable N7:200
__ BTW
BLOCK TRANSFER WRITE
N7:20 —
r Rack 0 _(EN)
_] L Group 0
13 Module 0
DN
Control Block BT9:1 _()
Data file N7:200
Length 13 {ER)
Continuous N

STI Program File

When you place the PID instruction in a selectable timed interrupt file
(STI), the STI controls the loop update (sampling) time where the
PID Loop Update Time = STI interval.

In the STI, a separate program file contains all of the necessary logic
to accomplish the loop update. The PLC-5 processor is configured
with an STI to execute that file at the user’s update interval. STI loop
coordination is desirable with “faster” loops or when more loop
processing is required at the specified update interval. See Figure
14.5 for programming examples.

The PID instruction operates on the most recent data when block
transfer instructions are included in the STI file. You must place block
transfer modules in the local chassis for this PID application.
Unlatching the PID and BT enable bits forces the processor to run the
PID and block transfer instructions every time the STI is enabled.

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-31

Important: The program scan waits for block transfer instructions
in the STI file to complete their transfers.

Figure 14.5
Example PID Programming in an STI File
__ BTR
BLOCK TRANSFER READ
Rack 0 [—(EN)
Group 1
Module 0 _(DN)
Control Block BT9:0
Data file N7:104
ER
Length 5 _()
BT9:0 Continuous N
Uy)
EN 7/
— PID
PID
Control block N7:20
Process Variable N7:104
Tieback 0
N7:20 Control variable N7:200
U \
]
15
__ BTW
BLOCK TRANSFER WRITE
Rack 0 [—(EN)
Group 0
Module 0 —(DN)
Control Block BT9:1
Data file N7:200
Length 13 _(ER)
BT9:1 Continuous N
U}
EN

021-87700210

NIC SANAT r‘
AR =

14-32

Process Control Instruction PID

RTS Program File

With the Real Time Sample Based (RTS), the PID instruction’s
execution is triggered by the availability of new analog data from an
analog input source configured for real time sampling. Since the RTS
configuration of an analog module will not initiate or allow a BTR
until new data is available, the PID instruction’s rung can be
conditioned by the BTR’s done bit. This assures that the PID
instruction is executed only when new analog data is available at the
RTS interval. See Figure 14.6 for programming examples where the
PID Loop Update Time = RTS interval.

Figure 14.6
Example PID Programming in an RTS File

__ BTR
BT9:0 BLOCK TRANSFER READ —(EN }—
—] /F Rack 0
EN Group 1
Module 0 _(DN)
Control Block BT9:0
Data file N7:104 ER
Length 5 _()
Continuous N
— PID
BT9:.0 PID
—] E Control Block N7:20
DN Process variable N7:104
Tieback 0
Control variable N7:200
__ BTW
N7:20 BLOCK TRANSFER WRITE —(EN)—
—] F Rack 0
Group 0
13
Module 0 _(DN)
Control Block BT9:1
Data file N7:200
ER
Length 13 _()
Continuous N

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-33

PD Block Examples

Main Program File

When you place the PID instruction in the main program file,
control the sample time with a timer, where the PID Loop Update
Time = timer preset.

Timer based execution uses a free-running timer for event
coordination. When the timer’s accumulated value reaches its preset
value, it triggers the loop update sequence. The timer immediately
resets and restarts to maintain a consistent update interval. Use timer
based execution in “slower” loop applications or in applications with
relatively few loops. See Figure 14.7 for programming example.

The accuracy of the timer depends on the time base and the total scan
time of the processor. Always choose the 0.01 second time base for
this PID application. Duplicate the timer instruction elsewhere in the
program if the processor scan time (local I/O scan plus program scan)
is greater than 2.5 seconds.

Because block transfers in the local chassis occur asynchronously
during main program scan, you need a storage bit to ensure that the
state of the PID input condition remains constant during the entire
program scan. Condition all PID instructions using this storage bit.

021-87700210

Process Control Instruction PID

Figure 14.7
Example PID Programming Conditioned by a Timer in the Main Program
__ TON
T11:0 TIMER ON DELAY —(EN
—] /F Timer T11:.0
DN Time base 0.01
Preset 10 _(ON)
Accum 0
__ BTR
T11.0 BLOCK TRANSFER READ —(EN)}
—] E Rack 0
DN Group 1
Module 0 —(ON)
Control Block BT9:0
Data file N7:104 ER
Length 5 _()
Continuous N
BT9:0 B3
I. (
] L \)
DN 0
— PID
B3 B3 PID
] []ONS |r. Control Block PD10:0
0 1 Process variable N7:104
Tieback 0
Control variable N7:200
__ BTW
B3 BLOCK TRANSFER WRITE —(EN)—
—] E Rack 0
0 Group 0
Module 0 —(DN)
Control Block BT9:1
Data file N7:200
ER
Length 13 _()
Continuous N

STI Program File

When you place the PID instruction in a selectable timed interrupt file
(STI), the STI controls the loop update (sampling) time where the
PID Loop Update Time = STI interval.

In the STI, a separate program file contains all of the necessary logic
to accomplish the loop update. The PLC-5 processor is configured
with an STI to execute that file at the user’s update interval. STI loop
coordination is desirable with “faster” loops or when more loop
processing is required at the specified update interval. See Figure

14.8 for programming examples.

The PID instruction operates on the most recent data when block
transfer instructions are included in the STI file. You must place block

transfer modules in the local chassis for this PID application.

Unlatching the PID and BT enable Ritsda

PID and block transfer instruction

QL 1O rURH

at.com

Process Control Instruction PID

14-35

Important: The program scan waits for block transfer instructions
in the STI file to complete their transfers.

Figure 14.8
Example PID Programming in an STI File
__ BTR
BLOCK TRANSFER READ
Rack 0 (EN)
Group 1
Module 0 _(DN)
Control Block BT9:0
Data file N7:104
ER
Length 5 _()
BT9:0 Continuous N
()
EN
— PID
PID
Control block PD10:0
Process Variable N7:104
Tieback 0
Control variable N7:200
__ BTW
BLOCK TRANSFER WRITE
Rack 0 (EN)
Group 0
Module o (DoN)
Control Block BT9:1
Data file N7:200
Length 13 _(ER)
BT9:1 Continuous N
~ v)
EN

021-87700210

NIC SANET

2 g

14-36

Process Control Instruction PID

RTS Program File

With the Real Time Sample Based (RTS), the PID instruction’s
execution is triggered by the availability of new analog data from an
analog input source configured for real time sampling. Since the RTS
configuration of an analog module will not initiate or allow a BTR
until new data is available, the PID instruction’s rung can be
conditioned by the BTR’s done bit. This assures that the PID
instruction is executed only when new analog data is available at the
RTS interval. See Figure 14.9 for programming examples where the
PID Loop Update Time = RTS interval.

Figure 14.9
Example PID Programming in an RTS File

__ BTR
BT9:0 BLOCK TRANSFER READ —(EN
—]~F Rack 0
EN Group 1
Module 0 _(DN)
Control Block BT9:0
Data file N7:104 ER
Length 5 _()
Continuous N
BT9:0 B3
L
] [()
DN 0
— PID
B3 B3 PID
—] F—Jons Control Block PD10:0
0 1 Process variable N7:104
Tieback 0
Control variable N7:200
__ BTW
B3 BLOCK TRANSFER WRITE —(EN }—
—] F Rack 0
Group 0
0
Module 0 _(DN)
Control Block BT9:1
Data file N7:200
ER
Length 13 _()
Continuous N
www.nicsanat.com
021-87700210
NIC SEANRT

2 g

Process Control Instruction PID

14-37

Ladder Logic Simulation of a Manual Control Station

When you program the simulation of a manual control station, make
sure that a hardware manual control station is not connected when the
program is enabled. Add the rungs in Figure 14.10 to the PID
program in Figure 14.4, Figure 14.5, Figure 14.7, or Figure 14.8.

Figure 14.10
Example Program for Simulating a Manual Control Station
[:001 N7:20
1 L
1L (L)
00 4
[:001 N7:20
1 L (
1L (U)
01 MoV 4
N7:20 1:001 MOVE
} [} [Source 1011
4 002 Destination N7:30
__ Mov
N7:20 MOVE
} /[Source N7:36
4 Destination N7:30

The last rung in the above example is for output tracking for
bumpless transfer from automatic to manual mode.

Address: Description:

1:001/00 Manual pushbutton switch
1:001/01 Automatic pushbutton switch
1:001/02 Enter pushbutton switch
1:011 Manual output value

N7:20/4 PID set output bit

N7:30 PID set output value

N7:36 Current control output

021-87700210

NIC SANET

2 g

14-38

Process Control Instruction PID

Cascading Loops

You can cascade two loops by assigning the control output of the
outer loop to the setpoint of the inner loop. The setpoint of the inner
loop is the third word (word 2) of the integer control block. If the
control block of the inner loop is N7:50, address the outer loop
control output at N7:52. Replace the PID rungs in Figure 14.14 or
Figure 14.5 with those in Figure 14.11.

You must not scale the setpoint of the inner loop. Set the scaling bit
(word 0, bit 5) to 1 to inhibit setpoint scaling.

Figure 14.11
Cascaded Loops

— PID
PID
Control Block N7:20
Process variable N7:105
Tieback N7:106
Control variable N7:52
_ PID
PID
Control Block N7:50
Process variable N7:107
Tieback N7:108
Control variable N7:121

Ratio Control

You can maintain two values in a ratio by using a MUL instruction.
Three parameters are involved:

e the wild or uncontrolled value
e the controlled value

e the ratio between these two values

Enter the address of the controlled value as the Destination. Enter the
address of the wild or uncontrolled value as Source A. Enter either
the address of the ratio value or a program constant for the ratio as
Source B. For example, add the rungs in Figure 14.12 to the PID
program in Figure 14.4 or Figure 14.5.

021-87700210

NIC SANET

2 g

Process Control Instruction PID

14-39

Figure 14.12

Ratio Control with a PID Instruction

Process Variable Tracking

__ PID
PID
Control block N7:20
Process Variable N7:105
Tieback N7:106
Control variable N7:120
_ MUL
MUL
Source A N7:105
Source B 0.350000
Destination N7:52
__ PID
PID
Control block N7:50
Process Variable N7:107
Tieback N7:108
Control variable N7:121

When in manual control, your program can force the setpoint to be
equal to the process variable (PV) by moving the PV into the setpoint
word (word 2 of the integer control block) to achieve a smooth
manual-to-automatic transfer. If the setpoint is scaled, move the
scaled PV from the PID control block directly into the setpoint
word. If the setpoint is not scaled, move the unscaled value from

the PV address in the PID instruction to the setpoint. For an example,
add the rungs in Figure 14.13 to the PID program in Figure 14.4 or

Figure 14.5.

Figure 14.13
Process Variable Tracking

__ PID
PID
Control Block N7:20
Process variable N7:105
Tieback N7:106
Control variable N7:120
__ MoV
MOVE
Source N7:34
Destination N7:22

021-87700210

NIC SANET

2 g

14-40

Process Control Instruction PID

PID Theory

Figure 14.14 and Figure 14.15 show the PLC-5 PID Integer and PD
Block process flow. Figure 14.16 and Figure 14.17 show the PD
Block master-slave relationship.

Figure 14.14
PLC-5 PID (Integer Block)

Convert
Binary to % Binary
100

CVx ——
4095

v

Output (CV)

displayed as
% Binary

Set
Output %

Convert %
To Binary
Out% x 40.95

Do

Error
Displayed
as EUs
Convert
Binary % to EU
. Errorx e S
SetPoint
Scaling
No . 12 Bit Error Fontard Ol\;\JttJ’tjil;t
- > runcation Sp-pv output
;‘: S Mode Limiting
ves ¢ B > CaIcF;II[;tion o o
Convert Eng. Units (:) P{ Auto No
To Binary PV-SP K >‘
SP-Smin
— - X4
Smax-smin X 095 Set Manual
Output %
Tieback
sp Convert
Displayed as Binary to EU
user entry
Sva = S
S . PUx Sy
12 Bit
Truncation Ves | .
SetPoint
K Scaling
No
7N\
PV PV
Displayed ‘
as EUs
5
Smin - Minimum Scaled Input
Smax - Maximum Scaled Input
Figure 14.15
PLC-5 PID (PD Block)
SP Error
Displayed Displayed
as EUs as EUs
Software A/M
-or-
A/M Station Mode Control
Action Software M
A/M Mode i
Ao SP-PV Convert Eng. S'\taagéoen
< ¢ 3 _Ermon) Units To % (Out%s) Auto
- Calculation
SP>> Man @_ Error x 1.00 ?{ Auto
PV-sP maxs-mins Output
PVT Manual Limiting
No Manual
P Output %
Dfsplzaa':d Tieback % Output (CV)
Yes Displayed as
- % of EU Scale
Convert Binary
To Eng. Units
(PV-mini)(maxs-mins) .
————————— +mins
maxi-mini
7\
PV PVT - Process Variable Tracking
mini - Input Range Minimum
maxi - Input Range Maximum
mins - Engineering Unit Minimum
maxs - Engineering Unit Maximum

Process Control Instruction PID

14-41
Figure 14.16
PLC-5 PID (PD Block) as Master/Slave Loops
Master
Loop
Software A/M Output
-or- Control
A/M Station Mode Action o
Auto Convert Eng. A/M Mode Station
PN Units To % PID Out%s Auto Mode
Calculation
Error x 100 < Auto
SP Man _r
> maxs-mins Output (Master.Out)
PVT Manual Limiting
No Output % Manual
,_ Software |
Yes | PVT AM Mode |
c B N Auto
onvert Binary | SP >—0 Con_vert Eng. Items referenced in this box |
To Eng. Units ?(9 UnitsTo% | Manual are parameters, units, and
(PV-mini)(maxs-mins) + mins | PV > x 100 Manual mot_{es as they pertain to the |
maxi-mini Yes maxs-mins designated Slave loop.
| Auto |
A an
7\ | Station Mode |
PV - - -
Output
Slave Control Bias %
Loop Action Software Out?)ilt %
Convert % -| A/M Mode) 0
(Master.Out) ToEng Unints (SP) E-PY Convert Eng. Station
3 K| UnitsTo% 0 Auto Mode
X (maxs-mins) mins @ Error x 100 Calculation o Auto
100 pV-SP — o Convert %
Mmaxs-mins To Binary >> cv
Manual Limiting Out% x 40.95
i Set Manual
Convert Binary
To Eng. Units Output %
(PV-mini)(maxs-mins) +mins Tieback %
maxi-mini
7\

PV

14-42 Process Control Instruction PID

Figure 14.17
PD Block Master/Slave Interlocking State Transitions

Master Loop Transitions Slave Loop Transitions

Note: (é\/lvm) indicates that this loop
is in Manual with SWM also on".

Designates Master Loop Mode

Stable State (Composite Mode)

Slave Loop Mode
—— Mode transition
M Designated Master
S Slave
Man Manual

Auto Automatic
SWM Software Manual

021-87700210

NIC SANAT r‘
AR =

Chapter 1 5

Using Block Transfer and
ControlNet I/0
Transfer Instructions

Using Block Transfer Instructions

Block-Transfer Instructions BTR and BTW
ControlNet I/0 Transfer Instruction CIO

Block transfer instructions let you transfer words to or from a block
transfer module; ControlNet I/O transfer instructions let you perform
unscheduled transfers to /O modules on a ControlNet™ network.
Table 15.A lists the available block transfer and ControlNet I/O
transfer instructions.

Table 15.A
Available Block Transfer and ControlNet I/0 Transfer Instructions

If You Want to: Use thls.) Found on Page:
Instruction:

Transfer words to a block transfer module BTW 15-3

Transfer words from a block transfer BTR 15-3

module

Perform unscheduled transfers to I/0 Clo 15-22

modules on a ControlNet network

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

With block-transfer instructions, you can transfer up to 64 words at a
time to or from a block transfer module in a local or remote 1/O
chassis. You can also transfer up to 64 words at a time between a
supervisory processor (scanner mode) and a processor configured for
adapter mode.

The Enhanced PLC-5 processors have configurable communication
channels; choose between remote 1/O scanner, remote 1/O adapter, or
DH+. Ladder block transfer instructions are not necessary when using
Enhanced PLC-5 processors in adapter mode.

Table 15.B describes how to block transfer data to a local or remote
rack when the processor is configured for scanner mode. Figure 15.1
illustrates how the transfer occurs.

021-87700210

NIC SANET

2 g

15-2

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Table 15.B
Block Transfer Instructions for Local or Remote Racks in Scanner Mode

If You Want to Transfer Data: Use:

To the BT I/O module BTW (block-transfer write)
From the BT I/0 module BTR (block-transfer read)
Figure 15.1

Block Transfer Operation in Scanner Mode

One of Several Remote 1/0 Chassis

PLC-5 (supervisor) w/ 1771-ASB Adapter (processor)
1 B
B'T N BTW ;
File > 1 3 M
BTR - 0
<« | d
A u
S |
B e

Table 15.C describes how to block transfer data when the processor
is configured for adapter mode. Figure 15.2 illustrates how the
transfer occurs.

Table 15.C
Block Transfer Instructions for Adapter Mode

If You Want to Transfer Data: Use:
From the supervisory processor BTR (block-transfer read)
To the supervisory processor BTW (block-transfer write)
Figure 15.2
Block Transfer Operation in Adapter Mode
Supervisor Adapter
Processor PLC-5
Scanner
BTW BTR: BTD
_ BTR BTW File

Both processors simultaneously execute the opposite block transfer instruction.

021-87700210

NIC SANET

2 g

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO 15-3

Block-Transfer Read (BTR) and
Block-Transfer Write (BTW)

— BTR

BLOCK TRNSFR READ
Rack

Group

Module

Control Block

Data file

Length

Continuous

Description:

()~
(o)
(=)

When the rung goes true, the BTW instruction tells the processor to
write data stored in the data file to the specified rack/group/module
address; the BTR instruction tells the processor to read data from the
rack/group/module address and store it in the data file.

Block-Transfer Request Queue

When a false-to-true rung transition enables a BTW or BTR
instruction, the transfer request is queued:

For this Processor: The Queue Holds Up to:
Classic PLC-5 17 block transfer requests per logical rack
PLC-5/11, 5/20, -5/30 64 block transfer requests to remote racks

(maximum 64 per channel pair — 1A/1B); no limit for
requests to local racks

PLC-5/40, -5/60, -5/80 128 block transfer requests to remote racks
(maximum 64 per channel pair — 1A/1B, 2A/2B); no
limit for requests to local racks

The processor runs each block transfer request in the order it is
requested. When the processor changes to Program mode, any block
transfers are cancelled.

For Classic PLC-5 processors, each rack number has a block transfer
queue with a corresponding queue-full bit. Table 15.D lists the
queue-full bits. Once these bits are set, your ladder program must
clear them. Your program should continually monitor these
queue-full bits, found in the status file, word 7, bits 08-15. (Enhanced
PLC-5 processors can have unlimited block transfers in local racks,
so there are no queue-full bits.)

021-87700210

15-4 Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Table 15.D
Queue-Full Bits for Block Transfer Requests (Word 7) —
Classic PLC-5 Processors

Bit Description

S:7/8 Block-transfer queue for rack O is full
S:7/9 Block-transfer queue for rack 1 is full
S:7/10 Block-transfer queue for rack 2 is full
S:7/11 Block-transfer queue for rack 3 is full
S:7/12 Block-transfer queue for rack 4 is full
S:7/13 Block-transfer queue for rack 5 is full
S:7/14 Block-transfer queue for rack 6 is full
S:7/15 Block-transfer queue for rack 7 is full

The number of racks in your system depends on the processor
you use.

A BTR or BTW instruction writes values into its control block
address (a five-word integer file) when the instruction is entered. The
processor uses these values to execute the transfer.

The Enhanced PLC-5 processors also have a block transfer file type
(BT). You can still use existing programs with integer file types, but
the new BT file type makes addressing easier. For example, if you
need two control files, you can use BT10:0 and BT10:1; using integer
files, you would have to use, for example, N7:0 and N7:5.

Entering Parameters

To program a BTW or BTR instruction, you must provide the
processor with the following information that it stores in its
control block:

* Rack is the I/O rack number (00-27 octal) of the I/O chassis in
which you placed the target [/O module. Table 15.E lists the valid
ranges for rack numbers.

Table 15.E
Valid Ranges for Rack Number in Block Transfer Instructions

Processor Maximum Racks Valid Range for Rack Numbers (octal)
PLC-5/10, -5/11, -5/12, 4 00-03

-5/15, -5/20, -5/VME

PLC-5/25, -5/30 8 00-07

PLC-5/40, -5/40L 16 00-17

PLC-5/60, -5/60L, -5/80 24 00-27

www.nicsanat.com

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO 15-5

* Group is the I/O group number (0-7) which specifies the position
of the target I/O module in the I/O chassis.

* Module is the slot number (0-1) within the group. When using
2-slot addressing, the 0 slot is the low slot; the 1 slot is the high
slot. You should use 0 for the module when using 1- or 1/2-slot
addressing.

* Control Block is a six-word block transfer control file (BT) or a
five-word integer file (N) that controls the instruction’s operation.
Enter this file address without the # symbol. This is not a control
file (type R).

Important: You can use indirect addresses for the control block
address in a BTR or BTW instruction.

Important: In a PLC-5/40, -5/60, or -5/80 processor, the block
transfer data type (BT) must be used for rack addresses
greater than 7.

The five-word integer (N) control file has the following structure:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

word O | EN [ST| DN |ER | CO| EW |NR| TO |RW rack group slot
word 1 requested word count

word 2 transmitted word count

word 3 file-type number

word 4 element number

For information on the status bits in word 0, see page 15-8; for
information on words 1 through 4, see page 15-10.

* Data File is the address of the input, output, status, integer (N),
float, binary, BCD, or ASCII data file from which (write) or into
which (read) the processor transfers data. Enter this file address
without the # symbol.

Important: You cannot use indirect addresses for the data file
address in a BTR or BTW instruction.

* Length is the number of data file words to read/write.

If You Set the .

Length to: The Processor:

0 Reserves 64 words for block transfer data. The block transfer
module transfers the maximum words it can handle.

11to 64 Transfers the number of words specified.

021-87700210

NIC SANAT r‘
AR =

15-6 Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Important: A floating point element consists of two words; when
you specify a value in the Length field for a floating
point data file, only half of those floating point elements
are read/written. For example, if you specify 64 for the
length, 32 floating point elements will actually be

read/written.

Important: Floating point data file lengths must be an even number.

* Continuous determines the mode of operation.

If You Specify:

The Instruction Uses This Mode:

Yes

Continuous — once the rung goes true, the instruction continues
to transfer data until the continuous (.CO) hit is reset and the
rung is false or you edit the instruction and specify NO for
continuous mode.

No

Non-continuous — the instruction is enabled each time the
rung goes true and performs only one data transfer per
rung transition.

Using Status Bits To use the BTR and BTW instructions correctly, examine the
instruction’s status bits stored in the control block. These bits are in

word 0 of the control block.

ATTENTION: Except for the continuous bit .CO (bit
11) and the timeout bit .TO (bit 08), do not modify any
status bit while the block transfer instruction is enabled.
Unpredictable operation could occur with possible
damage to equipment and/or injury to personnel.

Important: The bit labels (.EN, .ST, .CO, etc.) can only be used
with the block transfer file type (BT).

This Bit:

Is Set:

Enable .EN (bit 15)

when the rung goes true. This bit shows that the instruction
is enabled (that the block transfer is in progress).

In non-continuous mode, the .EN bit remains set until the
block transfer finishes or fails and the rung goes false.

In continuous mode, once the .EN bit is set, it remains set
regardless of the rung condition.

Start .ST (bit 14)

when the processor begins transferring data. The .ST bit is
reset at the false-to-true transition after the .DN bit or .ER
bit is set.

Done .DN (bit 13)

at completion of the block transfer, if the data is valid. The
.DN bit is set asynchronous to the program scan so the .DN
bit may go true any time after the block transfer is initiated.
The .DN bit is reset the next time the associated rung goes
from false to true.

021-87700210

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO

15-7

This Bit:

Is Set:

Error .ER (bit 12)

when the processor detects that the block transfer failed.
The .ER bit is reset the next time the associated rung goes
from false to true.

Continue .CO (bit 11)

when you edit the instruction for repeated operation of the
block transfer after the first scan, independent of whether
the processor continues to scan the rung.

Reset the .CO hit if you want the rung condition to initiate
block transfers (return to non-continuous mode). If you are
using continuous block transfers in a sequential function
chart, see Appendix B, “SFC Reference,” in this manual.

Enable-waiting .EW

(bit 10)

when the block transfer request enters the queue. If the
queue is full, this bit remains reset until there is room in the
queue.

The .EW bit is reset when the associated rung goes from
false to true.

In continuous mode, once the .EW bit it set, it remains set.
Use the .EW bit to verify that a BTW or BTR instruction is
queued before leaving an SFC step.

No Response .NR (bit 09)

if the block transfer module does not respond to the first
local block transfer request. The .NR bit is reset when the
associated rung goes from false to true (not used with
remote block transfer).

Time Out .TO (bit 08)

if you reset the time out bit through ladder logic or data
monitor, the processor repeatedly tries to send a block
transfer request to an unresponsive module for four
seconds before setting the .ER bit.

If you set the .TO bit through ladder logic or data monitor,

the processor disables the four-second timer and requests
a block transfer one more time before setting the .ER bit.

Read-Write .RW (bit 07)

controlled by the instruction. A 0 indicates a write
operation; a 1 indicates a read operation.

ATTENTION: The processor runs block transfer
instructions asynchronously to program scan. The status
of these bits could change at any point in the program
scan. If you examine these bits in ladder logic, copy the
status once to a storage bit whose status is synchronized
with the program scan. Otherwise, timing problems may
invalidate your program with possible damage to
equipment or injury to personnel.

Important:

When using integer (N) and block transfer (BT) file
types, the .EN, .ST, .DN, .ER, .EW, and .NR bits are
cleared during prescan.

Your ladder program should condition the use of block transfer data
on the state of the .DN bit.

021-87700210

NIC SANAT

e o

‘a

15-8

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Using the Control Block

In addition to the status bits, the control block contains other
parameters the processor uses to control block transfer instructions.
Table 15.F lists these values.

Table 15.F
Values in the Block Transfer Control Block

Word — Integer

Control Bock BT Control Block Description

0 .EN through .RW Status hits
1 .RLEN Requested word count
2 .DLEN Transmitted word count / error code

(Enhanced PLC-5 processors)

3 .FILE File type / number

4 .ELEM Element number

Requested Word Count (.RLEN)

This is the number of words to be transferred between the processor
and the module (0-64 words); the processor creates a file of the length
you specified that starts at the data address you enter. The length
depends on the target module or your application. For example, if you
specify 30 in this field, you are specifying a block length of 30 and
the processor creates a 30-word file; if you specify 64, you are
specifying a block length of 64 and the processor creates a 64-word
file. If you specify a 0 when you enter the block transfer instruction,
the processor lets the block transfer module determine the number of
words that need to be transferred and creates a default 64-word file.

Transmitted Word Count (.DLEN)

This is the number of words the module actually transferred after the
instruction completes execution. The processor uses this number to
verify the transfer. This number should match the requested word
count (unless the transmitted word count is zero). If these numbers do
not match, the processor sets the .ER bit (bit 12).

The Enhanced PLC-5 processors also have error codes (word 2 of the
integer file control block or stored in the .DLEN word of the BT
control block) that the processor can set during the transfer. If a block
transfer error occurs in an Enhanced PLC-5 processor, the error code
is stored in the transmitted word count. This error can be identified by
its negative number. Only one error code is stored at a time (a new
error code overwrites any previous error code). Table 15.G lists these
error codes.

021-87700210

NIC SANAT

-

=

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO

Table 15.G

Enhanced PLC-5 Processor Block Transfer Error Codes

Error Description:

Number:

-1 not used

-2 not used

-3 The size of the block transfer plus the size of the index in the block transfer
data table was greater than the size of the block transfer data table file.

-4 There was an invalid transfer of block transfer write data between the
adapter and the block transfer module.

-5 The checksum of the block transfer read data was wrong.

-6 The block transfer module requested a different length than the associated
block transfer instruction. This could happen if a 64-word block transfer
instruction was executed and the block transfer module’s default length
was not 64 words.

—7 Block transfer data was lost due to a bad communication channel. Possible
reasons are noise, bad connections, and loose wires. Check resistors.

-8 Error in block transfer protocol — unsolicited block transfer.

-9 The block transfer timeout, set in the instruction, timed out before
completion.

-10 No communication channels are configured for remote 1/0 or rack number
does not appear in rack list.

-11 No communication channels are configured for the requested rack or slot.

-12 The adapter is faulted or not present for the BT command.

-13 Queues for remote block transfers are full.

File Number (.FILE)

This number identifies the file number of the integer file from which
the data is written or to which the data is read. For example, the file
number of N7:20 is 7.

Element Number (.ELEM)

This number identifies the starting word in the data file address. For
example, in N7:20, the word number is 20.

021-87700210

15-9

15-10

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Selecting Continuous Operation

Continuous block transfer is similar to discrete I/O transfer in that the
1/0 is updated continuously, but continuous block transfer updates
block transfer 1/0, such as analog input and analog output data.

Continuous mode lets you perform multiple block transfers by
programming only one block transfer instruction (with no input
conditions on the rung). Once the continuous block transfer starts, the
transfer is continuously executed once per scan, independent of
whether the processor continues to scan the associated rung and
independent of the rung condition. To enable continuous operation,
select Continuous when you enter the block transfer instruction.

Continuous mode works as follows (Figure 15.3):

1. When the rung that contains the block transfer instruction goes
true, the processor sets the .EN bit. The processor also resets the
.DN, .ER, .ST, .EW and .NR bits.

2. The processor then queues the block transfer request. When the
block transfer request enters the queue, the processor sets the
.EW bit.

3. When the processor starts to process the block transfer request,
the processor sets the .ST bit.

4. If no error occurs during transmission, the processor sets the .DN
bit. The processor copies the actual number of elements sent or
received by the block transfer instruction into the transmitted
word count (word 2 of the control block).

If an error occurs, the processor sets the .ER bit. If an error occurs
in an Enhanced PLC-5 processor, the processor also puts the error
code in the transmitted word count location as a negative number.

5. [Ifthere is no response (and after the processor sets the .NR bit),
the processor tries to send the block transfer again. If the .TO bit
is reset, the processor repeatedly sends the request for four sec-
onds. If the .TO bit is set, the processor only retries the request
one time.

6. If a continuous block transfer has an error, you must restart it
to continue. (See Figure 15.7 on page 15-18 for an
example program.)

021-87700210

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO

15-11

Figure 15.3
Timing Diagram for Status Bits in Continuous BTR and BTW Instructions

EN J | stage 3 |
EW | L
ST | I—
stage 2
o [| stage 1 [
DN | [|
ER | | |
I I I I I I
Rung true Request Instruction Instruction Rung false Rung true
enters the begins finishes
queue execution

Stage 1 - If .CO set, return to stage 2; if .CO reset, go to stage 3
Stage 2 - Return here for continuous operation
Stage 3 - Go here if .CO is reset

A continuous block transfer continues as long as the processor stays
in Run or Test mode and the transfer does not error. If you switch to
Program mode or the processor faults, the block transfer stops and
will not start again until the processor scans the rung that contains the
block transfer instruction. If running continuous block transfers from
within sequential function charts, see appendix B.

To stop continuous operation either: modify the block transfer
instruction and select non-continuous, or reset the .CO bit.

021-87700210

NIC SANET

2 g

15-12

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Selecting Non-Continuous

Operation

Non-continuous block transfer updates block transfer 1/0 one time
when the rung goes true. A non-continuous block transfer maintains
block integrity. The entire block of data is updated each time the
processor runs the block transfer instruction. Use non-continuous
mode when you want to control when the block transfer occurs or the
number of times the block transfer occurs.

Non-continuous mode works as follows (Figure 15.4):

1. When the rung that contains the block transfer instruction goes
true, the processor sets the .EN bit. The processor also resets the
.DN, .ER, .ST, .EW and .NR bits.

2. The processor then queues the block transfer request. When the
block transfer request enters the queue, the processor sets the
.EW bit.

3. When the processor starts to process the block transfer request,
the processor sets the .ST bit.

4. If no error occurs during transmission, the processor sets the .DN
bit after the block transfer instruction finishes. If an error occurs,
the processor sets the .ER bit.

5. This signifies that one block transfer finished. The next time the
rung goes false, the processor resets the .EN bit.

Figure 15.4
Timing Diagram for Status Bits in Non-Continuous BTR and BTW Instructions

N — l—,—
EW | |—
sT | I
co
DN | [|
ER | [|
I I I I I I
Rung true Request Instruction Instruction Rung false Rung true
enters the begins finishes
queue execution

021-87700210

NIC SANAT r‘
AR =

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO 15-13

Block Transfer Timing — Classic
PLC-5 Processors

Write:

local

The time to complete a block transfer in a Classic PLC-5 processor
depends on:

e instruction run time
e waiting time in the queue

e transfer time

Instruction Run Time

The time in microseconds it takes the processor to execute a block
transfer instruction is defined by these formulas:

Write: Read:

310 + 11.2Q + 5.4W 250 + 11.2Q

Where: Represents:

Q number of queued block transfer requests to the same 1/0 chassis

with the continuous bit set

W number of words to transfer

Waiting Time in the Queue

The waiting time in the queue is the sum of the transfer times yet to
occur before the block transfer request (for which you are calculating
time) to the same 1/O chassis.

Transfer Time

The transfer time in milliseconds between the active buffer and the
module starts when the processor sets the start bit and ends when
the processor sets the done bit. The transfer time is defined by
these formulas:

Read:

0.9 + 0.1W local 0.9 + 0.1W

remote (57.6K baud) 13 + 30C + 0.3W remote (57.6Kbaud) 9 + 21.3C + 0.3W

Where: Represents:
C number of full remote logical racks
w number of words to transfer

021-87700210

15-14

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Block Transfer Timing — Enhanced
PLC-5 Processors

The time to complete a block transfer in Enhanced PLC-5 processors
depends on:

* instruction run time
* waiting time in the holding area (queue)

e transfer time

Instruction Run Time

The time it takes the processor to execute a block transfer instruction
is the same for a read or a write: 450 microseconds.

Waiting Time in the Holding Area

The waiting time in the holding area is the sum of the transfer times
yet to occur before the block transfer request (for which you are
calculating time) to the same I/O chassis.

Transfer Time

The transfer time in milliseconds between the active buffer and the
module starts when the processor sets the start bit and ends when the
processor sets the done bit. The transfer time is defined by this
formula (same for a read or write):

local 600 LLsec + x(w)
remote (57.6Kbaud) 4 + 8C + 0.3W
remote (115K baud) 4 + 4.6C + 0.15W

remote (230K baud) 4 + 3.2C + 0.075W

Where this: Represents:

X * 8orless block transfers queued in local rack = 86 [sec
= more than 8 block transfers queued in local rack = 300 [Lsec

Note: This timing assumes that no other block transfers are queued to
the same slot and that successive block transfers to the same slot are
executed every 1000 LLsec.

number of full remote logical racks

W number of words to transfer

021-87700210

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO

15-15

Programming Examples

Program your processor for block transfer using one of the following
methods based on your application requirements (Table 15.H):

Table 15.H
Block Transfer Programming Methods

If You Want to:

Use this Method:

Program block transfers to and from the same
module when you want the order of execution to
follow the same order scanned in the program

Bidirectional alternating

Continuously repeat bidirectional alternating block
transfers and the step will be scanned

Bidirectional alternating repeating

Program block transfers to and from the same
module when you want the transfers to continue
regardless of which SFC steps are active

Bidirectional continuous*

Program a BTR from, or a BTW to a module when
you want the block transfer to execute based on
an event

Directional non-continuous

Continuously repeat a block transfer and the step
will be scanned

Directional repeating

Program a BTR from or BTW to a module when you
want the transfer to continue regardless of which
SFC steps are active

Directional continuous*

Ensure block integrity

Buffering block transfer data

* Only use continuous mode when you want a block transfer to continue executing even when

the logic which controls it is not being scanned.

Important: These examples show an Enhanced PLC-5 processor
using the BT file type. If you are using a Classic PLC-5
processor, substitute an appropriate integer file.

021-87700210

NIC SANET

2 g

15-16

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Example Bidirectional Alternating Block-Transfer

Figure 15.5 shows a bidirectional alternating block transfer example.
Using rungs like this example makes sure the block transfer requests
are executed in the order in which they were sent to the queue. The
processor alternates between the BTRs and BTWs in the order in
which they are scanned by virtue of the XIO condition. The XIO
condition prevents the block transfer read and block transfer write
from queueing simultaneously. The block transfer continues as long
as the optional condition is true.

On the rungs of logic, you may include as many optional
conditions as you wish to the left of the required enable bit
condition (XIO) transition.

Figure 15.5
Example Bidirectional Alternating Block Transfer

__ BTR
Precondition BT10:0 BT10:1 BLOCK TRANSFER READ —(EN)—
1 L 1 /L 1/L
1 171 1/1 (R;a‘:k g
EN EN roup
BTR BTW Module o [(ON)
enable bit enable bit Control Block BT10:0
Data file N11:0 —(ER)
Length 10
Continuous NO
BTW BTR
enable bit enable hit __ BTW
Precondition BT10:1 BT10:0 BLOCK TRANSFER WRITE —(EN
. } /¢ Rack ;
EN EN Group 2
Module 0 _(DN)
Control Block BT10:1
Data file N11:10 (ER)
Length 11
Continuous NO
Block-transfer rungs must be scanned for the transfers to occur.

The preconditions allow time-driven or event-driven transfers.

021-87700210

NIC SANET

2 g

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO 15-17

Example Bidirectional Alternating Repeating Block-Transfer

Figure 15.6 shows a bidirectional alternating repeating block transfer
example. Using rungs like this example makes sure the block transfer
requests are executed in the order in which they were sent to the
queue. The processor alternates between the BTRs and BTWs in the
order in which they are scanned by virtue of the XI1O conditions. The
XIO conditions prevents the block transfer read and block transfer
write from queueing simultaneously. The block transfers continue as
long as the step is scanned.

Figure 15.6
Example Bidirectional Alternating Repeating Block Transfer

Block-transfer rungs must be

__ BTR
BT10:0 BT10:1 BLOCK TRANSFER READ —(EN)
) /—/t Rack 3
EN EN foup
BTR BTW Module 0 _(DN)
enable hit enable hit Control Block BT10:0
Data file N11:0 _(ER)
Length 10
Continuous NO
BTW BTR
enable bit enable bit __ BTW
BT10:1 BT10:0 BLOCK TRANSFER WRITE —(EN)—
] /F]1/E Rack 3
EN EN Group 2
Module 0 _(DN)
Control Block BT10:1
Data file N11:10 (HER)
Length 11
Continuous NO

scanned for the transfers to occur.

021-87700210

NIC SANET

2 g

15-18

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Example Bidirectional Continuous Block-Transfer

Figure 15.7 shows a bidirectional continuous block transfer example.

Figure 15.7

Example Bidirectional Continuous Block Transfer

— BTR

Preconditions BLOCK TRANSFER READ _(EN)_
I Rack 3
LI Group 6
Module 1 _(DN)
Control Block BT10:0
Data file N7:100 (—(ER)
Length 0
Continuous YES
BTW
Preconditions BLOCK TRANSFER WRITE _(EN)_
1 L Rack 3
1 [Group 6
Module 1 _(DN)
) . Control Block BT10:1
Scan the rung once to start continuous block transfers. The continuous Data file N7:200 _(ER)
operation starts on a false-to-true rung transition and continues, Lenath 0
whether or not the rungs are scanned again. To stop continuous g'
operation, use the Data Monitor to reset the continuous bit (.CO or Continuous YES
bit 11), or change the Continuous field in the instruction to NO.
BT10:0 BT10:0
1 L { U \
1 0 \ V)
ER EN
BT10:1 BT10:1
1 L { U \
1 0 \ Y
ER EN

These rungs will reset block transfers and should be placed in logic where rungs are
being scanned for error recovery. Your logic must rescan the block transfers with

preconditions true in order to restart continuous block transfers.

021-87700210

NIC SANET

2 g

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO 15-19

Example Directional Non-Continuous Block-Transfer

Figure 15.8 shows a directional non-continuous block transfer
example. The block transfer executes once for every false-to-true
transition of the precondition.

Figure 15.8
Example Directional Non-Continuous Block Transfer

— BTR
Precondition BLOCK TRANSFER READ —(EN)—
] [(RsaCk é
roup

Module 1 _(DN)

Control Block BT10:0

Data file N7:500 _(ER)
Use the same method for a BTW. The rung Length 0
must go from false to true for the transfer Continuous NO
to occur.

Example Directional Repeating Block Transfer

Figure 15.9 shows a directional repeating block transfer example.

Figure 15.9
Example Directional Repeating Block Transfer

— BTR
BT10:0 BLOCK TRANSFER READ —(EN)—
1/E Rack 2
EN Group 5
Module 1 _(DN)
Control Block BT10:0
Data file N7:500 _(ER)
Use the same method for a BTW. The block Length 0
transfer will continue as long as the step Continuous NO
is scanned.

021-87700210

NIC SANET

2 g

15-20 Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Example Directional Continuous Block-Transfer

Figure 15.10 shows a directional continuous block transfer example.

Figure 15.10
Example Directional Continuous Block Transfer
— BTR
Precondition BLOCK TRANSFER READ _(EN)_
1t Rack 2
LI Group 5
Module 1 (DN)
Control Block BT10:0
Data file N7:500 _(ER)
Use the same method for a BTW. Scan the rung once Length 0
to start continuous block transfers. The continuous Continuous YES
operation starts on a false-to-true rung transition and
continues, whether or not the rungs are scanned
again. To stop continuous operation, use the Data
Monitor to reset the continuous bit (.CO or bit 11), or
change the Continuous field in the instruction to NO.
BTR
error bit BTR
BT10:0 BT10:0 enable bit
) (v)
ER EN

This rung will reset block transfers and should be placed in logic where rungs are being
scanned for error recovery. Your logic must rescan the block transfers with preconditions

true in order to restart continuous block transfers.

021-87700210

NIC SANET

2 g

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO

15-21

Example Buffering Block Transfer-Data

If you block transfer data repeatedly, buffer the file by examining the
BTR done bit and executing a file-to-file move (or copy) when the
done bit is true. This ensures file integrity of the block transfer read

data file.
— BTR
BT10:0 BLOCK TRANSFER READ —(EN
— /F Rack 2
EN Group 2
BTR Module 1 _(DN)
enable bit Control Block BT10:0
Data File N7:400 _(ER)
Length 4
Continuous NO
— FAL
BT10:0 FILE ARITH/LOGICAL —(EN
] E Control R6:4
DN Length 4
BTR Position 0 —(DN)
done bit Mode ALL
Destination #NT:500 | ER)
Expression #N7:400

www.nicsanat.com

021-87700210

NIC SANET

2 g

15-22 Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

ControlNet /0 Transfer (CIO) Using the CIO instruction, you can perform ladder-initiated
Instruction unscheduled transfers (up to 64 elements) to I/O modules (typically
analog or intelligent) on a ControlNet network. For more information

TRET Vo TRANSFER 35:;— on ControlNet I/O operations, see the ControlNet PLC-5
ConvolBlock €210 L £ep) Programmable Controllers User Manual.
When the input conditions go from false to true, data is transferred

according to the instruction parameters you set when entering the
CIO instruction.

To program a CIO instruction, you must provide the ControlNet
PLC-5 processor with a control block address, which contains the
status and instruction parameters. After you enter the control block
parameters, the programming terminal displays an instruction entry
screen from which you enter instruction parameters stored in the
control block address.

Control Block Address

With ControlNet PLC-5 processors, use a ControlNet transfer (CT)
file type for the control block. For example, CT12:1 is a valid CIO
control block address.

Important: You cannot use indirect addresses for the control block

address in a CIO instruction.

After you enter the control block address for the CIO instruction, the
programming terminal displays an instruction entry screen.

021-87700210

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO

15-23

Using the CIO Instruction

You can use the CIO instruction to transfer up to 64 elements of data
(per CIO instruction) over a ControlNet link. The instruction entry
screen for the CIO instruction lets you configure the following

information (Table 15.1).

Important: The PLC-5 structured text programming software does

not support the CIO instruction.

Table 15.1
CIO Instruction Entry Screen Configuration

If You Want to:

Press this Key:

Change the command type. Toggle among the following:

e 1771 Read selects a block transfer read.

e 1771 Write selects a block transfer write.

e 1794 Fault Action selects the action the module takes
when the adapter faults and the connection is terminated.

* 1794 |dle Action selects the action the module takes when
the connection is idle.

= 1794 Config Data changes the configuration for the 1794
module.

= 1794 Safe State Data changes the value of the safe state
data for the 1794 module.

[F1] - Command Type

Enter a PLC-5 data table address of the ControlNet processor.

[F2] — PLC-5 Address

Enter the size in elements.
Type the number of elements and press [Enter].

e 1 (1794 Fault Action and 1794 Idle Action)
* 1-15 (1794 Config Data and 1794 Safe State Data)
* 0-64 (1771 Read and 1771 Write)

Note: If you enter O for 1771 Read and/or 1771 Write, 64
words are reserved for block transfer.

[F3] - Size in Elements

Enter the destination network address.
Type a number (1-99) and press [Enter].

[F8] — Local Node

Enter the destination slot number.
Type a number and press [Enter].

e 0-7 (1794 command types)
e 0-15 (1771 command types)

Note: The slot number represents the physical slot in the
chassis occupied by the module. To find your slot number,
count from the left I/0 slot starting with 0.

[F9] — Slot Number

021-87700210

15-24

Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Using Status Bits

This Bit:

After entering and accepting the rung containing the CIO instruction,
the data monitor screen for the CIO instruction lets you display the
parameters for the control block of the current CIO instruction. From

the data monitor screen, you can define the following parameters
(Table 15.J).

Table 15.J
CIO Instruction Control Block Parameters

If You Want to: Press this Key:

Toggle the control bit that the cursor is on. You can toggle [F2] - Toggle Bit
among the TO, EW, CO, ER, DN, ST, and EN hits.

Change the size of the block of data to send or receive. [F3] - Size in Elements
Change the address for which the data is displayed. [F5] — Specify Address
Display the data table values for the next file. [F7] — Next File

Display the data table values for the previous file. [F8] — Previous File
Display the data table values for the next element. [F9] — Next Element
Display the data table values for the previous element. [F10] — Previous Element

The CIO instruction uses the following status bits:

Is Set:

Enable .EN (bit 15)

when the rung goes true. The .EN bit is reset when the .DN bit or .ER bit is set.
This bit shows that the instruction is enabled.

Start .ST (bit 14)

when the processor begins executing the CIO instruction. The .ST bit is reset when the
.DN bit or .ER bit is set.

Done .DN (bit 13)

when the last word of the CIO instruction transferred. The .DN bit is reset the next time
the associated rung goes from false to true.

The .DN bit is only active in non-continuous mode.

Error .ER (bit 12)

when the processor detects that the message transfer failed. The .ER bit is reset the next
time the associated rung goes from false to true.

Continue .CO (bit 11)

manually for repeated operation of the CIO instruction after the first scan, independent of
whether the processor continues to scan the rung.

Enable-Waiting .EW (bit 10)

when the processor detects that a message request entered the queue. The processor
resets the .EW bit when the .ST bit is set.

Time Out .TO (bit 08)

through ladder logic to stop processing the message. The processor sets the .ER bit.

ATTENTION: The processor controls status bits .ST
and .EW asynchronously to the program scan. If you
examine these bits in ladder logic, copy the status to a
storage bit whose status is synchronized with the
program scan. Otherwise, timing problems may
invalidate your program with possible damage to

SR CIRUSUIUWAL www.nicsanat.com

021-87700210

Block-Transfer Instructions BTR and BTW ControlNet 1/0 Transfer Instruction CIO 15-25

ATTENTION: For continuous mode to operate
correctly, you must set the .CO bit (either on the
configuration screen or through ladder logic) before you
enable the CIO instruction.

Using the CT Control Block

In addition to the status bits, the CT control block contains these
parameters that the ControlNet PLC-5 processor uses to control
CIO instructions.

Word: CT Control Block: Description:

0 .EN through .TO Status hits
See “Using Status Bits” above.

1 .ERR Error code
This is where the processor stores the error code if a problem occurs during
message transmission.

2 .RLEN Requested length

This is the requested number of elements you wish to transfer with the
message instruction.

3 .DLEN Done length
This is the number of elements the module actually transferred after the instruction
completes execution. This number should match the requested length (unless the
requested length is 0).

4 FILE File number

This number identifies the file number of the file from which the data is written or to
which the data is read. For example, the file number of N12:1 is 12.

5 .ELEM Element number

This number identifies the starting word in the data file address. For example, in
N12:1, the word number is 1.

021-87700210

15-26 Block-Transfer Instructions BTR and BTW ControINet I/0 Transfer Instruction CIO

Notes:

021-87700210

NIC SANAT r‘
AR =

Chapter 1 6

Using the Message Instruction

Message (MSG)
Description:
MSG
SEND/RECEIVE MESSAGE EN
Control Block DN
ER

Message Instruction MSG

The message instruction (MSG) is used to read or write a block of
data to another station on the DH+ link, to an attached Control
Coprocessor, to the VMEDbus using a VME PLC-5 processor, or to
another node on an Ethernet network. The MSG instruction is also
used to create unscheduled messages initiated by one ControlNet
PLC-5 processor and sent to another ControlNet PLC-5 processor and
to allow Enhanced PL.C-5 (other than Ethernet PLC-5) processors to
program and upload/download unsolicited messages over Ethernet
through the PLC-5 Ethernet Interface Module. You program the MSG
instruction in ladder logic.

The MSG instruction over DH+ can communicate with PLC-2%,
PLC-3¥, PLC-5", PLC-5/250 ", and SLC 5/03" and SLC-5/04
processors on local or remote links.

For more information on the operands (and valid data types/values of
each operand) used by the MSG instruction, see Appendix C.

The MSG instruction transfers up to 1000 elements of data (120
words using a Control Coprocessor); the size of each element
depends on the data table section you specify and the type of message
command you use. For example, one binary element contains one
16-bit word and one floating point element contains two 16-bit words.

The MSG instruction transfers data in packets. Each DH+ data packet
can contain up to 120 words. If your message transfer contains more
words than fit in one packet, the transfer requires more than one
packet of transfer data. The more packets of data to transfer, the
longer the transfer takes. Over Ethernet each packet can be up to 709
words, thus making it a more efficient networking option.

021-87700210

16-2

Message Instruction MSG

Entering Parameters

The following table lists which Enhanced PLC-5 processors (series
and revision) you can use with the MSG instruction to transfer data
from/to a PLC-5 processor or to/from an SLC 5/03 or 5/04 processor
in SLC native mode.

Processor

. . Processors:
Series/Revision:

Series A / revision M PLC-5/40, -5/40L, -5/60, -5/60L

Series A / revision J PLC-5/30

Series A / revision H PLC-5/11, -5/20

Series B / revision J PLC-5/40, -5/40L, -5/60, -5/60L

Series C / revision G Enhanced, Ethernet, and VME PLC-5 processors

Series C / revision H ControINet PLC-5

Series D / revision A Enhanced, Ethernet, ControINet, and VME PLC-5 processors

Specify a control block address when you first enter the MSG
instruction. The control block is where all of the information relating
to the message will be stored. After entering the control block, the
programming terminal automatically displays a data entry screen,
from which you enter instruction parameters that are stored at the
control block address. You can also use the data monitor screen for
the MSG instruction to edit selected parameters.

Control Block Address

With Classic PLC-5 processors, use an integer file (N) without the
symbol for the message control block. For example N7:0 is a valid
MSG control block address.

If You Have this Processor: Use this Control Block Address:

Classic PLC-5 an integer file (N) without the # symbol for the message
control block. Example: N7:0

Enhanced PLC-5, Ethernet an integer file (N) or the message (MG) file type to

PLC-5, or VME PLC-5 access the message control block for DH+ transfers.

Example: MG10:0

Using the MG control block, the control block size is
fixed at 56 words. This size is displayed on the screen
in the BLOCK SIZE field. You must use the MG control
block if you are sending messages to an SLC 500
processor using the SLC read and write commands, or
if you are sending message out any port other than
channel 1A.

Ethernet PLC-5, ControlNet a message (MG) file type to access the VMEbus,
PLC-5, VME PLC-5 Ethernet, or ControlNet network

021-87700210

NIC SANET

2 g

Message Instruction MSG

16-3

This Function Key:

You cannot use indirect addresses for the control block address in an
MSG instruction. If you have an MSG instruction created with
version 3.21 or earlier that uses a control block with an indirect
address, you must delete the instruction and re-enter it without an
indirect address.

For the VME PLC-5 processors to do transfers to the VMEbus, the
MSG instruction must be programmed with an MG control block.

For ControlNet PLC-5 processors to perform transfers on the
ControlNet network, the MSG instruction must be programmed with
an MG data type in the control block.

The control block size varies according to the length of the message;
if you communicate with a PLC-2 processor, the control file will be
approximately 11 or 12 words. If you communicate with a PLC-3,
PLC-5 or PLC-5/250 processor, the control file will be approximately
11 to 15 words. This size is displayed on the screen in the BLock
s1zk field.

For Enhanced PLC-5 processors, you can use an integer file
(excluding ControlNet PLC-5 processors) or message (MQ) file type
to access the message control block for DH+ transfers. For example,
MG10:0 is a valid MSG control block address for Enhanced PLC-5
processors. Using the MG file type, the control block size is fixed at
56 words; this size is displayed on the screen in the BLock s1zE field.

For the Ethernet PLC-5 processors, a MSG instruction going through
port 2, the Ethernet port, uses two consecutive message elements (i.e.,
MG10:0 and MG10:1). Your programming software might display a
warning when you select port 2.

MSG Data Entry Screen

After you enter the control block address for a MSG instruction, the
programming software automatically displays a data entry screen for
the MSG instruction using the appropriate data type (integer or
message). Press the function key for the data you want to modify. You
can specify the following MSG parameters from the data

entry screen:

Specifies this Information:

[F1] — Command Type

Whether the MSG instruction performs a read or write operation and to what type of
processor the message is going to.

[F2] — PLC-5 Address

The data file address of the processor containing the message instruction. If the
MSG operation is write, this address is the starting word of the source file. If the
MSG operation is read, this address is the starting word of the destination file.

[F3] - Size in Elements

The number of elements (1-1000) to be transferred.

021-87700210

NIC SANET

2 g

16-4

Message Instruction MSG

This Function Key:

Specifies this Information:

[F4] - Local/Remote

LOCAL: the message is sent to a device on the local DH+ link.
REMOTE: the message is sent through a bridge (DH, DH I, etc.) to another
DH+ link.

If you select REMOTE, the function keys [F5] — Remote Station, [F6] — Link ID, and
[F7] — Remote Link are active.

[F5] — Remote Station

The DH or DH Il address (1-376 octal) of the target station.

PLC-2 and PLC-3 processors require communication adapter modules (1771-KA2
and 1775-KA, respectively) when they operate as stations on data highway. In these
configurations, the remote station address is the address of the communication
adapter module.

[F6] — Link ID

The remote link where the processor you want to communicate with resides. The
default is 0.

[F7] — Remote Link

Toggles through DH, DH I, and other choices for what connects the remote link to
the local DH+.

[F8] — Local Node

The local station address on the DH+ (0-77 octal).

If you communicate with another processor on the local link, this address is the
address of the target station on the local link.

If you communicate with a target station on a remote link, this address is the station
number of the communication adapter module that bridges the data highway.

[F9] — Destination Address

The starting address of the source or destination file in the target processor.

[F10] — Port Number

The channel for message communications. Valid options are: 0, 1A (default), 1B, 2A,
2B, and 3A for the ASCII command.

If you select the ASCII option using the [F1] - Command Type key,
(for use with PLC-5/V40 doing read/writes to the VMEDbus), the
software displays a new screen for you to enter the text for your
ASCII communications. Refer to the PLC-5/VME VMEbus
Programmable Controllers User Manual for the syntax of command
text to do VMEDbus transfers.

For Control Coprocessor data transfers using the MSG instruction,
use the following choices:

e communication command — select PLC-3 word range read or
PLC-3 word range write

* destination data table address — 00 through 31, matches
corresponding read/write handler in coprocessors
application program

e Port number — 3A

021-87700210

NIC SANET

2 g

Message Instruction MSG

16-5

Using the Message Instruction for
Ethernet Communications

The message (MSQG) instruction transfers up to 1000 elements of
data; the size of each element depends on the data table section that
you specify and the type of message command that you use. One
binary element contains one 16-bit word, for example, and one
floating-point element contains two 16-bit words.

The MSG instruction transfers data in packets. Each packet can
contain up to 709 words for Ethernet processors. If your message
transfer contains more words than fit in one packet, the transfer
requires more than one packet of transfer data. The more packets of
data to transfer, the longer the transfer takes.

Entering Parameters

The control block is where all of the information relating to the
message is stored. Ethernet message instructions use two consecutive
MSG elements-the first one contains the message information, the
second one contains the destination address.

Important: Since the Ethernet messages need two consecutive
control blocks, the message control block that you
specify must start on an even number.

ATTENTION: While configuring MSG instructions
for the DH+ and serial links, keep in mind the files used
for Ethernet MSG control blocks.

If you choose a file being used as an Ethernet control
block, the programming software prompts you to
choose whether you want to overwrite the file. If you
choose to overwrite the file, unpredictable machine
operation could occur.

After entering the control block, the programming terminal
automatically displays a data entry screen, from which you enter
instruction parameters that are stored at the control block address.

You must enter a port number of 2 to enable a special screen for
Ethernet transfers.

021-87700210

16-6

Message Instruction MSG

This Field:

Specifies this Information:

Command Type

Whether the MSG instruction performs a read or write operation. The software
toggles between:

e PLC-5 Typed Read

e PLC-5 Typed Write

e PLC-5 Typed Write to SLC
e PLC-5 Typed Read from SLC
e SLC Typed Logical Read
e SLC Typed Logical Write
e PLC-2 Unprotected Read
e PLC-2 Unprotected Write
e PLC-3 Word Range Read
e PLC-3 Word Range Write
e ASCII

PLC-5 Address

The data file address of the processor containing the message instruction. If the
MSG operation is write, this address is the starting word of the source file. If the
MSG operation is read, this address is the starting word of the destination file.

Size in Elements

The number of elements (1-1000) to be transferred.

IP Address

The MSG instruction’s destination node.

« |f the destination is another PLC-5/20E, -5/40E, or -5/80E, the destination must be
a full Internet address

« |f the destination is an INTERCHANGE™ client program, enter the word “CLIENT”
as the destination node. Do not enter an IP address.

Note: You must set [F10] — Port Number to 2 in order to access this function.

Destination Address

The starting address of the source or destination file in the target processor.

Port Number

The channel for message communications. Ethernet communications use channel 2.

Multihop

Select yes if you want to send the MSG instruction to a ControlLogix device. Then use
the Multihop tab to specify the path of the MSG instruction. For more information, see
“Configuring an Ethernet Multihop MSG Instruction” on page 16-9.

The Ethernet PLC-5 processors do not support hostnames as a means
of addressing messages. However, you can use host names with
PLC-5 programming software for connecting to Ethernet PLC-5
processors if a name server is on the network or a host file is
maintained on your workstation.

021-87700210

NIC SANET

2 i

Message Instruction MSG 16-7

Using the Message Instruction for Use the MSG instruction to allow Enhanced PLC-5 processors to
PLC-5 Ethernet Interface Module program and upload/download unsolicited messages (up to 1000
At elements each) over Ethernet through the PLC-5 Ethernet Interface
Communications Module. The size of each element depends on the data table section
that you specify and the type of message command that you use. One
binary element contains one 16-bit word, for example, and one
floating-point element contains two 16-bit words.

To program a MSG instruction, you must provide the PLC-5 Ethernet
Interface Module and the connected Enhanced PLC-5 processor with
a control block address, which contains the status and instruction
parameters. After entering the control block parameters, the
programming terminal displays an instruction entry screen from
where you can enter instruction parameters that are stored in the
control block address.

Entering Parameters

The control block is where all of the information relating to the
message is stored. Ethernet message instructions use two consecutive
MSG elements-the first one contains the message information, the
second one contains the destination address.

Important: Since the Ethernet messages need two consecutive
control blocks, the message control block that you
specify must start on an even number.

After entering the control block, the PLC-5 programming software
automatically displays a data entry screen, from which you enter
instruction parameters that are stored at the control block address.

021-87700210

NIC SRANMF

T

16-8

Message Instruction MSG

This Field:

You must enter a port number of 3A to enable a special screen for
transfers over Ethernet with the PLC-5 Ethernet Interface Module.

Specifies this Information:

Command Type

Whether the MSG instruction performs a read or write operation. The software
toggles between:

e PLC-5 Typed Read

e PLC-5 Typed Write

e PLC-5 Typed Write to SLC
e PLC-5 Typed Read from SLC
e SLC Typed Logical Read
e SLC Typed Logical Write
e PLC-2 Unprotected Read
e PLC-2 Unprotected Write
e PLC-3 Word Range Read
e PLC-3 Word Range Write
e ASCII

PLC-5 Address

The data file address of the processor containing the message instruction. If the MSG
operation is write, this address is the starting word of the source file. If the MSG
operation is read, this address is the starting word of the destination file.

Size in Elements

The number of elements (1-1000) to be transferred.

Host/IP Address

The MSG instruction’s destination node.

«|f the destination is an Enhanced PLC-5 processor, the destination must be a full
Internet address

«|f the destination is an INTERCHANGE client program, enter the word “CLIENT”
as the destination node. Do not enter an IP address.

Note: You must set [F10] — Port Number to 2 in order to access this function.

Destination Address

The starting address of the source or destination file in the target processor.

Port Number

The channel for message communications. The PLC-5 Ethernet Interface Module
communications use channel 3A.

Removal of the PLC-5 Ethernet Interface Module will not change the
format of the MSG instructions defined for the module.

021-87700210

NIC SANET

2 g

Message Instruction MSG

16-9

Configuring an Ethernet Multihop
MSG Instruction

ControlLogix chassis

The series E, revision D and later PLC-5 processors can communicate
over Ethernet with ControlLogix devices or through a ControlLogix
Ethernet (1756-ENET) module to other PLC-5 processors. You need
either an Ethernet PLC-5 processor or any PLC-5 processor with a
series A, revision E 1785-ENET sidecar module. The following
diagram shows an Ethernet PLC-5 processor and the other PLC and
SLC processors it can communicate with using a multihop

MSG instruction.

Ethernet PLC-5 processor
E or PLC-5 processor with 1785-ENET sidecar

AU —|
S o]

Ethernet

LB
MR

g
%
I

I E

SLC 5/05 Processor

o] Il PLC-5 processor with
ntrolNet
DH+| | ControlNe 1785-ENET sidecar

g

s

LB

ControlNet PLC-5 processor
PLC-5 Processor

To communicate through a ControlLogix 1756-ENET module, you
configure the multihop feature of a MSG instruction from the
Ethernet PLC-5 processor (or PLC-5 processor with 1785-ENET
sidecar module) to the target device. You need RSLogix 5
programming software. Enable the multihop option when you specify
the target device. Then use the Multihop tab to specify the path of the
MSG instruction.

If you want to go through the ControlLogix 1756-ENET module and
out the 1756-DHRIO module to the target device, you:

* use Gateway configuration software to configure the
1756-DHRIO module routing table in the ControlLogix system.

* specify a Link ID number on channel properties for channel 2/3A
of the Ethernet PLC-5 processor (or PLC-5 processor with a
1785-ENET sidecar module).

For more information about configuring a PLC-5 channel and
specifying the path of the MSG instruction, see the documentation for
your programming software.

021-87700210

NIC SANET

2 g

16-10

Message Instruction MSG

Using the Message Instruction for
ControlNet Communications

This Field:

Use the MSG instruction to create unscheduled messages (up to 1000
elements each) that are initiated by one ControlNet PLC-5 processor
and sent to another ControlNet PLC-5 processor. For more
information on ControlNet I/O operations, see the ControlNet PLC-5
Programmable Controllers User Manual.

When the input conditions go from false to true, data is transferred
according to the instruction parameters you set when entering the
MSG instruction.

To program a MSG instruction, you must provide the ControlNet
PLC-5 processor with a control block address, which contains the
status and instruction parameters. After entering the control block
parameters, the programming terminal displays an instruction entry
screen from where you can enter instruction parameters that are
stored in the control block address.

Control Block Address

With ControlNet PLC-5 processors, use a message data file (MG) for
the message control block. For example, MG20:50 is a valid MSG
control block address.

You can use the Message (MG) file type and the MSG instruction
to send two commands over ControlNet within the local
ControlNet link:

* PLC-5 Typed Write
* PLC-5 Typed Read

After you enter the control block address for the MSG instruction, the
programming terminal displays an instruction entry screen. Press the
function key for the data you want to modify. You can specify the
following from the instruction entry screen:

Specifies this Information:

Command Type

Change the command type. Toggle between the following:
* PLC-5 Typed Write selects a write operation to a ControlNet PLC-5 processor

e PLC-5 Typed Read selects a read operation from another ControlNet PLC-5
processor

PLC-5 Address

The PLC-5 data table address of the ControlNet processor. If the MSG operation is
write, this address is the starting word of the source file. If the MSG operation is read,
this address is the starting word of the destination file.

Size in Elements

The number of elements (1-1000) to be transferred.

Local Node

The destination node address (1-99).

Destination Address

The starting address of the source or destination file in the target processor.

Port Number

The channel for message communications. The port number must be 2 for ControlNet.

Multihop

Select yes if you want to send the MSG instruction to a ControlLogix device. Then use
the Multihop tab to specify the path of the MSG instruction. For more information, see
“Configuring an ControlNet Multihop MSG Instruction” on page 16-11.

w.nicsanat.com

021-87700210

Message Instruction MSG

16-11

Configuring a ControlNet Multihop
MSG Instruction

ControlLogix chassis

The series F, revision A and later ControlNet PLC-5 processors can
communicate over ControlNet with ControlLogix devices or through
a ControlLogix ControlNet (1756-CNB) module to other PLC-5
processors on other networks. Earlier series ControlNet PLC-5
processors can be updated to support ControlNet-to-ControlNet
network messages and to respond to multihop messsages over a DH+
network. The series F, revision A ControlNet PLC-5 processors add
support for ControlNet-to-other network messages.

The following diagram shows an ControlNet PLC-5 processor and
the other PLC and SLC processors it can communicate with using a
multihop MSG instruction.

)| E ControlNet PLC-5 processor

wi
S o]

ControlNet

__o
T TeE | mm ||

SLC 5/05 Processor

T ControlNet PLC-5 processor
DH+ ControlNet

ControlNet PLC-5 processor

PLC-5 Processor

To communicate through a ControlLogix 1756-CNB module, you
configure the multihop feature of a MSG instruction from the
ControlNet PLC-5 processor to the target device. You need RSLogix
5 programming software. Enable the multihop option when you
specify the target device. Then use the Multihop tab to specify the
path of the MSG instruction.

If you want to go through the ControlLogix 1756-ENET module and
out the 1756-DHRIO module to the target device, you:

* use Gateway configuration software to configure the
1756-DHRIO module routing table in the ControlLogix system.

* specify a Link ID number on channel properties for channel 2/3A
of the Ethernet PLC-5 processor (or PLC-5 processor with a
1785-ENET sidecar module).

For more information about configuring a PLC-5 channel or
specifying the path of the MSG instruction, see the documentation for

your programming software.
021-87700210

NIC SANET

2 g

16-12

Message Instruction MSG

Using Status Bits

This Bit:

The MSG instruction uses the following status bits:

ATTENTION: Do not modify any status bit while the
Instruction is enabled.

Unpredictable machine operation could occur with
possible damage to equipment

and/or injury to personnel.

Important: The bit labels (.EN, .ST, .CO, etc.) can only be used
with the message file type (MG).

Is Set:

Enable .EN (bit 15)

when the rung goes true. This bit shows that the instruction is enabled (that the
instruction is being executed). In non-continuous mode, .EN bit remains set until the
message is completed and the rung goes false. In continuous mode, once .EN hit is set, it
remains set regardless of the rung condition.

Start .ST (bit 14)

when the processor begins executing the MSG instruction. The .ST hit is reset when the
.DN bit or .ER bit is set.

Done .DN (bit 13)

when the last packet of the MSG instruction transferred. The .DN bit is reset the next
time the associated rung goes from false to true. The .DN bit is only active in
non-continuous mode.

Error .ER (bit 12)

when the processor detects that the message transfer failed. The .ER bit is reset the next
time the associated rung goes from false to true.

Continue .CO (bit 11)

manually for repeated operation of the MSG instruction after the first scan, independent
of whether the processor continues to scan the rung. Reset the .CO bit if you want the
rung condition to initiate messages (return to non-continuous mode).

Enable-Waiting .EW (bit 10)

when the processor detects that a message request entered the queue. The processor
resets the .EW bit when the .ST bit is set.

No Response .NR (bit 09)

if the target processor does not respond to the first MSG request. The .NR bit is reset
when the associated rung goes from false to true.

Time Out .TO (bit 08)

if you set the .TO bit through ladder logic, the processor stops processing the message
and sets the .ER bit (timeout error 55). A DH+ message time out in 30-60 seconds. A
ControlNet message will time out in 4 seconds

No Cache .NC
(ControlNet processors only)

if you set the .NC bit, the open connection is closed when the MSG is done. If this bit
remains reset, the connection remains open even when the MSG is complete.

ATTENTION: The processor controls status bits .ST
and .EW asynchronously to the program scan. If you
examine these bits in ladder logic, copy the status to a
storage bit whose status is synchronized with the
program scan. Otherwise, timing problems may
invalidate your program with possible damage to
equipment or injury to personnel.

Important: If the SFC startover and .CO bits are cleared, the .EN,
.ST, .DN, .ER, .EW, and .NR bits are cleared

during prescan.
021-87700210

Message Instruction MSG

16-13

Using the Control Block

In addition to the status bits, the control block contains other
parameters the processor uses to control message instructions.
Table 16.A lists these values.

Table 16.A
Values in the Control Block

Word — Integer

Control Block Message Control Block Description

0 .EN thru .RW Control bits

0 - low byte .ERR Error code

2 - high byte .RLEN Requested length

2 - low byte .DLEN Done length

3 Internal data
Error Code (.ERR)

This is where the processor stores the error code if a problem occurs
during message transmission. Error codes are listed in Table 16.E.

Requested Length (.RLEN)

This is the requested amount of elements the user wishes to transfer
with the message instruction.

Transmitted Length (.DLEN)

This is the number of elements the module actually transferred after
the instruction completes execution. This number should match the
requested length.

021-87700210

16-14

Message Instruction MSG

Entering Parameters Communication Command

The following table describes the communication commands.

If You Want the Instruction to:

Select the Command:

Read data identified by a type code. This command reads data structures without you specifying the
actual word length. For example, if you choose a typed read of the PLC-5 timer data section with a
requested data size of 5 elements, the MSG instruction reads 15 words (5 timer structures of 3
words each).

PLC-5 Typed Read

Write data identified by a type code. This command writes data structures without you specifying the
actual word length.

PLC-5 Typed Write

Read 16-bit words from any area of the PLC-2 data table or PLC-2 compatibility file.

PLC-2 Unprotected Read

Write 16-bit words to any area of the PLC-2 data table or PLC-2 compatibility file.

PLC-2 Unprotected Write

Read data identified by a type code. This command reads data structures without specifying the actual
word length. This command provides additional data verification for communications between a PLC-5
and SLC 500 processor.*

PLC-5 Typed Read from SLC? 3

Write data identified by a type code. This command writes data structures without specifying the actual
word length. This command provides additional data verification for communications between a PLC-5
and SLC 500 processor.t

PLC-5 Typed Write to SLC? 3

Read a range of words, starting at the address specified for the external address in the MSG control file
and reading sequentially the number of words specified for the requested size field in the MSG control
file. The data that is read is stored, starting at the address specified fro the internal address in the MSG
control file. This is used for communicating between a PLC-5 and SLC 500 processor.!

SLC Typed Logical Read®

Write a range of words, starting at the address specified for the internal address in the MSG control file
and writing sequentially the number of words specified for the requested size field in the MSG control file.
The data from the internal address is written, starting at the address specified for the external address in
the MSG control file. This is used for communicating between a PLC-5 and SLC 500 processor.!

SLC Typed Logical Write®

Read a range of words, starting at the address specified for the external address in the MSG control file
and reading sequentially the number of words specified for the requested size field in the MSG control
file. The data that is read is stored, starting at the address specified for the internal address in the MSG
control file.

PLC-3 Word Range Read

Write a range of words, starting at the address specified for the internal address in the MSG control file
and writing sequentially the number of words specified for the requested size field in the MSG control file.
The data from the internal address is written, starting at the address specified for the external address in
the MSG control file.

PLC-3 Word Range Write

IThe PLC-5 is limited to a maximum message of 103 words (206 bytes). The maximum message size for SLC 5/03™ and SLC 5/04™ processors is 103 words

(206 bytes). The maximum message size capability of all other SLC 500 processors is 41 words (82 bytes).
2These commands are valid only with any SLC 5/04 and SLC 5/03 series C and later processors.
3These commands are only valid with processors listed in the table on page 16-2.

You can use the Typed Read and Typed Write commands to transfer
data table sections without counting the actual words per data table

element. You only have to specify the number of elements you want
to transfer. For example, in the data table timer section, one element

contains 3 words, but in the binary data table section, one element

contains one word.

www.nicsanat.com

021-87700210

NIC SANET

2 g

Message Instruction MSG 16-15

External Data Table Addresses

The following table lists the valid external data table addresses.

This Communication Command: To this Device: Requires that You Enter: Example Address:
PLC-5 Typed Read PLC-5/250 the address in double quotes “1IN0:0”
PLC-5 Typed Write PLC-5 the address N7:0
1775-S5 the address in double quotes, “$N7:0”
——— precede with a $ character
1775-SR5
PLC-2 Unprotected Read PLC-2 octal number of 16-hit 025
PLC-2 Unprotected Write PLC-2 word offset
compatibles
PLC-3 Word Range Read PLC-5/250 the address in double quotes “IN7:0”
PLC-3 Word Range Write .
PLC-5 the address in double quotes, “$N7:0”
precede with a $ character
1775-S5 the address in double quotes, “$N7:0”
— precede with a $ character,or N7:0
1775-SR5 just the address (which will
be slightly faster)
1771-DMC the address in double quotes “01”
Control “00’ to “31” to match
Coprocessors C program
SLC Typed Logical Read SLC 500 the address N7:0
SLC Typed Logical Write processors
PLC-5 Typed Read to SLC SLC 5/03 and the address N7:0
PLC-5 Typed Write from SLC 5/04 processors

PLC-2 to PLC-5 Compatibility Files

In order to send a message between a PLC-2 and a PLC-5, you must
use a PLC-2 compatibility file within the PLC-5 processor. This file
number must be the decimal equivalent of the octal address of the
PLC-2. We recommend that the octal address of the PLC-2 be greater
than 10 so that it does not interfere with the default PLC-5 data files.

For example, if a PLC-2 is at station 12, any message it sends to a
PLC-5 defaults to file 10 in the PLC-5 (decimal equivalent to octal
12). Also note that since the PLC-2 addresses is octal, if you have a
PLC-2 address as 024 in a write command, the write actually occurs
in the PLC-5’s word 20 (decimal equivalent to octal 24).

021-87700210

16-16

Message Instruction MSG

Sending SLC Typed Logical Read and Typed Logical
Write Commands

Follow these guidelines when programming SL.C Typed Logical Read
and SLC Typed Logical Write commands:

You must use the MG data type for the MSG control block.

PLC-5 Data Table Address and the Destination address types
should match when the data type is supported by the PLC-5 and
SLC 5/03 and 5/04 processors. If you want to send a data type
that the SLC 5/03 or 5/04 processors do not support, the SLC
processors interpret that data as integer. This table maps the data
types from the PLC-5 processors to the SLC 5/03 and

5/04 processors.

Is Interpreted by the SLC 5/03

This PLC-5 Data Type: and 5/04 Processors as:

Binary (B) Bit
Integer (N) Integer
Output (0) Integer
Input (I) Integer
Status (S) Integer
ASCII (A) ASCII
BCD (D) Integer
SFC status (SC) Integer
String (ST) String
BT control (BT) Integer
ControlNet transfer (CT) Integer
Timer (T) Timer
Counter (C) Counter
Control (R) Control
Float (F) Float
MSG control (MG) Integer
PID control (PD) Integer

To read/write from the SL.C input, output (read only), or status
file, specify an integer PLC-5 Data Table Address and specify the
address of the SL.C input, output, or status file. For example, S:37
for word 37 of the SLC status file. Specify SLC input/output
addresses by logical format, i.e., O:001 references slot 1.

021-87700210

NIC SANET

2 g

Message Instruction MSG

16-17

Monitoring a Message Instruction

* PLC-5 ASCII data is byte data (1/2 word); whereas, an SLC
ASCII data element is one word. Therefore, if you request an
PLC 5 Typed Read of 10 elements, the SLC 500 processor sends
a packet containing 20 bytes (10 words).

* PLC-5 processors allows 1000 elements for most data types
whereas SLC 500 processors only allow 256 elements.

To monitor or edit MSG instruction parameters and status bits after
you enter the MSG instruction, display the data monitor screen for the
MSG instruction and file type you are using.

If You Are Using this File Type: See:
integer (N) Table 16.B
message (MG) Table 16.C

If you are using an integer (N) file type, you can do the following
from the data monitor screen (Table 16.B):

Table 16.B
Data Monitor Screen for the MSG Instruction — N File Type

If You Want to: Press this Key:

specify the number of elements (1-1000) you [F3} — Size in Elements
want to read from or write to the network station

set and reset status hits [F9] — Toggle Bit

If you are using an message (MQ) file type, you can do the following
from the data monitor screen (Table 16.C):

Table 16.C
Data Monitor Screen for the MSG Instruction — MG File Type

If You Want to: Press this Key:

Toggle the control bit that the cursor is on. [F2] - Toggle Bit

You can toggle among the TO, NR, EW, CO, ER, DN, ST, and

EN bits

Change the size of the block of data to send or receive. [F3] - Size in Elements
Change the address for which the data is displayed. [F5] — Specify Address
Display the data table values for the next file. [F7] — Next File

Display the data table values for the previous file. [F8] — Previous File
Display the data table values for the next element. [F9] — Next Element
Display the data table values for the previous element. [F10] — Previous Element

021-87700210

NIC SANET

2 g

16-18

Message Instruction MSG

Selecting Continuous Operation

Continuous mode lets you use multiple message transfers by
programming only one MSG instruction (with no input conditions on
the rung). Once the continuous message transfer starts, the transfer is
continuously executed, independent of whether the processor
continues to scan the associated rung and independent of the rung
condition. To enable continuous operation, set the .CO bit.

ATTENTION: For continuous mode to operate
correctly, you must set the .CO bit (either on the
configuration screen or through ladder logic) before you
enable the MSG instruction.

Continuous mode works as follows (Figure 16.1):

1.

When the rung that contains the MSG instruction goes true, the
processor initiating the MSG instruction sets the .EN bit. The
processor also resets the .ER and .DN bits.

The processor then queues the message request. When the
message request enters the queue, the processor sets the .EW bit.

When the processor starts to process the message request, the
processor sets the .ST bit. The next time the processor receives
network control, the processor transmits the message.

If an error occurs, the processor sets the .ER bit and stores an
error code in the lower byte of word 0 of the control block for
Classic PLC-5 processors and word 1 of the control block for
Enhanced PLC-5 processors.

Important: Figure 16.1 is appropriate for Enhanced PLC-5

processors only. You can reset Classic PLC-5
processors by toggling the error or enable bits.

021-87700210

Message Instruction MSG 16-19

Figure 16.1
Timing Diagram for Status Bits in Continuous MSG Instructions

EN [l I_
EW [I

ST

Co [

DN | [| ‘I

ER I | |

Rung true Data sentby | MSG begins MSG Rung false Rung true

instruction | transmission transmission

and received | on network completes
in the queue |
|
| these events are asynchronous to ladder program scan

@ When the MSG transmission completes, the cycle starts over here without rung transitions

A continuous message transfer continues as long as the processor
stays in Run or Test mode. If you switch to Program mode or the
processor faults, the message transfer stops and will not start again
until the processor scans the rung that contains the MSG instruction.

To stop continuous operation, reset the .CO bit.

Earlier PLC-5 processors, prior to series E, reset the .EN bit of a
continuous MSG whenever the rung is scanned false and the .DN or
.ER bit is set. Series E and later processors leave the .EN bit set when
the rung is false and the .DN bit is set. This indicates the true state of
the MSG instruction, which is still operating. However, if the rung is
false and the .ER bit is set, the .EN bit is reset. This lets you restart an
errored continuous MSG instruction by toggling the state of the rung.

Selecting Non-Continuous Non-continuous mode performs the message transfer one time for

Operation each false-to-true transition of the rung that contains the MSG
instruction. Non-continuous operation occurs as long as the .CO bit
remains reset. Use non-continuous mode when you want to control
when the message transfer occurs or the number of times the message
transfer occurs.

Non-continuous mode works as follows (Figure 16.2):

1. When the rung that contains the MSG instruction goes true, the
processor initiating the MSG instruction sets the .EN bit. The
processor also resets the .DN and .ER bits.

2. The processor then queues the messace roguedt Whep the
nicsanat.com i

sage request enters the queue, ek B S L L
021-87700210
NIC SEANAT

2 g

16-20 Message Instruction MSG

3. When the processor starts to process the message request, the
processor sets the .ST bit. The next time the processor receives
network control, the processor transmits the message.

4. Ifno errors occur during transmission, the processor sets the .DN
bit and resets the .ST bit after the last packet in the first execution
of'the MSG instruction transfers. If an error occurs, the processor
sets the .ER bit, resets the .ST bit, and stores an error code in the
lower byte of word 0 of the control block for Classic PLC-5 and
word 1 of the control block for Enhanced PLC-5 processors.

5. The next time the rung goes false, the processor resets the .EN
bit. Then when the associated rung goes true again, the message
transfer cycle starts again.

Figure 16.2

Timing Diagram for Status Bits in Non-Continuous MSG Instructions

EN | | -
EW | | [
ST J |
co
DN | | |
ER 000000] [I
| L L |
Rung true Data sent by MSG begins MSG Rung false Rung true
instruction transmission transmission:
and received ! on network completes
in the queue | !
| __these events are asynchronous to ladder program scan _
MSG Timing The time required for one PLC-5 processor to send or receive a

message to/from another processor on the DH+ link depends on the
number of:

* stations on the DH+ link
* messages transmitted from active stations
* bytes of data of all transmitted messages

* message requests already in the queue

Timing starts with setting the enable bit and ends with setting the
done bit in the ladder program of the station initiating the message.
The order of operation is shown in Table 16.D.

021-87700210

NIC SANET

2 g

Message Instruction MSG

16-21

Table 16.D

Message Instruction Operation

Receiving MSG
(Station A reading/receiving from Station B)

Sending MSG
(Station A writing/sending to Station B)

station A enables the message instruction in the
ladder program

station A enables the message instruction in the
ladder program

station A obtains the token and transmits the read
command (station B acknowledges immediately)

station A obtains the token and transmits data
(station B acknowledges immediately)

station B obtains the token and transmits
requested data

station B stores the data in memory

station A receives the data and
acknowledges immediately

station B obtains the token to respond that the
write is complete

station A sets the done bit when it receives
a response

station A sets the done bit

You can estimate the time (in milliseconds) for transmitting one
packet over DH+ using the following formulas:

Processor Type: Formula:

Classic PLC-5 Message time = TP + TT + OH + P + 8 (number of messages)

Enhanced PLC-5 Message time = TP + TT + OH + 8 (number of messages)

where:
TP = token pass = (1.5) (I + number of stations on DH+ link)
TT= transmission time = (0.28) (number of data words)
Number of data words in all transmitted messages
for one token pass around the DH+ link.
ou= DH+ overhead = 20ms
p= longest program scan for any processor on the DH+ link

(application value in milliseconds)

See the PLC-5VMEDbus Programmable Controllers User Manual and
the Ethernet PLC-5 Programmable Controllers manual for
performance numbers and benchmarks.

021-87700210

NIC SANET

2 g

16-22

Message Instruction MSG

Error Codes

Code:

When the processor detects an error during the transfer of message
data, the processor sets the .ER bit and enters an error code that you
can monitor from your programming terminal. If the message is
non-continuous, the processor sets the .ER bit the first time the
processor scans the MSG instruction.

Table 16.E

Errors Detected By the Processor

Enhanced PLC-51 Classic PLC-52

MG data type N data type Ethernet Only Description (Displayed on the Data Monitor screen):

0037 55 0037 message timed out in local processor

0083 131 0083 processor is disconnected

0089 137 0089 message buffer is full
If the MSG is going out channel O, there are not enough
internal buffers available. Decrease the number of MSG
instructions to this port.
Otherwise, the destination node sent back a MSG indicating
that its buffers are full. Decrease the number of MSG
instructions going to the destination node.

0092 146 0092 no response (regardless of station type)

00D3 211 00D3 you formatted the control block incorrectly

00D5 213 00D5 incorrect address for the local data table

0200 2 link layer timed out or received a NAK

0300 3 duplicate token holder detected by link layer

0400 4 local port is disconnected

0500 5 application layer timed out waiting for a response

0600 6 duplicate node detected

0700 7 station is off line

0800 8 hardware fault

1000 129 1000 illegal command from local processor

2000 130 2000 communication module not working

3000 131 remote node is missing, disconnected, or shut down

4000 132 4000 processor connected but faulted (hardware)

5000 133 5000 you used the wrong station number

6000 134 6000 requested function is not available

7000 135 7000 processor is in program node

IHexadecimal — word 1 of the control block

2Decimal — low byte of word 0 of the control block

w.nicsanat.com

021-87700210

Message Instruction MSG 16-23

Code:
Enhanced PLC-5' Classic PLC-57
MG data type N data type Ethernet Only Description (Displayed on the Data Monitor screen):
8000 136 8000 processor’s compatibility file does not exist
9000 137 9000 remote node cannot buffer command
B00O 139 B00O processor is downloading so it is inaccessible
F001 231 FoO1 processor incorrectly converted the address
F002 232 F002 incomplete address
FO03 233 F003 incorrect address
F006 236 F006 addressed file does not exist in target processor
FOO7 237 Fo07 destination file is too small for number of words requested
FOOA 240 FOOA target processor cannot put requested information
in packets
FOOB 241 FooB privilege error, access denied
FOOC 242 FooC requested function is not available
FOOD 243 FOOD request is redundant
FO11 247 FO11 data type requested does not match data available
F012 248 FO12 incorrect command parameters
0010° 0010 no IP address configured for the network
00113 0011 already at maximum number of connections
00123 0012 invalid Internet address or host name
0013° 0013 no such host
00143 0014 cannot communicate with the name server
0015° 0015 connection not completed before user-specified timeout
0016° 0016 connection timed out by the network
00178 0017 connection refused by destination host
0018° 0018 connection was broken
0019° 0019 reply not received before user-specified timeout
001A3 001A no network buffer space available
FO1A file owner active — the file is being used
FO1B program owner active — someone is downloading, online
editing, or set the program owner with APS in the WHO
Active screen

Hexadecimal — word 1 of the control block
2Decimal — low byte of word 0 of the control block
3Errors detected by a Enhanced PLC-5 processor attached to a PLC-5 Ethernet Interface Module only.

www.nicsanat.com

16-24

Message Instruction MSG

Table 16.F

Errors Detected By the VME Processor

PLC-5/40V (hexadecimal —
word 1 of the control block)

Description (Displayed on the Data Monitor
screen):

0000

success

0001

invalid ASCIl message format

0002

invalid file type

0003

invalid file number

0004

invalid file element

0005

invalid VME address

0006

invalid VME transfer width

0007

invalid number of elements requested for transfer

0008

invalid VME interrupt level

0009

invalid VME interrupt status-id value

000A

VMEbus transfer error (bus error)

000B

unable to assert requested interrupt (already pending)

0ooc

raw data transfer setup error

000D

raw data transfer crash (PLC switched out of run mode)

000E

unknown message type (message type not ASCII)

021-87700210

NIC SANET

2 g

Chapter 1 7

ASCII Instructions ABL, ACB, ACI, ACN,
AEX, AIC, AHL, ARD, ARL, ASC, ASR,
AWA, AWT

Using ASCII Instructions The ASCII instructions read, write, compare and convert ASCII
Enhanced PLC-5 Processors Only strings. These instructions are only supported by Enhanced PLC-5
processors. Table 17.A lists the available ASCII instructions.

Table 17.A
Available ASCII Instructions

If You Want to: Use this Instruction: ~ On Page:
See how many characters are in the buffer, upto ABL 17-4
and including the end of line character

See how many total characters are in the buffer ACB 17-5
Convert a string to an integer value ACI 17-6
Concatenate two strings into one ACN 17-7
Extract a portion of a string to create a new string ~ AEX 17-7
Configure your modem handshake lines AHL 17-8
Convert an integer value to a string AIC 17-9
Read characters from the buffer and put into a ARD 17-10
string

Read one line of characters from the buffer and ARL 17-12

put into a string

Search a string for another string ASC 17-14
Compare two strings ASR 17-15
Write a string with user-configured characters AWA 17-15
appended

Write a string AWT 17-17

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see
Appendix C.

021-87700210

17-2

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

There are two types of ASCII instructions:

Type of ASCII Instruction: Description:

ASCII port control

read, write, set/reset handshake lines,
examine the length of the buffer (ARD,
ARL, AWT, AWA, AHL, ACB, ABL)

ASCII string

manipulate string data, such as
compare, search, extract, concatenate,
convert to/from integer (ASR, ASC, AEX,
ACN, ACI, AIC)

ASCII instructions are dependent upon one another. For example, if
you have an ARD (ASCII read instruction) and then an AWT (ASCII
write), the done bit on the ARD must be set before the AWT can
begin executing (even if the AWT was enabled while the processor
was executing the ARD). A second ASCII instruction cannot begin
until the first has completed. However, the processor does not wait
for an ASCII instruction to complete before continuing to execute
your ladder program (non-ASCII instructions).

Using Status Bits

You can examine status bits in the ladder program to examine some
event. The processor changes the states of status bits as the processor
executes the instruction. You address the status bits by mnemonic (or
bit number) in the control element address.

The ASCII instructions use the length (.LEN) and position (.POS)
fields in some instructions as well as the following status bits:

Description: Explanation of Status Bit:

Found.FD (08) Reserved

Unload.UL (10) This hit may be used by the user to cancel an ASCII read or
write in progress. The time out may occur immediately or up to 6
seconds later.

Error.ER (11) The instruction did not complete successfully.

Note: If this bit is set, the .EN bit is cleared and the .DN bit is set
during prescan.

Synchronous Done.EM (12)

The bit is set on the first scan of the instruction after it is completed.

Asynchronous Done.DN (13)

The bit is set immediately upon successful completion of the
instruction, asynchronous to program scan.

Note: If this bit is set , the .EN hit is cleared and the .DN bit is set
during prescan.

Queue.EU (14)

The bit is set when the instruction is successfully queued.

Enable.EN (15)

The bit is set when the rung goes true and is reset after completion
of the instruction and the rung goes false.

Note: If this bit is set and the .DN and .ER bits are cleared, the
control word is cleared dyrigg prescan

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-3

Using the Control Block

In addition to the status bits, the control block contains other
parameters the processor uses to control ASCII transfer instructions.
Table 17.B lists these values.

Table 17.B
Values in the Control Word

Word — Integer

Control Block ASCII Control Block Description

0 .EN, .DN, etc Status Bits

1 .LEN Word Length

2 .POS Character Position

Length (.LEN)

This is the number of characters the operation is to be performed on.

Position (.POS)

This is the current character number which the operation
has executed.

Using Strings

You can address string lengths by adding a .LEN to any string address
(for example, ST17:1.LEN).

String lengths must be between 0 and 82 bytes. In general, lengths
that are outside of this range cause the processor to set a minor fault
(S:17/8) and the instruction is not executed.

Important: You configure append or end-of-line characters on the
Channel Configuration screen. The default append
characters are carriage return and line feed; the default
end-of-line (termination) character is carriage return.
For more information, see your software user manual.

021-87700210

17-4

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

Test Buffer for Line (ABL)

Description:

ABL ey
EN
ASCII TEST FOR LINE _()_

Channel —(DN)

Control

Characters —(ER)

Use the ABL instruction to see how many characters are in the buffer,
up to and including the end-of-line characters (termination). On a
false-to-true transition, the system reports the number of characters in
the Position field, and sets the done bit. The serial port must be in
User mode.

Entering Parameters

To use the ABL instruction, you must supply this information:

Parameter: Definition:

Channel the number of the RS-232 port. (The only valid value is 0).

Control the address of a control file element used for the control
status bits.

Characters the number of characters in the buffer (including the

end-of-line/termination characters) that the processor finds
(0-256). This field is display only.

Example:
| :012 — ABL WeN
| 1t ASCII TEST FOR LINE
10 Channel 0 |—(bN
If input word 12, bit 10 is set, the processor Control R6:32 _()
performs an ABL operation for channel 0. '
Characters —(ER)

When the rung goes from false to true, the control element enable bit
(.EN) is set. The instruction is put in the ASCII instruction queue, the
.EU bit is set and program scan continues. The instruction is then
executed parallel to program scan.

The processor determines the number of characters (up to and
including the end-of-line/termination characters) and puts this value
in the position field. The done bit is then set. If a zero appears in the
position field, no end-of-line/termination characters were found. The
.FD bit is set if the position field was set to a non-zero value.

When the program scans the instruction and finds the .DN bit set, the
processor then sets the .EM bit. The .EM bit acts as a secondary done
bit corresponding to the program scan.

The error bit (.ER) is set during the execution of the instruction if:
* the instruction is aborted — serial port not in User mode

» the instruction is aborted due to processor mode change

021-87700210

NIC SANET

2 g

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-5

Number of Characters in Buffer
(ACB)

Description:

ACE —
ASCIl CHARS IN BUFFER _(EN)_
Channel

DN
Control _()

Characters —(ER)

Use the ACB instruction to see how many total characters are in the
buffer. On a false-to-true transition, the system determines the total
number of characters and reports it in the Characters field. The serial
port must be in User mode.

Entering Parameters

To use the ACB instruction, you must provide the processor the
following information:

Parameter: Definition:

Channel the number of the RS-232 port (The only valid value in this field is 0).
Control the address of a control file element used for control status bits.
Characters the number of the characters in the buffer that the processor finds

(0-256). This field is display only.

Example:
1:012 — ACB
f ASCII CHARS IN BUFFER _(EN
10 Channel 0 | (on)
If input word 12, bit 10 is set, the processor Control R6:32
performs an ACB operation for channel 0. Characters _()
ER

When the rung goes from false to true, the control element enable bit
(.EN) is set. When the instruction is put in the ASCII instruction
queue, the .EU bit is set and program scan continues. The instruction
is then executed parallel to program scan.

The processor determines the number of characters in the buffer and
puts this value in the position field. The done bit is then set. If a zero
appears in the position field, no characters were found. The .FD bit is
set if the position field was set to a non-zero value.

When the program scans the instruction and finds the .DN bit set, the
processor then sets the .EM bit. The .EM bit acts as a secondary done
bit corresponding to the program scan.

The error bit (.ER) is set during the execution of the instruction if:
* the instruction is aborted — serial port not in User mode

* the instruction is aborted due to processor mode change

021-87700210

17-6

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

ASCII String to Integer (ACI)

Description:

ACI
STRING TO INTEGER CONVERSION
Source

Destination

Example:

ST38:90 to an integer and store the result in N7:123.

Use the ACI instruction to convert an ASCII string to an integer value
between —32,768 and 32,767.

The processor searches the source (file type ST) for the first character
that is between 0 and 9. All numeric characters are extracted until a
non-numeric character or the end of the string is reached. Commas
and signs (—, +) are allowed in the string.

The extracted numeric string is then converted to an integer between
—32,768 and 32,767.

If no numeric characters are found, no action is taken. Also, if the
string has an invalid length (less than zero or greater than 82), the
fault bit is set (S:17/8) and the instruction is not executed.

This instruction also sets the arithmetic flags (found in word 0, bits
0-3 in the processor status file S):

Bit: Description: Indicating:

S:0/0 Carry (C) the carry was generated while converting the
string to an integer

S:0/1 Overflow (V) the integer value was outside of the valid range

S:0/2 Zero (Z) the integer value is zero
S:0/3 Sign (S) the integer value is negative
1:012 — ACI
f STRING TO INTEGER
10 Source ST38:90
) o o Destination N7:123
If input word 12, bit 10 is set, convert the string in 75

021-87700210

NIC SANAT r‘
AR =

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-7

ASCII String Concatenate (ACN)

Description: The ACN instruction appends Source B to the end of Source A and
stores the result in the Destination.

ACN

STRING CONCATENATE If the result is longer than 82 characters, only the first 82 are written

Source A to the destination file and the error bit (S:17/8) is set. Also, if the

Z‘;:{;‘;:on length of either string is invalid (less than zero or greater than 82), the
fault bit is set and the string at the destination address is not changed.

Example:
1:.012 — ACN
E STRING CONCATENATE
10 Source A ST37:42
If input word 12, bit 10 is set, concatenate the string Source B ST38:91
in ST37:42 with the string in ST38:91 and store the .)
result in ST52:76 Destination ST52:76

ASCII String Extract (AEX)

Description: Use the AEX instruction to create a new string by taking a portion of

AEx an existing string.

STRING EXTRACT .
Source Entering Parameters

Index
gggﬁgﬁon To use the AEX instruction, you must provide the processor the
following information

Parameter: Definition:

Source the existing string.

Index the starting position (from 1 to 82) of the portion of the string you want to
extract. (An index of 1 indicates the left-most character of the string.)

Number the number of characters (from 0 to 82) you want to extract, starting at
the indexed position. If the Index plus the Number is greater than the total
characters in the source string, the destination string will be the
characters from the index to the end of the source string. If you enter 0
for the number, the destination string length is set to zero.

Destination the string element (ST) where you want the extracted string stored.

Example:
1:012 — AEX
1 F STRING EXTRACT
10 Source ST38:40
If input word 12, bit 10 is set, extract 10 characters Index 42
starting at the 42nd character of ST38:40 and store Number 10
the result in ST52:75. Destination ST52:75

021-87700210

NIC SANAT r‘
R S

17-8

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

ASCII Set or Reset Handshake

Lines (AHL)

Description:

AHL

ASCII HANDSHAKE LINE
Channel

AND Mask

OR Mask

Control

Channel Status

(o)~
()
(=)

The following conditions cause the processor to set the fault
bit (S:17/8):

e invalid string length or string length of zero
e index or number values outside of range

* index value greater than the length of the source string

The destination string will not change in any of the above instances.

Use the AHL instruction to set or reset the RS-232 DTR and RTS
handshake control lines for your modem. On a false-to-true transition,
the system uses the two masks to determine whether to set or reset the
DTR and RTS lines, or leave them unchanged.

Important: Before you use this instruction make sure that you do
not conflict with the automatic control lines on
your modem.

Entering Parameters

To use the AHL instruction, you must provide this information:

Parameter: Definition:

Channel the number of the RS-232 port that you want to use. Currently, only
channel 0 can be set or reset.

AND Mask the mask to reset the DTR and RTS control lines. Bit O corresponds
to the DTR line and bit 1 corresponds to the RTS line. A 1 at the
mask bit causes the line to be reset; a 0 leaves the line unchanged.

OR Mask the mask to set the DTR and RTS control lines. Bit 0 corresponds to
the DTR line and bit 1 corresponds to the RTS line. A 1 at the mask
hit causes the line to be set; a 0 leaves the line unchanged.

Control the address of the result control structure in the control area of
memory for the result.

Channel Status displays the current status (0000 to FFFF) of the handshake lines
for the channel specified above. This field is display only; convert
the hexadecimal status to binary and refer to the table below:

Bit 1 0

Line RTS DTR

021-87700210

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-9
Example: (Reset DTR and RTS Lines)
1:012 — AHL
; ASCII HANDSHAKE LINES —(EN
10 Channel 0
AND Mask 0003 _(DN)
OR Mask 0000 -
If input word 12, bit 10 is set, bit 0 and bit 1 of the AND Control Re:23 [/)
mask is set to RESET (OFF) the DTR and RTS lines. Channel Status
Channel status will display a 000D.
Example: (Set DTR and RTS Lines)
1:012 — AHL
E ASCII HANDSHAKE LINES _(EN
11 Channel 0
AND Mask 0000 _(ON)
OR Mask 0003
Control re22[(ER)
If input word 12, bit 11 is set, bit 0 and bit 1 of the OR
mask is set to SET (ON) the DTR and RTS lines. Channel Status

Channel status will display a 001F.

ASCII Integer to String (AIC)

The error bit (.ER) is set during the execution of the instruction if the
instruction is aborted due to processor mode change.

ST38:42

867

Description: Use the AIC instruction to convert an integer value (between —32,768
A and 32,767) to an ASCII string. The source can be a constant or an
INTEGER TO STRING inte gcer address.
Source
Destination
Example:
[:012 — AIC
] E INTEGER TO STRING
10 Source
If input word 12, bit 10 is set, convert the value Destination

867

to a string and store the result in ST38:42.

021-87700210

NIC SANET

2 g

17-10

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

ASCII Read Characters (ARD)

ARD

ASCII READ
Channel
Destination
Control

String Length
Characters Read

Description:

o)
o)
=)

Use the ARD instruction to read characters from the buffer and store
them in a string. To repeat the operation, the rung must go from false
to true. The serial port must be in User mode.

Entering Parameters

To use the ARD instruction, provide the following information:

Parameter: Definition:

Channel the number of the RS-232 port. (The only valid value is 0).
Control the control file element used for the control status bits.
Destination the string element where you want the characters stored.
String Length the number of characters you want to read from the buffer. The

maximum is 82 characters. If you specify a length larger than 82,
only 82 characters will be read. (If you specify 0, the string length
defaults to 82.)

CharactersRead the number of characters that the processor moved from the buffer

to the string (0 to 82). This field is display only.

Example:
— ARD
1:012
L ASCII READ —(EN

10 Channel 0
Destination ST52:76 —(DN)

If input word 12, bit 10 is set, read 50 characters Control R6:23

from the buffer and move them to ST52:76. String Length 50 _(ER)
Characters Read

When the rung goes from false to true, the control element enable bit
(.EN) is set. The instruction is put in the ASCII instruction queue, the
.EU bit is set and program scan continues. The instruction is then
executed parallel to program scan.

Once the requested number of characters are in the buffer, the
characters are moved to the destination string. The number of
characters moved is put in the position word of the control element
and the done bit is set.

When the program scans the instruction and finds the .DN bit set, the
processor then sets the .EM bit. The .EM bit acts as a secondary done
bit corresponding to the program scan.

You can use the .UL bit to terminate an ARD instruction before it

completes (for example, you may want to terminate the instruction if
you know that the ASCII device connected to the port is not sending
data, or if the connection breaks aft]] g i

Set the .UL bit in the control structiiukddd Lt).
NIC SANRT

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-11

Important: When you set the .UL bit, the instruction does not
terminate immediately; it may take several seconds.

If an ARD instruction starts executing with the .UL bit already set and
there are no characters in the buffer, the instruction terminates. If an
ARD instruction starts executing with the .UL bit already set and
there are characters in the buffer, the instruction proceeds to

normal completion.

The error bit (.ER) is set during the execution of the instruction if:
» the instruction is aborted — serial port not in User mode

» the instruction is aborted due to processor mode change

* when using a modem, the modem is disconnected

Figure 17.1
Example ARD Timing Diagram

Enable Bit (EN) OFF

Rung Condition ~ ON
OFF

|

\

|

|

Queue Bit (EU) ON
OFF

Done Bit

\

\
Error Bit ON
(DNor.ER) OFF

\

\

Synchronous Done Bit (.EM) ON
OFF

- rung goes true
- instruction successfully queued
- instruction execution complete

AR wWN -

- rung goes false

W —
~ — —

[3 2 [
-

IS ; I

- instruction scanned for the first time after execution is complete

021-87700210

17-12

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

ASCII Read Line (ARL)

ARL
ASCII READ LINE
Channel
Destination
Control

String Length
Characters Read

Description:

wone He-

o
(=)

Use the ARL instruction to read characters from the buffer up to and
including the end-of-line (termination) characters and store them in a
string. The end-of-line characters are specified on the Channel
Configuration screen (the default is a carriage return). For more
information on channel configuration, see your software user manual.
The serial port must be in User mode.

Entering Parameters

To use the ARL instruction, you must provide this information:

Parameter: Definition:

Channel the number of the RS-232 port. (The only valid value is 0).

Control the address of the control file element used for the control status bits.
Destination the string element where you want the string stored.

String Length the number of characters (maximum 82) you want to read from the

buffer. If the processor finds the end-of-line characters before
reading the number of characters you specified, only those
characters read and the end-of-line are moved to the destination.

Characters the number of characters that the processor moved from the buffer
Read to the string (0 to 82). This field is display only.
Example:
— ARL
1:012
i ASCII READ LINE —(EN
10 Channel 0
Destination ST52:72 —(DN)
If input word 12, bit 10 is set, read 18 characters Control R6:23
(or until end-of-line) from the buffer and move String Length 18 | (&R)
them to ST52:72. Characters Read

When the rung goes from false to true, the control element enable bit
(.EN) is set. The instruction is put in the ASCII instruction queue, the
.EU bit is set and program scan continues. The instruction is then
executed parallel to program scan.

Once the requested number of characters (or the end-of-line
characters) are in the buffer, all characters (including the end-of-line
characters) are moved to the destination string. The number of
characters moved is stored in the position word of the control element
and the done bit is set.

When the program scans the instruction and finds the .DN bit set, the
processor then sets the .EM bit. The .EM bit acts as a secondary done
bit corresponding to the program scan.

021-87700210

NIC SANET

2 g

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-13

g wWwN -

You can use the .UL bit to terminate an ARL instruction before it
completes (for example, you may want to terminate the instruction if
you know that the ASCII device connected to the port is not sending
data, or if the connection breaks after the instruction starts executing).
Set the .UL bit in the control structure (the .ER bit is then set).

Important: When you set the .UL bit, the instruction does not
terminate immediately; it may take several seconds.

If an ARL instruction starts executing with the .UL bit already set and
there are no characters in the buffer, the instruction terminates. If an
ARL instruction starts executing with the .UL bit already set and
there are characters in the buffer, the instruction proceeds to

normal completion.

The error bit (.ER) is set during the execution of the instruction if the
channel is in system mode (or switches to system mode), the
processor switches to program/test mode or if the modem is lost
(when using modem control).

Figure 17.2
Example ARL Timing Diagram

Rung Condition ~ ON
OFF

\
\
Enable Bit (EN) ON |
|
\

|
\
\
OFF } I
\
|
Queue Bit (.EV) ON ‘
OFF —1
| L | \ \ |
. | I L | o
Done Bit |
Error Bit oN ‘
(.DN or. ER) OFF
|] | \ \ I
I L | \ \ I
. o | || | | |
Empty Bit (EM) OFF | | | ‘ |
I F | \ | | |
3 4 5 1 5 2 3 4

- rung goes true 12
- instruction successfully queued

- instruction execution complete

- instruction scanned for the first time after execution is complete
- rung goes false

021-87700210

17-14

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

ASCII String Search (ASC)

Description:

ASC
STRING SEARCH

Source
Index
Search
Result

Use the ASC instruction to search an existing string (search string)
for an occurrence of the source string.

Entering Parameters

To use the ASC instruction, you must provide this information:

Parameter: Definition:

Search the string you want to examine.

Source the string you want to find when examining the search string.

Index the starting position (from 1 to 82) of the portion of the search string you
want to search. An index of 1 indicates the left-most character.

Result an integer address where the processor stores the position of the search
string where the source string begins. If no match is found, 0 is stored in
the result.

Example:
1:012 — ASC
E STRING SEARCH
1o Source $T38:40
Index 35
Search ST52:80
If input word 12, bit 10 is set, search the string in ST52:80 Result N10:0

starring at the 35th character, for the string found in

ST38:40. In this example, the result is stored in N10:0.

The following conditions cause the processor to set the fault
bit (S:17/8):

* invalid string length or string length of zero
* index values outside of range

* index value greater than the length of the source string

The result is set to zero in any of the above instances.

021-87700210

NIC SANAT r‘
AR =

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-15

ASCII String Compare (ASR)

Description: Use the ASR instruction to compare two ASCII strings. The system
looks for a match in length and upper/lower case. If the two strings
are identical, the rung is true; if there are any differences, the rung

is false.
Example:
ASR 0:013
ASCII STRING COMPARE (
Source A ST37:42 01
Source B ST38:90
If the string in ST37:42 is identical to the

string in ST38:90, set output bit 0:013/01.

An invalid string length causes the processor to set the fault bit
(S:17/8), and the rung is false.

ASCII Write with Append (AWA)

Description: Use the AWA instruction to write characters from the source to a

A display device. This append instruction adds 1 or 2 characters (which

ASCII WRITE APPEND (=)~ you configure in the Channel Configuration). The default is a carriage
Shannel (o) return and line feed appended to the end of the string. You can use
gg%olmngm this instruction with the serial port in User or System mode.

Characters Sent —(ER)

Entering Parameters

To use the AWA instruction, you must provide this information:

Parameter: Definition:

Channel the number of the RS-232 port. (The only valid value is 0).

Source the string you want to write.

Control the address of the control file element used for the control status bits.
String Length the maximum number of characters you want to write from the

source string (0 to 82). If you enter 0, the entire string will be written.

Characters Sent the number of characters that the processor sent to the display area
(0 to 82). Only after the entire string is sent is this field updated
(no running total for each character sent is stored). This field is
display only.

021-87700210

NIC SANAT r‘
AR =

17-16

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

Example:
[:012 — AWA _(EN
ASCII WRITE APPEND
10 Channel 0

Source stara2 [(ON)
Control R6:23

If input word 12, it 10 is set, read 25 characters from String Length 25 HER)

ST37:42 and write it to the display device. Then write Characters Sent

a carriage return and line feed (default).

When the rung goes from false to true, the control element enable bit
(.EN) is set. The instruction is put in the ASCII instruction queue, the
.EU bit is set and program scan continues. The instruction is then
executed parallel to program scan.

Twenty-five characters from the start of string ST37:42 are sent to the
display device and then user-configured append characters are sent.
The done bit is set and a value of 27 is sent to the position word.

When the program scans the instruction and finds the .DN bit set, the
processor then sets the .EM bit to act as a secondary done bit
corresponding to the program scan.

You can use the .UL bit to terminate an AWA instruction before it
completes (for example, you may want to terminate the instruction if
you know that the ASCII device connected to the port cannot accept
data, or if the connection breaks after the instruction starts executing).
Set the .UL bit in the control structure (the .ER bit is then set).

Important: When you set the .UL bit, the instruction does not
terminate immediately; it may take several seconds.

If an AWA instruction starts executing with the .UL bit already set,
the instruction aborts immediately.

The error bit (.ER) is set during the execution of the instruction if the
instruction is aborted due to processor mode change or if the modem
becomes lost (when using modem control). If the modem was already
lost, the instruction still executes.

021-87700210

NIC SANAT r‘
AR =

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-17

Figure 17.3
Example AWA Timing Diagram

. ON
Rung Condition OFF <‘

\
\
\
\
OFF }
\

|
|
Enable Bit (EN) 0N J‘
|

Queue Bit (.EU) 8’;‘F
|) | | o
o L \ | L
Done Bit N
Error Bit 8FF —
(.DNor. ER)

Empty Bit (.EM) 8EF fJ—

-—r -

w —
~— —
ol —

1 2
1 - rung goes true
2 - instruction successfully queued
3 - instruction execution complete
4 - instruction scanned for the first time after execution is complete
5 - rung goes false

ASCII Write (AWT)

Description: Use the AWT instruction to write characters from the source to a
display device. To repeat the instruction, the rung must go from

AWT | e
ASCII WRITE (o) false to true. You can use this instruction with the port in System or
gha”“e' User mode.
ource
Control _(DN)
Siing Lengt Entering Parameters
Characters Sent '(ER) g

To use the AWT instruction, you must provide this information:

Parameters: Definition:

Channel the number of the RS-232 port. (The only valid value is 0).

Source the string you want to write.

Control the address of the control file element used for the control status file.
String Length the maximum number of characters you want to write from the

source string (0 to 82). If you enter 0, the entire string will be written.

Characters Sent the number of characters that the processor sent to the display area
(0 to 82). Only after the entire string is sent is this field updated
(no running total for each character sent is stored). This field is
display only.

021-87700210

17-18

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

Example
1:012 — AWT
E ASCII WRITE —(EN
10 Channel 0
Source ST37:20 < DN)
Control R6:23
If input word 12, bit 10 is set, write 40 characters String Length 40
from ST37:20 and write it to the display device. Characters Sent —(ER)

When the rung goes from false to true, the control element enable bit
(.EN) is set. The instruction is put in the ASCII instruction queue, the
.EU bit is set and program scan continues. The instruction is then
executed parallel to program scan.

Forty characters from string ST37:20 are sent through channel 0. The
done bit is set and a value of 40 is sent to the position word.

When the program scans the instruction and finds the .DN bit set, the
processor then sets the .EM bit. The .EM bit acts as a secondary done
bit corresponding to the program scan.

You can use the .UL bit to terminate an AWT instruction before it
completes (for example, you may want to terminate the instruction if
you know that the ASCII device connected to the port cannot accept
data, or if the connection breaks after the instruction starts executing).
Set the .UL bit in the control structure (the .ER bit is then set).

Important: When you set the .UL bit, the instruction does not
terminate immediately; it may take several seconds.

If an AWT instruction starts executing with the .UL bit already set,
the instruction aborts immediately.

The error bit (.ER) is set during the execution of the instruction if the
processor switches to program or test mode or if the modem becomes
lost (when using modem control). If the modem was already lost, the
instruction still executes.

021-87700210

ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT 17-19

Figure 17.4
Example AWT Timing Diagram

. ON
Rung Condition OFF <‘

\
\
ON
Enable Bit (.EN) OFF J‘
\

. ON
Queue Bit (.EU) OFF

|
|
Done Bit ON ‘
[
|
|

Error Bit
(DN or. ER) OFF

empymit(ewy O L [

OFF || \

o —
()
w - -
~

1 - rung goes true

2 - instruction successfully queued

3 - instruction execution complete

4 - instruction scanned for the first time after execution is complete
5 - rung goes false

021-87700210

NIC SANAT r‘
AR =

17-20 ASCII Instructions ABL, ACB, ACI, ACN, AEX, AIC, AHL, ARD, ARL, ASC, ASR, AWA, AWT

Notes:

021-87700210

NIC SANAT r‘
AR =

Chapter 1 8

Chapter Objectives

Custom Application Routine
Instructions SDS, DFA

This chapter introduces the Custom Application Routine (CAR)
instructions (SDS and DFA) for PLC-5 programming software. You
need the Custom Application Routine (CAR) software in order to use

these instructions.

For Information About:

See:

SDS or DFA CAR utilities

Distributed Diagnostic and Machine Control User Manual

AGA3 PLC-5 AGA Mass Flow Custom Application Routine
Programming Manual

AGA7 PLC-5 Volumetric Flow CARs for Turbine and Displacement
Metering User Manual

NX19 PLC-5 Volumetric Flow CARs for Orifice Metering User
Manual

API PLC-5 Volumetric Flow CARs for Turbine and Displacement

Metering User Manual

For more information on the operands (and valid data types/values of
each operand) used by the instructions discussed in this chapter, see

Appendix C.

021-87700210

NIC SANAT r‘
AR =

18-2 Custom Application Routine Instructions SDS, DFA

Smart Directed Sequencer (SDS) The Smart Directed Sequencer (SDS) instruction provides state
Overview control that can be used to characterize normal and abnormal
o8 conditions.

SMART DIRECTED SEQUENCER

Control File -(
Step Desc. File _(
Length

No. of Steps .)
Position/Step: -(transitional
No. of I/0

Prog file number -(

53_ The SDS instruction allows two basic types of logic equations:

e combinatorial

This Type of
Logic Equation: Does this:

Transitional provides traditional state-based control. This type of SDS instruction
is built around the state transition concept, where each input
transition directs the instruction to a unique next state using a logical
OR structure. One input change directs the instruction to step A,
another to step B, etc.

Combinatorial provides for the ANDing of inputs in addition to the OR function used
in transition equations. This allows complex combinations to be
accommodated more easily within the SDS framework with a
minimum number of steps.

Programming the SDS Instruction

To program the SDS instruction, you have to:
* download the SDS CAR

* enter the SDS instruction

* enter the configuration information

* enter I/O information

Important: You cannot use the BT, PD, MG, ST, or SC data types
within the 1/0 list of the SDS instruction.

Important: When you enter the control File and Step Desc.
File operands, make certain the file numbers (i.e., 7,
10) are not the same.

For more information on the SDS instruction, see the Distributed
Diagnostic and Machine Control User Manual.

021-87700210

Custom Application Routine Instructions SDS, DFA

18-3

Diagnostic Fault Annunciator (DFA)

Overview

DFA

DIAGNOSTIC FAULT ANNUNCIATOR
Control File

No. of I/0

Program file number

)
o)

The Diagnostic Fault Annunciator (DFA) instruction monitors inputs
you define, but it cannot control outputs. Valid inputs can be:

e storage points, such as binary bits
e counter / timer done bits

* outputs (real or logical)

e any valid bit address

* lube level indicators

o alarms

» fault bits set by another device (like an IMC motion controller) or
by ladder logic

You can use the DFA instruction to generate messages when a fault
occurs. In addition, you can create other types of operational and
diagnostic messages with the DFA instruction, such as tool change
messages and operating instructions.

Programming the DFA Instruction

To program the DFA instruction, you have to:
e download the DFA CAR

« enter the DFA instruction

» enter the configuration information

e enter /O information

For more information on the DFA instruction, see the Distributed
Diagnostic and Machine Control User Manual.

021-87700210

18-4 Custom Application Routine Instructions SDS, DFA

Notes:

021-87700210

NIC SANAT r‘
AR =

Appendix A

Instruction Timing and Memory
Requirements

Instruction Timing and
Memory Requirements

The time it takes for a processor to scan an instruction depends on the
type of instruction, the type of addressing, the type of data, whether
the instruction has to convert data, and whether the instruction is true
or false.

The timing and memory requirements estimates in this chapter have
the following assumptions:

e direct addressing
* integer data, except where noted
* no data-type conversions

e addresses within first 4098 words of the data table for Classic
PLC-5 processors; addresses within first 2048 words for
Enhanced PLC-5 processors

e execution times shown in Us
Memory requirements refer to the number of words the instruction
uses. In some cases, an instruction may have a range of memory

requirements. The range of words exists because the instruction can
use different types of data and addressing modes.

The tables are divided into instruction times and memory
requirements that are specific to each processor.

If You Are Using this Processor: See Page:

Enhanced PLC-5, series C

Bit and Word Instructions A-2
File Instructions A-5

Classic PLC-5 (all series):

Bit and Word Instructions A-10
File Instructions A-13

021-87700210

NIC SANAT r‘
AR =

A-2

Instruction Timing and Memory Requirements

Timing for Enhanced PLC-5

Processors

Bit and Word Instructions
Table A.A shows timing and memory requirements for bit and word
instructions for Enhanced PLC-5 processors.

Table A.A
Timing and Memory Requirements for Bit and Word Instructions
(Enhanced PLC-5 Processors)

Execution Time Execution Time (Us)

Category Code Title (us) integer floating point Words ofl
Memory
True False True False
Relay XIC examine if closed .32 .16 12
XI0 examine if open 32 16 12
oTL output latch 48 16 12
oTU output unlatch 48 16 12
OTE output energize 48 48 12
Branch branch end .16 .16 1
next branch .16 .16 1
branch start .16 .16 1
Timer and Counter TON timer on (0.01 base) 3.8 2.6 2-3
(1.0 base) 4.1 2.5
TOF timer off (0.01 base) 2.6 3.2 2-3
(1.0 base) 2.6 3.2
RTO retentive timer on 2-3
(0.01 base) 3.8 2.4
(1.0 base) 4.1 2.3
CTuU count up 34 34 2-3
CTD count down 3.3 3.4 2-3
RES reset 2.2 1.0 2-3
(Continued)

1.Use the larger number for addresses beyond 2048 words in the processor’s data table.

2.For every bit address above the first 256 words of memory in the data table, add 0.16 ms and 1 word of memory.

021-87700210

NIC SANET

2 g

Instruction Timing and Memory Requirements A-3

Execution Time (Us) Execution Time (Us)
Category Code Title integer floating point \&/Z:gsr;;
True False True False
Arithmetic ADD add 6.1 1.4 14.9 1.4 4-7
SUB subtract 6.2 1.4 15.6 1.4 4-7
MUL multiply 9.9 1.4 18.2 1.4 4-7
DIV divides 12.2 1.4 234 1.4 4-7
SQR square root 9.9 13 35.6 13 3-5
NEG negate 4.8 13 6.0 13 3-5
CLR clear 34 11 3.9 11 2-3
AVE average file 152+E25.8 30 162+E22.9 36 4-7
STD standard deviation ~ 321+E84.3 34 329+E77.5 34 4-7
TOD convert to BCD 7.8 13 3-5
FRD convert from BCD 8.1 13 3-5
RAD radian 57.4 1.4 50.1 1.4 3-5
DEG degree 55.9 1.4 50.7 1.4 35
SIN sine 414 1.4 3-5
cos cosine 404 1.4 3-5
TAN tangent 504 1.4 3-5
ASN inverse sine 426 14 3-5
ACS inverse cosine 436 14 3-5
ATN inverse tangent 375 14 3-5
LN natural log 409 1.4 403 1.4 3-5
LOG log 411 1.4 403 1.4 3-5
XPY X to the power of Y 897 15 897 15 4-7
SRT sort file 3-5
(5/11, -5/20) 276 + 12[E**1.34] 227 278 + 16[E**1.35] 227
(-5/30, -5/40, -5/60, 224 + 25[E**1.34] 189 230 + 33[F**1.35] 189
-5/80)
(Continued)
1.Use the larger number for addresses beyond 2048 words in the processor’s data table.
E = number of elements acted on per scan
SRT true is only an approximation. Actual time depends on the randomness of the numbers.

021-87700210

NIC SANAT r‘
AR =

A-4

Instruction Timing and Memory Requirements

Execution Time (LLS)

Execution Time (LLS)

Category Code Title integer floating point \&Vzrr;isrsg
True False True False

Logic AND and 59 14 4-7
OR or 59 14 4-7
XOR exclusive or 5.9 14 4-7
NOT not 4.6 1.3 3-5

Move MOV move 4.5 13 5.6 13 3-5
MVM masked move 6.2 1.4 4-7
BTD bit distributor 10.0 1.7 6-9

Comparison ~ EQU equal 3.8 1.0 4.6 1.0 3-5
NEQ not equal 3.8 1.0 4.5 1.0 3-5
LES less than 4.0 1.0 51 1.0 3-5
LEQ less than or equal 4.0 1.0 5.1 1.0 3-5
GRT greater than 4.0 1.0 5.1 1.0 3-5
GEQ greater than or 4.0 1.0 51 1.0 3-5

equal
LIM limit test 6.1 11 8.4 11 4-7
MEQ mask compare 51 11 4-7
if equal
Compare CMP all 248 + (2[0.8 +i]) 2.16 +Wi[0.56] 2.48 + (X[0.8 +i]) 2.16 + Wi[0.56] 2+Wi
Compute CPT all 248+ (Z[0.8 +i]) 2.16 +Wi[0.56] 2.48.+ (Z[0.8 +i]) 2.16 + Wi[0.56] 2+Wi

1.Use the larger number for addresses beyond 2048 words in the processor’s data table.

i = execution time of each instruction (operation, e.g. ADD, SUB, etc.) used within the CMP or the CPT expression
Wi = number of words of memory used by the instruction (operation, e.g. ADD, SUB, etc) within the CMP or CPT expression

CMP or CPT instructions are calculated with short direct addressing

021-87700210

NIC SANET

2 g

Instruction Timing and Memory Requirements A-5
File Instructions
Refer to Table A.B for the instruction timing for file instructions.
Table A.B
Timing and Memory Requirements for File, Program Control, and ASCII
Instructions (Enhanced PLC-5 Processors)
Time (LLs) Time (Us)
Category Code Title integer floating point Words 0];
Memory
True False True False
File FAL all 11+ (Z[2.3+i))E 6.16 + Wi[0.16] 11+ (Z[2.3+i)E 6.16 + Wi[0.16] 3-5 +Wi
Arithmetic
and Logic
File Search FSC all 11+ (Z23+i)E 6.16 +Wi[0.16] 11+ (2.3 +i)E 6.16 + Wi[0.16] 3-5+Wi
and
Compare
File COP copy 16.2+E[0.72] 1.4 17.8+E[1.44] 1.4 4-6
counter, timer, and 15.7+E[2.16] 14
control
FLL fill 15.7+E[0.64] 15 18.1+E[0.80] 15 4-6
counter, timer, and 15.1+E[1.60] 15
control
Shift BSL bit shift left 10.6+B[0.025] 5.2 4-7
Register o
BSR bit shift right 11.1+B[0.025] 5.2 4-7
FFL FIFO load 8.9 3.8 4-7
FFU FIFO unload 10.0+E[0.43] 3.8 4-7
LFL LIFO load 9.1 3.7 4-7
LFU LIFO unload 10.6 3.8 4-7
Diagnostic ~ FBC 0 mismatch 15.4 + B[0.055] 2.9 6-11
1 mismatch 22.4 + B[0.055] 2.9
2 mismatches 29.9+ B[0.055] 2.9
DDT 0 mismatch 15.4 + B[0.055] 2.9 6-11
1 mismatch 24.5 + B[0.055] 2.9
2 mismatches 34.2 + B[0.055] 2.9
DTR data transitional 5.3 5.3 4-7
(Continued)

1.Use the larger number for addresses beyond 2048 words in the processor’s data table.
i = execution time of each instruction (operation, e.g. ADD, SUB, etc.) used within the FAL or the FSC expression
E = number of elements acted on per scan
B = number of bits acted on per scan

Wi = number of words of memory used by the instruction (operation, e.g. ADD, SUB, etc.) within the FAL or FSC expression

FAL or FSC instructions are calculated with short direct addressing

021-87700210

NIC SANET

2 g

A-6

Instruction Timing and Memory Requirements

Time (Us) Time (us)
Category Code Title integer floating point Words 0];
Memory
True False True False
Sequencer SQI sequencer input 7.9 1.3 5-9
SQL sequencer load 7.9 35 4-7
SQO sequencer output 9.7 3.7 5-9
Imrznediate IIN immediate input 11 2
110 (-5/11, -5/20) 357
(-5/30, -5/40, -5/60, 307
-5/80)
10T immediate output 11 2
(-5/11, -5/20) 361
(-5/30, -5/40, -5/60, 301
-5/80)
IDI immediate data input 1.1 4-7
(-5/20C) 200 + 1.4 (for
each word)
(-5/40C, -5/60C, and 200 + 1.4 (for
-5/80C) each word)
IDO immediate data output 1.1 4-7
(-5/20C) 230 + 1.4 (for
- each word)
(-5/40C, -5/60C, and 250 + 1.7 (for
-5/80C) each word)
Zone MCR master control 0.16 0.16 1
Control
Program JMP jump 8.9 + (file number 1.4 + (file number 2
Control —2)%0.96 —2)*0.96
LBL label 0.32 0.32 2+position
in label table
JSR%/ jump to subroutine/ 3+
RET return parameters/
PLC-5/11, -5/20, JSR
-5/30, -5/40, -5/40L, 1+
-5/60, -5/60L, -5/20E, parameters/
-5/40E RET
— 0 parameters 12.3 1.0 n/a n/a
— 1 parameter 16.1 1.0 17.3 1.0
—increase/parameter 3.8 n/a 5.0 n/a
PLC-5/80
— 0 parameters 315 1.0
— 1 parameter 340 1.0 349
—increase/parameter 31 n/a 33 1.0
(Continued)

1.Use the larger number for addresses beyond 2048 words in the processor’s data table.
2.Timing for immediate I/0 instructions is the time for the instruction to queue-up for processing

3.Calculate execution times as follows: (time) + (quantity of additional parameters)(time/parameter). For example, if you are passing 3 integer parameters in a JSR
within a PLC-5/11 processor, the execution time =16.1 + (2)(3.8)=23.7pus.

B = number of bits acted on per scan

021-87700210

Instruction Timing and Memory Requirements A-7
Time (Us) Time (us)
Category Code Title integer floating point Words 0];
Memory
True False True False
Program SBR 0 parameters 12.3 1.0 1+
Control parameters
1 parameter 16.1 1.0 17.3 1.0
increase/ 3.8 5.0
parameter
END end negligible 1
TND temporary end 1
EOT end of transition 1
AFI always false 0.16 0.16 1
ONS one shot 3.0 3.0 2-3
OSR one shot rising 6.2 6.0 4-6
OSF one shot falling 6.2 5.8 4-6
FOR/ for next loop 8.1+ L[15.9] 5.3 + N[0.75] FOR 5-9
NXT (PLC-5/80) (151+L[277]) (152+N[6.1]) NXT 2
BRK break 11.3 + N[0.75] 0.9 1
uiD user interrupt disable 1.0 1
(-5/11, -5/20) 175
(-5/30, -5/40, -5/60, 119
-5/80)
UIE user interrupt enable 1.0 1
(-5/11, -5/20) 170
(-5/30, -5/40, -5/60, 100
-5/80)
(Continued)

1.Use the larger number for addresses beyond 2048 words in the processor’s data table.
L = number of FOR/NXT loops
N = number of words in memory between FOR/NXT or BRK/NXT

www.nicsanat.com

021-87700210

A-8

Instruction Timing and Memory Requirements

Category Code Title

Time (Us)
integer
True

Time (us)
floating point
True False

Words of
Memory®

Process PID
Control

PID loop control

5-9

Gains Independent
(-5/11, -5/20, -5/20E,
-5/20C)
(-5/30, -5/40, -5/40E,
-5/40C, -5/40L, -5/60,
-5/60C, -5/60L, -5/80,
-5/80E, -5/80C)

462

655

ISA

(-5/11, -5/20, -5/20E,
-5/20C)

(-5/30, -5/40, -5/40E,
-5/40C, -5/40L, -5/60,
-5/60C, -5/60L, -5/80,
-5/80E, -5/80C)

560

895

3.0

882 58

1142

Modes Manual
(-5/11, -5/20, -5/20E,
-5/20C)
(-5/30, -5/40, -5/40E,
-5/40C, -5/40L, -5/60,
-5/60C, -5/60L, -5/80,
-5/80E, -5/80C)

372

420

Set Output

(-5/11, -5/20, -5/20E,
-5/20C)

(-5/30, -5/40, -5/40E,
-5/40C, -5/40L, -5/60,
-5/60C, -5/60L, -5/80,
-5/80E, -5/80C)

380

440

900

882

Cascade Slave

1286

Master

840

ASCII? ABLZ test buffer for line
(-5/11, -5/20)
(-5/30, -5/40, -5/60,

-5/80)

316
388

214
150

3-5

ACB2 no. of characters in
buffer

(-5/11, -5/20)

(-5/30, -5/40, -5/60,
-5/80)

316
389

214
150

3-5

ACI string to integer
(-5/11, -5/20)

(-5/30, -5/40, -5/60,
-5/80)

220 + C[11]
140 + C[21.4]

14

1.Use the larger number for addresses beyond 2048 words in the processor’s data table.
2.Timing for ASCII instructions is the time for the instruction to queue-up for processing in channel 0.

{Continued)

021-87700210

NIC SANET

2 i

Instruction Timing and Memory Requirements A-9
Time (Us) Time (us)
Category Code Title integer floating point Words 0];
Memory
True False True False
ASCII2 ACN string concatenate 1.9 4-7
(-5/11, -5/20) 237 + C[2.6]
(-5/30, -5/40, -5/60, 179 + C[5.5]
-5/80)
AEX string extract 1.9 5-9
(-5/11, -5/20) 226 + C[1.1]
(-5/30, -5/40, -5/60, 159 + C[2.2]
-5/80)
AHLZ set or reset lines 5-9
(-5/11, -5/20) 318 213
(-5/30, -5/40, -5/60, 526 157
-5/80)
AIC integer to string 14 3-5
(-5/11, -5/20) 260
(-5/30, -5/40, -5/60, 270
-5/80)
ARD? read characters 4-7
(-5/11, -5/20) 315 214
(-5/30, -5/40, -5/60, 380 149
-5/80)
ARL? read line 4-7
(-5/11, -5/20) 316 214
(-5/30, -5/40, -5/60, 388 151
-5/80)
ASC string search 1.9 5-9
(-5/11, -5/20) 222 + C[1.7]
(-5/30, -5/40, -5/60, 151 + C[3.0]
-5/80)
ASR string compare 3-5
(-5/11, -5/20) 234 + C[1.3] 202
(-5/30, -5/40, -5/60, 169 + C[2.4] 119
-5/80)
AWA? write with append 4-7
(-5/11, -5/20) 319 215
(-5/30, -5/40, -5/60, 345 154
-5/80)
AWTZ write 47
(-5/11, -5/20) 318 215
(-5/30, -5/40, -5/60, 344 151
-5/80)
1.Use the larger number for addresses beyond 2048 words in the processor’s data table.
2.Timing for ASCII instructions is the time for the instruction to queue-up for processing in channel 0.
C = number of ASCII characters
(www.nicsanat.com
021-87700210
NIC SANRAT

i

A-10

Instruction Timing and Memory Requirements

Timing for Classic PLC-5

Bit and Word Instructions

Processors Table A.C shows timing and memory requirements for bit and word
instructions for Classic PLC-5 processors.
Table A.C
Timing and Memory Requirements for Bit and Word Instructions
(Classic PLC-5 Processors)
Execution Time (Us) Execution Time (Us)
Category Code Title Integer floating point Words of Memory!
True False False
Relay XiC examine if closed 13 0.8 12
XI0 examine if open 1.3 0.8 12
oTL output latch 1.6 0.8 12
oTU output unlatch 1.6 0.8 11
OTE output energize 16 16 12
Branch branch end 0.8 0.8 1
next branch 0.8 0.8 1
branch start 0.8 0.8 1
Timer and Counter ~ TON timeron (0.01 base) 39 27 2-3
(1.0 base) 44 28
TOF timer off (0.01 base) 30 43 2-3
(1.0 base) 30 51
RTO retentive timer on 2-3
(0.01 base) 39 24
(1.0 base) 44 24
CTu count up 32 34 2-3
CTD count down 34 34 2-3
RES reset 30 14 2-3

1 Use the smaller number if all addresses are below word 4096; use the larger number if all addresses are above 4096.
ZFor every bit address above the first 256 words of memory in the data table, add 0.8 |Ls to the execution time and 1 word of memory to the requirements.

021-87700210

(Continued)

Instruction Timing and Memory Requirements

Execution Time (Us)

Execution Time (Us)

Category Code Title integer floating point Words of Memory!
True False True False

Arithmetic ADD add 36 14 92 14 4-7
SUB subtract 36 14 92 14 4-7
MUL multiply 41 14 98 14 4-7
DIV divide 49 14 172 14 4-7
SQR square root 82 14 212 14 3-5
NEG negate 28 14 36 14 3-5
CLE clear 18 14 23 14 2-3
TOD convert to BCD 52 14 3-5
FRD convert from BCD 44 14 3-5

Logic AND and 36 14 4-7
OR or 36 14 4-7
XOR exclusive or 36 14 4-7
NOT not 27 14 3-5

Move MoV move 26 14 35 14 3-5
MVM masked move 55 14 6-9

Comparison EQU equal 32 14 42 14 3-5
NEQ not equal 32 14 42 14 3-5
LES less than 32 14 42 14 3-5
LEQ less than or equal 32 14 42 14 3-5
GRT greater than 32 14 42 14 3-5
GEQ greater than or equal 32 14 42 14 3-5
LIM limit test 42 14 60 14 4-7
MEQ mask compare if equal 41 14 4-7

1 Use the smaller number if all addresses are below word 4096; use the larger number if all addresses are above 4096.
(Continued)

021-87700210

NIC SANET

2 g

A-12 Instruction Timing and Memory Requirements

Execution Time (Us) Execution Time (Us)
Category Code Title integer floating point Words of Memory!
True False True False

Compute CPT add 67 34 124 34 6-9
subtract 67 34 124 34 6-9
multiply 73 34 130 34 6-9
divide 80 34 204 34 6-9
square root 113 33 244 34 5-7
negate 59 33 68 34 5-7
clear 49 30 55 34 4-5
move 58 33 5-7
convert to BCD 84 33 5-7
convert from BCD 75 33 5-7
AND 68 34 6-9
OR 68 34 6-9
XOR 68 34 6-9
NOT 59 34 5-7

Compare CMP equal 63 34 73 34 5-7
not equal 63 34 73 34 5-7
less than 63 34 73 34 5-7
less than or equal 63 34 73 34 5-7
greater than 63 34 73 34 5-7
greater than or equal 63 34 73 34 5-7

Lyse the smaller number if all addresses are below word 4096; use the larger number if all addresses are above 4096.

021-87700210

Instruction Timing and Memory Requirements

A-13

File Instructions

The instruction timing for file instructions depends on the data type,
number of files acted on per scan, number of elements acted on per
scan, and whether the instruction converts data between integer and

floating point formats.

for integer to floating point conversion, add:

8 us for each element address

10 ps for each file address (# prefix)

for floating point to integer conversion add:

33 us for each element address

44 us for each file address (# prefix)

Table A.D
Timing and Memory Requirements for File Instructions
(Classic PLC-5 Processors)

e e
Category Code Title floating point Memory:
True True False
File Arithmetic and Logic FAL add 98 + W[36.7 + N] 98 + W[95.1 + N] 54 7-12
subtract 98+W[36.7+N] 98+W[95.1+N] 54 7-12
multiply 98 +W[425+N] 98+ W[1012+N] 54 7-12
divide 98 +W[51.1+N] 98+ W[180.3+N] 54 7-12
square root 98 + W[84.7 + N] 98 + W[220.5+N] 54 6-10
negate 98 + W[29.2 + N] 98 + W[37.2 + N] 54 6-10
clear 98 + W[18.4 + N] 98 + W[24.0 + N] 54 5-8
move 98 + W[27.3 + N] 98 + W[36.2 + N] 54 6-10
convert to BCD 98 + W[54.3 + N] 54 6-10
convert from BCD 98 + W[45.4 + N] 54 6-10

1 Use the smaller number if all addresses are below word 4096; use the larger number if all addresses are above 4096.
W = number of elements acted on per scan
N =2 x (number of integer file addresses) + 8 x (number of floating-point file addresses) + 6 x (number of timer, counter, or control file addresses) + (

number of

conversions between integer and floating point formats)

021-87700210

(Continued)

A-14

Instruction Timing and Memory Requirements

Time (uLs) Time (uLs) Time (us)
' integer floating point mteger or . Words of
Category Code Title floating point Memoryl
True True False
File Arithmetic and Logic AND 98 + W[37.2 + N] 54 7-12
OR 98 + W[37.2 + N] 54 7-12
XOR 98 + W[37.2 + N] 54 7-12
NOT 98 + W[28.2 + N] 54 6-10
File Search and Compare FSC all comparisons 93 + W[32.7 +N] 93 + W[43.3 +N] 54 6-10
File cop copy 88 +2.7W 104 + 3.8W 20 4-7
counter, timer, and 98 + 5.8W
control
FLL fill 81+2/1W 100 + 3.1W 15 4-7
counter, timer, and 97 + 4.4W
control
Shift Register BSL bit shift left 74 + 3.4W 57 4-7
BSR bit shift right 78 + 3.0W 57 4-7
FFL FIFO load 54 44 4-7
FFU FIFO unload 68 + 3.2W 46 4-7
Diagnostic FBC file bit compare 6-11
0 mismatch 75+ 6W 31
1 mismatch 130 + 6W 31
2 mismatches 151 + 6W 31
DDT diagnostic detect 6-11
0 mismatch 71+ 6W 31
1 mismatch 150 + 6W 31
2 mismatches 161 + 6W

1 Use the smaller number if all addresses are below word 4096; use the larger number if all addresses are above 4096.
W = number of elements acted on per scan
N =2 x (number of integer file addresses) + 8 x (number of floating-point file addresses) + 6 x (number of timer, counter, or control file addresses) + (

number of

conversions between integer and floating point formats)

(Continued)

021-87700210

NIC SANET

2 g

Instruction Timing and Memory Requirements

A-15

Time (uLs) Time (uLs) Time (us)
' integer floating point mteger or . Words of
Category Code Title floating point Memoryl
True True False
Zone Control MCR master control 12 18 1
Immediate 1/0 [IN immediate input 2-3
local 196 16
remote 204 16
10T immediate output 2-3
local 202 16
remote 166 16
Sequencer SQl sequencer input 57 14 5-9
SQL sequencer load 55 42 4-7
SQO sequencer output 77 42 5-9
Jump and Subroutine JMP jump 45 15 2-3
JSR jump to subroutine
SBR 0 parameters 56 15 2-3
1 parameter 91 15 3-5
add per parameter 21
RET return from sub.
0 parameters 48 13 1
1 parameter 70 13 2-3
add per parameter 21
LBL label 12 12 3
Lyse the smaller number if all addresses are below word 4096; use the larger number if all addresses are above 4096.
(Continued)

021-87700210

A-16

Instruction Timing and Memory Requirements

Time (uLs) Time (uLs) Time (us)
' integer floating point mteger or . Words of
Category Code Title floating point Memory
True True False
Miscellaneous END end negligible negligible 1
TND temporary end negligible 15 1
AFI always false 15 13 1
ONS one shot 28 30 2-3
DTR data transitional 41 41 4-7
BTD bit distributor 7 14 6-11
PID PID loop control 608 34 5-9
BTR block transfer read See chapter 15
BTW block transfer write
MSG message See chapter 16

Lyse the smaller number if all addresses are below word 4096; use the larger number if all addresses are above 4096.

021-87700210

NIC SANET

2 g

Instruction Timing and Memory Requirements

A-17

Program Constants

Direct and Indirect Elements —
Enhanced PLC-5 Processors

Use program constants in compare, compute, and file instructions to
improve instruction execution times. Integer constants and
floating-point constants execute in less than 1 us.

Additional execution time for directly and indirectly addressed
elements depends on location in memory, reference to the beginning
of all data files (output file, word 0), whether data is stored at the
source or destination address, and whether the instruction converts
data. Table A.E lists times to add to instruction execution times.

Table A.E

Additional Execution Time (Enhanced PLC-5 Processors)

Modifier in [Lsec

Addressing Mode Data Type (add for each
operand)

Direct Integer 0

Float 0
Index Integer 11

Float 1.8

Counter-Timer-Control 2.4
Immediate Integer 0.24

Float 1.0
Indirect 6.6 + W[0.09]
Float-to-integer 5.6
Integer-to-float 8.4

021-87700210

A-18

Instruction Timing and Memory Requirements

Direct and Indirect Elements —
Classic PLC-5 Processors

Additional execution time for directly addressed elements depends on
location in memory, reference to the beginning of all data files (output
file, word 0), whether data is stored at the source or destination
address, and whether the instruction converts data. Table A.F lists
times to add to instruction execution times.

Table A.F
Additional Execution Time Based on Source and Destination Addresses
(Classic PLC-5 Processors)

Source Destination
Data Type (integer to floating point) (floating point to integer)
0-2K 2-4K 4K+ 0-2K 2-4K 4K+
integer 0 1 2 0 1 2
floating point 0 3 4 0 3 4
data conversion 8 9 10 33 34 35

When file addresses (# prefix) in the expression or destination
address contain indirect addresses for file numbers, add:

o 45us when the indirect address is integer type

o 48 us when the indirect address is floating point type

o 48 us when the indirect address is timer, counter, or
control type

When file addresses in the expression or destination contain indirect
addresses for element numbers, add:

e 45us when the indirect address is integer type
e 46 us when the indirect address is floating point type
e 46 us when the indirect address is timer, counter, or

control type

If the file address contains two indirect addresses, add only one value
(the largest). For example, for #F[N7:20][N7:30], add 48 us (indirect
floating point file address).

021-87700210

Instruction Timing and Memory Requirements

A-19

Indirect Bit or Elements Addresses
— Classic PLC-5 Processors

Multiply the additional time by the number of elements in the file for
any type of file or file address. For example:

Expression:#N[N7:100]:10 * F8:20
add 10 for converting to floating point
add 45 for indirect address

Destination:#N7:30
add 44 for converting to integer

FAL multiply:98 + W[42.5 + N + indirect addressing]
N=22)+8 (1) +6(0) + 10 + 44 =66
W=16

Execution time in ALL mode:
98 +16[42.5 + 66 +45]
2554 us

Additional execution times for indirectly addressed bits and elements
depends on the number of indirect addresses in the overall address.
Table A.G lists the additional times.

Table A.G
Additional Execution Times for Indirectly Addressed Bits and Elements
Classic PLC-5 Processors

Time (us) for Time (us) for

Data Type Variable File or Variable File and
Element Element

Bit in binary file 57 60

Bit in integer file 60 63

Bit in timer, counter, or control file 64 66

Integer (N) 42 42

Timer (T), counter (C), or control 43 44

(R) file

Floating point (F) 61 64

Converting integer to floating point 71 77

Converting timer, counter, or control 85 81

to floating point

021-87700210

A-20

Instruction Timing and Memory Requirements

Additional Timing Considerations —
Classic PLC-5 Processors

Table A.H lists additional timing considerations.

Table AH
Additional Timing Considerations (Classic PLC-5 Processors)

Tasks Time (milliseconds)

Housekeeping 4.5 max

Resident Local I/0 scan 1 per assigned rack number

Remote 1/0 scan 10 per assigned rack number at 57.6 Kb

021-87700210

NIC SANET

2 g

Appendix B

Appendix Objectives

SFC Status Information in the
Processor Status File

SFC Reference

Use this appendix to make sure your SFC meets your processor’s
requirements and to make sure your SFC runs the way you expect.
This appendix discusses:

SFC status information in the Processor Status file

memory allocation

dynamic constraints

scanning sequences

run times

Table B.A lists the words and bits in the processor status file (S) that
contain SFC information.

Table B.A
SFC Status Words
Word: Title: Description:
S:1/15 First pass Set: Processor began first program scan of
the next active step in the SFC
Reset: Processor completed scanning the
currently active step
S:8 Current program The time for the processor to scan through all active
scan time steps one time
If you are using multiple main control programs on
a Enhanced PLC-5 processor, this time is the
current total of one scan of all main control
programs.
S:9 Maximum program The maximum time for the processor to scan
scan time through all active steps one time (word S:8)
If you are using multiple main control programs on
an Enhanced PLC-5 processor, this time is the
maximum of all previous totals. This value is
maintained until user resets it.
S:11/3 SFC fault Set: Processor detected an SFC fault and
stored a fault code in word 12
Reset: No SFC fault
S:11/5 Start up fault Set: Processor detected a start-up protection

fault (see word 26 bit 1)
Reset: No fault, start up allowed

(Continued)

021-87700210

B-2

SFC Reference

Word: Title: Description:
S:12 Fault codes 74 Fault in SFC file
75 SFC has more than 24 active steps
77 Missing file or file of wrong type for step,
action or transition
78 SFC execution cannot continue after
interruption
79 Cannot run SFC because PLC-5 is
incompatible
S:13 Faulted File Contains the file number if an SFC fault occurred
Number
S:14 Faulted Rung Contains the faulted rung number
Number
S:26/0 * Restart/continue Set: Processor restarts SFC at the active
steps where it left off due to power loss
or processor mode change
Reset: Processor restarts SFC at first step
S:26/1 * Start-up protection Set: Protection enabled; processor goes to
after power loss fault routine at power up and processor
sets word 11, bit 5
Reset: Protection disabled; processor powers
up in run mode
S:28 * Program Maximum time (milliseconds) for scanning a single
watchdog setpoint ~ pass through all active steps
If you are using multiple main control programs on
an Enhanced PLC-5 processor this time is the total
of one scan of all main control programs.
S:79 * MCP inhibit, file Information on the individual multiple main control
(except number and scan programs.
for scan time
time) — Enhanced PLC-5 processors only.
S:127

*You enter values for these words/bits

021-87700210

SFC Reference

B-3

Memory Allocation

This Structure:

The memory requirements for your SFC depend on the structures you
use. Table B.B shows estimated word usage for SFC structures:

Table B.B
SFC Memory Usage

Uses this Amount of Memory:

Classic PLC-5 Processor

Enhanced PLC-5 Processor

start and end of program 2 words 19 words
each step /transition pair 8 words 16 + 6a words
a = number of actions in step
6 words
each action
each selection branch 5n+ 5 words 11+6a+7n
n = number of a = number of actions in step
branches n = number of paths
each simultaneous n+ 1 word 3n+1
branch, diverging n = number of n = number of paths
branches
each simultaneous 1 + 6n + 3 words 5+11n+6a
branch, converging n = number of a = number of actions in all
branches converging
steps for that simultaneous
branch
n = number of paths
each label or 1 word 1 word
GOTO statement
each chart compression 3 words 3 words

Figure B.1 shows a sample SFC and the estimated memory

requirements for the SFC.

021-87700210

NIC SANET

2 g

B-4

SFC Reference

Figure B.1

Sample SFC and Memory Requirements

Classic PLC-5 Processors

step/transition pair
8 words

simultaneous diverge
n=2
n+1 =3 words

selection branch
n=3
5n+5=20

3 step/transition pairs
3x 8 =24 words

simultaneous converge
n=2
n? + 6n + 3 = 19 words

step/transition
8 words

82 words (sub total)
+ 2 words (start and end of program)

Enhanced PLC-5 Processors

one action/step
a=1
16 + 6a=22 words

simultaneous diverge
n=2
3n +1 =7 words

selection branch
n=3 a=1
11 + 6a + 7n = 38 words

3 step/transition pairs a =1
3 (16 + 6a) = 66 words

simultaneous converge
n=2 a=2
5+ 11n + 6a = 39 words

one action/step a=1
16 + 6a = 22 words

194 words (sub total)

+ 18 words (start and end of program)
(8 actions * 6 words — assumes
1 unique action per step)

84 words total for SFC

260 words total for SFC

021-87700210

NIC SANET

2 g

SFC Reference

B-5

Dynamic Constraints — Classic
PLC-5 Processors Only

If you are using a Classic PLC-5 processor and your SFC has more
than 12 parallel paths, you need to determine the number of parallel
paths that could be active at one time. The dynamic limit is 24 parallel
paths active at the same time for a Classic PLC-5 processor.

When a transition goes true, momentarily both the previously active
step(s) (now waiting for postscan) and the newly active step(s) are on
the execution queue together. You can have up to 23 parallel active
steps as long as you can guarantee that no more than one transition
goes true at one time.

Determine the number of active steps by counting the steps on each
side of the transitions that control the widest area of the SFC. For
example, 12 transitions that are true at the same time account for at
least 24 simultaneous active steps. If any new simultaneous
divergences follow one of these transitions, the maximum of 24
active paths is exceeded.

If the function chart in Figure B.2 is at the point where all 12 shaded
steps are active and all of the transitions following those steps

become true at the same time, the system attempts to have 26 active
steps (12 for postscan, 14 for first scan) and the processor will fault.

021-87700210

B-6 SFC Reference

Figure B.2
Dynamic Limit of Active Steps Could Be Exceeded
(Classic PLC-5 Processors)

021-87700210

SFC Reference

B-7

Scanning Sequences

The processor scans the SFC from top to bottom, left to right. When
the scan encounters active parallel steps, the processor runs the ladder
logic in the left-most step first, then moves to the ladder logic in the
next parallel step, until all active steps are run. The processor
recognizes parallel steps by their position with respect to their
common divergence, not necessarily by their position on the screen.

Step and Transition Scanning

In general, the processor scans an active step, then scans the 1/0, and
continues this cycle until the transition logic is true. Scanning the step
includes evaluating all step action qualifiers and scanning all
appropriate actions. When the transition is true, the processor scans
the current step one more time (postscan). During postscan, the
processor forces all rungs in the step false and resets rung logic. The
processor does not update I/0 between a postscan and the scan of the
next active step. Figure B.3 shows the scan sequence for a step,
transition and postscan. If you are using Enhanced PLC-5 processors,
you can configure the scan and postscan operations. For more
information, see your programming manual.

Important: Subcharts activated by a chart are scanned just prior to

system housekeeping.

Figure B.3
Scan Sequence for a Step, Transition, and Postscan

I A scanof step A
A pA postcan of step A

—— X0 I/0 1/0 scan

hk housekeeping

B
Xn transition scan

—I_ X1 F false

T true

F hk

Y

A I/0] X0 F | hk

Y
|_T hk [pa B 0 |x_1

15556

021-87700210

NIC SANET

2 g

B-8

SFC Reference

Selected Branch Scanning

The processor selects one path of multiple parallel paths in a selected
branch (Figure B.4). The processor tests transitions X0 through Xn,
from left to right, until one of the transitions become true. The path
with the first true transition is the active path.

Figure B.4
Selected Branch — Divergence

X0—4— Xl—— X2—4— X7 ——

Because only one path is active, the scan sequence for the
convergence is the same as for a step and transition. Figure B.5
shows the scan sequence for the divergence and convergence of a
selected branch.

021-87700210

SFC Reference B-9

Figure B.5
Scan Sequence for a Selected Branch - Divergence and Convergence

A scan of step A A

pA postcan of step A |

I/0 1/0 scan —— X0 —— X1

hk housekeeping

oh overhead

| x 1 x3 I

Xn transition scan [— |

F false |
T true Classic PLC-5 Processors: maximum of 7 selections

n transition number

Enhanced PLC-5 Processors: maximum of 16 selections

|_F hk
- ¢ o) FJMJ
L ! J
T | k[pA c o | xs
|—T hk pC }—
Yol & o | xo
Fl ok
- Ir
L [k [pa B o | x2
I_T hk pB y >

15557

Simultaneous Branch Scanning

The processor scans all parallel paths in a simultaneous branch
(Figure B.6). On the first scan, the processor scans step B, then step
C, until the processor scans all the steps on the divergence.

Figure B.6
Simultaneous Branch — Divergence

(8 J[c[o] N
T

On subsequent scans, the processor scans in the order of step, 1/0, and
transition for each path, starting from the left.

021-87700210

NIC SANAT r‘
AR =

B-10

SFC Reference

110

The vertical progression from step to step is independent of the active
steps on the other parallel paths (Figure B.7).

Figure B.7
Simultaneous Branch - Convergence

The common transition cannot go true until the processor scans all the
steps in the simultaneous branch at least once. Once the transition
goes true, the processor does not scan the remaining paths in the
branch; the processor postscans each step in the branch. Figure B.8

shows the scan sequence for the divergence and convergence of a
selected branch.

Figure B.8
Scan Sequence for a Simultaneous Branch — Divergence and
Convergence
A
A scanof step A
—T— X0 pA postcan of step A

I/0 1/0 scan

hk housekeeping**

Xn transition scan

! F false
X1 - - T true

Classic

Enhanced PLC-5 Processors: maximum of 16 selections

Processors: maximum of 7 selections oc convergence overhead

od divergence overhead

F | hk
S
F c |0 -
F [hk |— |—Thk pB | oc| pC
\ 4 X1
FI hk | B | 10
|_ | | |* I—T hk | pB | oc | pC
hk| pA[Bl od | C |10 |x1
I—T hk [pB Joc| pC y >

15558
*

In an Enhanced PLC-5 Processors, these states do not occur if scan
configuration is set to ADVANCED mode.

** Any subcharts tied to this MCP execute now, followed by execution
of subsequent MCPs. If this chart is MCP B and has active subchart
actions while MCP A and C have ladder programs the sequence is:

|—>MCP A, Chart in MCP B, MCP B's subcharts, MCP C —

021-87700210

NIC SANET

2 g

SFC Reference B-11
SFC Example and Scan Sequence
Figure B.9 shows an example SFC. Figure B.10 shows the scan
sequence for the example SFC. Use this example SFC and scan
sequence as a guide. These figures may not apply to your system.
Figure B.9
Example SFC for Scan Sequence Example
—-X0 X1 X2
N 1]
X3 X4 X5
[F]
[E] e [c]
[+]
J
1, []
I:CI —T—X9
—X8
[«]
—— X10
end
021-87700210
NIC SANRT

B-12

SFC Reference

Run Times —

Processors

Figure B.10
Scan Sequence Example for the Example SFC

A

—
—f

Floh| [X2
F |hk A
7 [hk[pa[D [i10] x5 F [hk]
T‘hk‘pD‘J‘I/O X9

T‘hk‘pA‘C‘l/O

VutaTie) |10

am

X3

T ‘hk‘pA‘ B‘ 110

F‘od‘G‘l/O‘hk‘ E ‘I/O‘F‘I/O X6

A = step scan (A-K)
pA = post scan (A-K)

1/0 = 1/0 scan
XN = transition (1 - 10)
T=true
F=false
oh = overhead
oc = convergence overhead
od = divergence overhead

hk = housekeeping

Classic PLC-5

\
T [nk[pBE [od]F T F [hk[E] 10
*

X6

T ‘od‘ G ‘I/O‘hk‘ E‘I/O‘pF‘ H \uo\ G \|/o X7

T‘hk‘pE‘oc‘pH‘oc‘pG‘ I‘\/O

* In an Enhanced PLC-5 Processor, these states do not occur if 15303
scan configuration is set to ADVANCED mode.

To determine the run time of your processor memory file on a Classic
PLC-5 processor, you add the run time for ladder logic and the run
time for the SFC. For information about run times for ladder logic,
see appendix A. To determine the run time for an SFC, use either
sequence diagrams or equations.

021-87700210

NIC SANAT r‘
AR =

SFC Reference

B-13

Using Sequence Diagrams to Determine Run Time

Table B.C lists the run times to add based on the sequence diagram
for your SFC.

Table B.C
Run Times for Sequence Diagram Sections — Classic PLC-5 Processors

Takes this Amount of Time

This Event: (in milliseconds):

A time to execute logic of step A + 0.1 ms

pA time to scan logic of step A with rungs false + 0.1 ms

XN transition N false (F): time to scan logic + 0.1 ms
transition N true (T): time to scan logic + .25 ms

I/0 (I/0 scan) 0.6 ms

hk (housekeeping) 0.7 ms (increases with increasing DH+ traffic)

oh (overhead) 0.02 ms

od (divergence overhead) 0.3ms

oc (convergence overhead) 0.2ms

To determine the worst-case run time, assume that a transition goes
true just after an 1/0 scan or just after a transition is scanned. This
assumption requires an extra scan sequence before the transition
goes true.

The scan time of a step and transition is proportional to the number of
rungs for the step and transition. Figure B.11 shows the minimum
scan time for a step that contains a single OTE and an END statement
and a transition that contains a single XIC and an EOT statement.

021-87700210

B-14 SFC Reference

Figure B.11
Minimum Scan Time for a Step and Transition Pair

l
A

—— X0

B

F

A /0 | xo |— F hk
|_ | k| pa B o | xi
|— T hk P —_—
< 1.9ms ¢ 1.9ms DI

14271

Using Equations to Determine Run Time

The equations you use depend on whether the scan is steady state
(simple step and transition) or divergent and convergent.

Steady-state Scan Time is when all transitions following active steps
are false. Use this equation (Table B.D):

Thilliseconds = 0.8a + 0.7 + Tgeoap

Table B.D
Variables for Steady-State Scan Time

Where: Is:

Tmiliseconds ~ Steady-state scan time in milliseconds

a number of active steps

Tscan total time to scan logic in all active steps and associated false transitions

Divergent Scan Time starts when the processor tests a transition and
ends when the processor scans the next step’s 1/0. Divergent scan
time includes transition scan time, postscan time of the previous step,
scan time of the new step, overhead, and scan time of each parallel
active step outside of the divergence.

021-87700210

NIC SANAT r‘
AR S

SFC Reference B-15

For a selected-path divergence, the best case is when the transition
goes true just before the 1/0 scan. Use this equation (Table B.E):

X04- X1 X2 Xn -

Thilliseconds = Tx + PA + Tg + 0.02(n-1) + 1.55 + 0.8a + Ty

Table B.E
Variables for Selected-Path Divergent Scan Time

Where: Is:

Tmiliseconds ~ transition scan time in milliseconds from step A to the first step in
selected path N

Ty sum of scan times of logic of transitions X0, X1, ..., Xnin the
divergence, up to and including the selected transition

pA postscan time for the step (step A) preceding the divergence

Ts scan time for logic in the new step (step N)

n path number selected (1-7, from left to right)

a number of active steps outside the divergence

To sum of scan times of logic in all other active steps and transitions

parallel to the divergence, but outside of the divergence

021-87700210

NIC SANAT r‘
AR =

B-16 SFC Reference

For a simultaneous divergence, the best case is when the transition
goes true just before the 1/0 scan. Use this equation (Table B.F):

[A]

1 X0

(B JLc J[D] [N]
Tmilliseconds = Txo + PA + Tg + 0.3 (n-1) + 1.97 + 0.8a + T

Table B.F
Variables for Simultaneous-Path Divergent Scan Time

Where: Is:

Thiliseconds transition time in milliseconds from when transition X0 goes true
until the processor finishes scanning the last simultaneous step
(step N) in the divergence

Txo scan time of logic in transition X0

pA time to do a post-scan of step A

Ts sum of scan times of logic in new steps (step B, step C, . . ., step N)
n number of simultaneous active steps in the divergence

a number of parallel active steps outside the divergence

To sum of scan times of logic in all other active steps and transitions

parallel to the divergence, but outside of the divergence

For the worst case, assume that a transition goes true just after the 1/0
scan or just after a transition is scanned. This assumption requires an
extra scan sequence before the transition goes true.

021-87700210

NIC SANAT r‘
AR =

SFC Reference

B-17

Convergent Scan Time is when a simultaneous branch ends. The
best case is when the transition goes true just before the /0 scan. Use
this equation (Table B.G):

Tnilliseconds = Tx1 + Tp + Tz + 0.2(n-1) + 1.5 + 0.8a + T

Table B.G
Variables for Simultaneous-Path Convergent Scan Time

Where: Is:

Triliseconds ~ transition time in milliseconds from when transition X1 goes true
until the processor finishes scanning step Z

Tx1 scan time of logic in transition X1

Ty sum of postscan times of stepsF G, ..., N

Tz scan time of logic in step Z

n number of simultaneous active steps in the convergence

a number of parallel active steps outside of the convergence

To sum of scan times of logic in all other active steps and transitions

parallel to the convergence, but outside of the convergence

For the worst case, assume that a transition goes true just after the 1/0
scan or just after a transition is scanned. This assumption requires an
extra scan sequence before the transition goes true.

021-87700210

NIC SANET

2 g

B-18 SFC Reference

Notes:

021-87700210

NIC SANAT r‘
AR =

Appendix C

Appendix Objectives

Instruction Operands and Valid
Data Types

Valid Data Types for
Instruction Operands

This appendix lists all of the available instructions and their operands
and the data types/values that are valid for each operand.

The following table explains each valid data type/value:

This Data Accepts:
Type/Value: pts:
immediate any value between —32,768 and 32,767

(program constant)

integer

any integer data type: integer, timer, counter, status, bit, input,
output, ASCII, BCD, control (e.g., N7:0, C4:0, etc.)

float

any floating point data type with 7-digit precision (valid range is
+1.17549446738 to +3.4028237e %),

block transfer

any block transfer data type (e.g., BT14:0)

ControlNet transfer

any CT data type (e.g., CT14:0)

message any message data type (e.g., MG15:0)

PID any PID data type (e.g., PD16:0) or integer data type
(e.g., N7:0)

string any string data type (e.g., ST12:0)

SFC status any SFC status data type (e.g., SC17:0)

Table C.A shows the programming instructions you can use and the
operands for those instructions. You can also use this table to format
instructions in ASCII for importing. For more information on
importing, see your programming manual.

Instructions marked with an asterisk (¥) are only supported by
Enhanced PLC-5 processors.

To enter the import syntax for any of the instructions listed in

Table C.A:

» enclose all of the operands in parentheses

» separate each of the operands by commas

For example, the following is the import syntax for the
FAL instruction:

FAL (R6:0, 10, 0, ALL, #N7:0, #N7:14N7:2);

021-87700210

C-2

Valid Data Types for Instruction Operands

Table C.A
Programming Instructions and Operands

Require
Instruction Description Operand Valid Value False-to-True
Transition
ABL * ASCII Test Buffer for Line channel immediate, 0-4 integer yes
control control
ACB * ASCII Number of Characters channel immediate, integer yes
in Buffer
control control
ACI* ASCII String to Integer source string no
destination integer
ACN * ASCII String Concatenate source A string no
source B string
destination string
ACS * Arc Cosine source i_mmediate, float (in radians), no
integer
destination float (in radians), integer
ACT * SFC action action number immediate N/A
(only for ASCII import/export) file number 0-999
destination string
ADD ADD source A immediate, integer, float no
source B immediate, integer, float
destination integer, float
AEX * String Extract source string no
index immediate, 0-82 integer
number immediate, 0-82 integer
destination string
AFI Always False none no
AHL * ASCII Set/Reset channel immediate, 0-4 integer yes
Handshake Lines
handshake AND mask immediate, Hex integer yes
handshake OR mask immediate, Hex integer
control control
AIC * ASCII Integer to String source immediate, integer no
destination string

021-87700210

NIC SANET

2 g

Valid Data Types for Instruction Operands

C-3

Require
Instruction Description Operand Valid Value False-to-True
Transition
AND Logical AND source A integer no
source B integer
destination integer
ARD * ASCII Read Characters channel immediate, 0-4 integer yes
destination string
control control
string length 0-82
ARL * ASCII Read Line channel immediate, 0-4 integer yes
destination string
control control
string length 0-82
ASC * ASCII String Search source string no
index immediate, 0-4 integer
search string
result integer
ASN * Arc Sine source immediate, float (in radians) no
destination float (in radians)
ASR * ASCII String Compare source A string no
source B string
ATN * Arc Tangent source immediate, float (in radians) no
destination float (in radians)
AVE * Average File file integer, float yes
destination integer, float
control control
length 1-1000
position 0-999
AWA * ASCII Write with Append channel immediate, 0-4 integer yes
source string
control control
string length 0-82

021-87700210

NIC SANET

2 g

C-4

Valid Data Types for Instruction Operands

Require
Instruction Description Operand Valid Value False-to-True
Transition
AWT * ASCII Write channel immediate, integer yes
source string
control control
length 0-82 yes
BRK Break none no
BSL Bit Shift Left file binary yes
control control
bit address bit
length 1 - 16000 (length in bits)
BSR Bit Shift Right file binary yes
control control
bit address bit
length 1 - 16000 (length in bits)
BTD Bit Distribute source immediate, integer no
source bit immediate, (0 - 15) integer
destination integer

destination bit

immediate (0 - 15)

length

immediate (1 - 16)

021-87700210

Valid Data Types for Instruction Operands

C-5

Require
Instruction Description Operand Valid Value False-to-True
Transition
BTR! Block Transfer Read rack 00-277 octal yes
group 0-7
module 0-1
control block block, integer
data file integer
length 0,1-64
continuous YES, NO
BTW! Block Transfer Write rack 00-277 octal yes
group 0-7
module 0-1
control block block, integer
data file integer
length 0,1-64
continuous YES, NO
Clo ControINet I/O Transfer control block ControlNet transfer (1 - 64) yes
CIR Custom Input Routine program file number immediate (2 - 999) for all N/A
processors
(for use with CAR input parameter list immediate, integer, float
applications only) return parameter list integer, float
CLR Clear destination integer, float no
CMP Compare expression, relative expression using values or no
expression, expression addresses with evaluators (for
a list, see chapter 3 in
this manual)
EXE mnemonic EXE
(end of expression)
only for ASCII import
COP File Copy source array no
destination array
length immediate (1 - 1000)

1 1n non-continuous mode, BTR and BTW ladder functions requires a false-to-true transition to execute. In continuous mode, once the rung goes
true, BTR and BTW functions continue to execute regardless of rung condition. See page 15-8 for more information.

021-87700210

NIC SANET

2 g

C-6

Valid Data Types for Instruction Operands

Require
Instruction Description Operand Valid Value False-to-True
Transition
COR Custom Output Routine program file number immediate (2 - 999) for all no
processors
(for use with CAR input parameter list immediate, integer, float
applications only) return parameter list integer, float
COS * Cosine source immediate, float (in radians) no
CPT Compute math expression expression using values or no
immediate integer float
addresses with evaluators
(for a list, see chapter 4 in
this manual)
EXE mnemonic EXE
only for ASCIl import
relative expression addresses with evaluators (for
a list, see chapter 4 in
this manual)
destination integer, float
CTD Count Down counter counter yes
PRE —32,768 - +32,767
AcC —32,768 - +32,767
CTU Count Up counter counter yes
PRE 32,768 - +32,767
AcC 32,768 - +32.767 yes
DDT Diagnostic Detect source array binary yes
reference array binary
result array integer
compare control control
length 1 - 16000 (length in bits)
position 0 - 15999
result control control
length 1-1000
position 0-999
DEG * Degree (convert radians source immediate, float (in radians) no
to degrees)
destination immediate, float (in degrees)

021-87700210

NIC SANET

2 g

Valid Data Types for Instruction Operands

C-7

Require
Instruction Description Operand Valid Value False-to-True
Transition
DFA Diagnostic Fault Annunciator control file integer
number of 1/0 immediate (8, 16, 32)
program file number immediate (3-999)
DIV Divide source A immediate, integer, float no
source B immediate, integer, float
destination integer, float
DTR Data Transitional source immediate, integer no
mask immediate, integer
reference integer
EOC end of SFC compression only for ASCII N/A
(see SOC) import/export
EOR end of rung only for ASCII N/A
import/export
EOT end of transition none no
ESE end SFC selection branch only for ASCII N/A
(see SEL) import/export
EQU Equal source A immediate, integer, float no
source B immediate, integer, float
EOP end of SFC program only for ASCII N/A
import/export
ERI error on an input instruction only in ASCII N/A
export files
ERO error on an output instruction only in ASCII N/A
export files
ESI end SFC simultaneous branch only for ASCII N/A
(see SIM) import/export
FAL File Arithmetic/Logical control control yes
length 1-1000
position 0-999
mode (INC, 1-1000, ALL)
destination integer, float

math expression

indexed math instruction

021-87700210

NIC SANET

2 g

C-8

Valid Data Types for Instruction Operands

Require
Instruction Description Operand Valid Value False-to-True
Transition
FBC File Bit Compare source array binary yes
reference array binary
result array integer
compare control control
length 1 - 16000 (length in bits)
position 0 - 15999
result control control
length 1-1000
position 0-999
FFL FIFO Load source operand immediate, indexed, integer yes
FIFO array indexed, integer
FIFO control control
length 1-1000
position 0-999
FFU FIFO Unload FIFO array indexed, integer yes
destination indexed, integer
FIFO control control
length 1-1000
position 0-999
FLL Fill File source operand immediate, integer, float no
destination array array no
length immediate (1 - 1000)
FOR For Loop LBL number integer no
index integer
initial value immediate, integer
terminal value immediate, integer
step size immediate, integer
FRD From BCD source immediate, integer no
destination integer

021-87700210

NIC SANET

2 g

Valid Data Types for Instruction Operands C-9

Require
Instruction Description Operand Valid Value False-to-True
Transition
FSC File Search and Compare control control yes
length 1-1000
position 0-999
mode immediate, integer (0, INC,
1-1000, ALL)
math expression indexed math instruction
GEQ Greater Than or Equal To source A immediate, integer, float no
source B immediate, integer, float
GRT Greater Than source A immediate, integer, float no
source B immediate, integer, float
DI Immediate Data Input data file offset immediate (0-999), integer yes
length immediate (1-64), integer
destination integer
IDO Immediate Data Output data file offset immediate (0-999), integer yes
length immediate (1-64), integer
source integer
[IN Immediate Input | (input) word immediate, integer no
PLC-5/10, 11, 12 15, 20, 25,
30: 000-077
PLC-5/40, 40L: 000-157
PLC-5/60, 60L, 80, :000-237
10T Immediate Output 0O (output) word immediate, integer no
PLC-5/10, 11, 12, 15, 20, 25,
30: 000-077
PLC-5/40, 40L: 000-157
PLC-5/60, 60L, 80: 000-237
JMP Jump label number immediate no
Classic PLC-5 processors:
0-31
Enhanced PLC-5 processors:
0-255
JSR Jump to Subroutine ladder program immediate (2 - 999) no
number
input parameter list immediate, integer, float
return parameter list integer float no
LAB SFC label (import/export only) file number immediate N/A
Classic PLC-5 processors:
0-31
Enhanced PLC-5 processors:
0-255

w.nicsanat.com

021-87700210

C-10

Valid Data Types for Instruction Operands

Require
Instruction Description Operand Valid Value False-to-True
Transition
LBL LBL (ladder program label) label number immediate no
Classic PLC-5 processors:
0-31
Enhanced PLC-5 processors:
0-255
LEQ Less Than or Equal To source A immediate, integer, float no
source B immediate, integer, float
LES Less Than source A immediate, integer, float no
source B immediate, integer, float
LFL * LIFO Load source operand immediate, indexed, integer yes
LIFO array indexed, integer
LIFO control control
length 1-1000
position 0-999
LFU * LIFO Unload LIFO array indexed, integer yes
destination indexed, integer
LIFO control control
length 1-1000
position 0-999
LIM Limit low limit immediate, integer, float no
test immediate, integer, float
high limit immediate, integer, float
LN * Natural Log source immediate, integer, float no
destination float
LOG * Log to the Base 10 source immediate, integer, float no
destination float no
MCR Master Control Relay no
MEQ Mask Compare Equal To source operand immediate, integer no
source mask immediate, integer
compare operand immediate, integer
MoV Move source immediate, integer, float no
destination integer, float
MSG Message control block message, integer yes

021-87700210

NIC SANET

2 g

Valid Data Types for Instruction Operands

Cc-11

Require
Instruction Description Operand Valid Value False-to-True
Transition
MUL Multiply source A immediate, integer, float no
source B immediate, integer, float
destination integer, float
MVM Masked Move source operand immediate, integer no
source mask immediate, Hex integer
destination integer
NEG Negate source immediate, integer, float no
destination integer, float
NEQ Not Equal To source A immediate, integer, float no
source B immediate, integer, float
NOT Logical NOT source immediate, integer no
destination integer
NSE SFC next selection branch only for ASCII N/A
import/export
NSI SFC next simultaneous branch only for ASCII N/A
import/export
NXT Next (FOR Loop) for label number immediate no
Classic PLC-5 processors:
0-31
Enhanced PLC-5 processors:
0-255
OR Logical OR source A immediate, bits integer yes
source B immediate, bits integer
destination integer
OSF * One Shot Falling storage bit bit yes; requires a
true-to-false
output bit immediate (0 - 15) transition to
- execute
output word integer
ONS One Shot source bit bit yes
OSR * One Shot Rising storage bit bit yes
output bit immediate (0 - 15)
output word integer
OTE Output Energize destination bit bit no
OTL Output Latch destination bit bit no
OoTU Output Unlatch destination bit bit no

021-87700210

NIC SANET

2 g

C-12

Valid Data Types for Instruction Operands

Require
Instruction Description Operand Valid Value False-to-True
Transition
PID PID control block PD no
control block integer yes
pv value integer
tieback value immediate, integer
cv value integer
RAD * Radian (convert degrees source immediate, float (in degrees) no
to radians)
destination float (in radians)
REF SFC reference (see LAB) label number immediate (0 - 255) N/A
(ASCIl import/export only)
RES Timer/Counter Reset timer, counter, control no
RET Return return parameter list immediate, integer, float no
RTO? Retentive Timer On timer timer yes
time base immediate (0.01, 1.0)
PRE 0 - 32767
ACC 0- 32767
SBR Subroutine input parameter list integer, float no
SDS Smart Directed Sequencer control file integer no
number of 1/0 immediate (8, 16, 32)
program file number immediate (3-999)
SDZ start of delete zone, only in ASCII N/A
unassembled edits export files
SEL SFC selection branch only for ASCII N/A
import/export
SFR* SFC reset SFC file number immediate (1 - 999) no
restart at step immediate, integer
SIM SFC simultaneous branch only for ASCII import N/A

2This instruction requires periodic scans to be updated. See page 2-13 in this manual or your Structured Text User Manual for more information.

021-87700210

NIC SANET

2 g

Valid Data Types for Instruction Operands

C-13

Require
Instruction Description Operand Valid Value False-to-True
Transition
SIN * Sine source immediate, float (in radians) no
destination float (in radians)
SIZ start of insert zone, only in ASCII N/A
unassembled edits export files
SOC start of compression only for ASCII N/A
import/export
SOP SFC start of program only for ASCII N/A
import/export
SOR start of rung only for ASCII N/A
import/export
SQl Sequencer Input file integer, indexed no
mask immediate, Hex indexed,
integer
source immediate, indexed, integer
control control
length 1-1000
position 0-999
SQL Sequencer Load file integer, indexed yes
source immediate, indexed, integer
control control
length 1-1000
position 0-999
SQO Sequencer Output file integer, indexed yes
destination mask immediate, indexed, integer
destination indexed, integer
control control
length 1-1000
position 0-999
SQR Square Root source immediate, integer, float no
destination integer, float
SRT * Sort sort file integer, float yes
file control control
length 1-1000
position 0-999

w.nicsanat.com

021-87700210

C-14

Valid Data Types for Instruction Operands

Require
Instruction Description Operand Valid Value False-to-True
Transition
SRZ start of replace zone, only in ASCII export N/A
unassembled edits files
STP SFC step (Classic file number 2-999 N/A
PLC-5 Processors)
(ASCIl import/export only)
STP * SFC step step timer file number 2 - 9999 N/A
(Enhanced PLC-5 Processors) : : :
(ASCII import/export only) time base immediate (0.01, 1.0)
qualifier N,S,R, L, D, P1, PO, SL,
SD, DS
action number immediate
(from ACT)
timer file number timer
time base immediate (0.01, 1.0)
STD * Standard Deviation standard deviation file integer, float yes
destination integer, float
file control control
length 1-1000
position 0-999
SUB Subtract source A immediate, integer, float no
source B immediate, integer, float
destination integer, float
TAN * Tangent source immediate, float (in radians) no
destination float (in radians)
TID * Token ID token ID number immediate N/A
(ASCIl import/export only) (must be unique per
SFC file)
TND Temporary End no
TOD To BCD source immediate, integer no
destination integer

021-87700210

NIC SANET

2 g

Valid Data Types for Instruction Operands

C-15

Require
Instruction Description Operand Valid Value False-to-True
Transition
TOF 2 Timer Off Delay timer timer yes: requires
true-to-false
transition to
execute
TOF 2 Timer Off Delay time base immediate (0.01, 1.0) yes: requires
true-to-false
PRE 0 - 32767 transition to
execute
AcC 0 - 32767
TON 3 Timer On Delay timer timer yes
time base immediate (0.01, 1.0)
PRE 0 - 32767
AcC 0 - 32767
TRC SFC transition file number 2 - 999 for all processors N/A
(ASCIl import/export only)
uiD * User Interrupt Disable no
UIE * User Interrupt Enable no
XIC Examine On source hit bit no
XI0 Examine Off source hit bit no
XOR Exclusive Or source A immediate, bits integer no
source B immediate, bits integer
destination integer
XPY * X to the Power of Y source A immediate, integer no
source B immediate, integer
destination integer

2This instruction requires periodic scans to be updated. See page 2-9 in this manual or page 2-10 in the Structured Text User Manual for more

information.

3This instruction requires periodic scans to be updated. See page 1-14 in this manual or your Structured Text User Manual for more information.

021-87700210

NIC SANET

2 g

C-16 Valid Data Types for Instruction Operands

Notes:

021-87700210

NIC SANAT r‘
AR =

Index

A
ABL instruction 17-4
ACB instruction 17-5
ACl instruction 17-6
ACN instruction 17-7
ACS instruction 4-11
ADD instruction 4-12

Addition instruction
ADD 4-12

AEX instruction 17-7

AFl instruction 13-13

AHL instruction 17-8

AIC instruction 17-9

Always False instruction 13-13
AND instruction 5-2

AND Operation instruction
AND 5-2

Arc Cosine instruction
ACS 4-11

Arc Sine instruction
ASN 4-13

Arc Tangent instruction
ATN 4-14

ARD instruction 17-10
ARL instruction 17-12
ASC instruction 17-14

ASCII
ABL 17-4
ACB 17-5
ACI 17-6
ACN 17-7
AEX 17-7
AHL 17-8
AIC 17-9
ARD 17-10
ARL 17-12
ASC 17-14
ASR 17-15
AWA 17-15
AWT 17-17

ASCII instructions, strings 17-3

ASCII Integer to String instruction 17-9
ASCII Read Characters instruction 17-10
ASCII Read Line instruction 17-12

ASCII Set Handshake Lines instruction 17-8
ASCII String Compare instruction 17-15
ASCII String Concatenate instruction 17-7
ASCII String Extract instruction 17-7
ASCII String Search instruction 17-14
ASCII String to Integer instruction 17-6
ASCII Write Append instruction 17-15
ASCII Write instruction 17-17

ASN instruction 4-13

ASR instruction 17-15

ATN instruction 4-14

021-87700210

www.nicsanat.com @

NIC SANET

0 (SRR S,
é.,.u

7

Index

Attention
32- to 16-bit conversion 4-10
AVE indexed address 4-16
change index value 13-6
control structure addressing 10-4
DTR online programming 10-8
entering input addresses 1-6
entering output addresses 1-7
FAL indexed address 9-2
FOR and NXT with output branches 13-5
FOR and NXT within branches 13-5
indexed addressing 8-2
jumped timers and counters 13-4
MCR zones
overlapping or nesting 13-2
timers and counters 13-2
modify status bits of BTR/BTW 15-6
MSG
status bits .ST and .EW 15-24
online programming with ONS 13-14
pairing stack instructions 11-6
PID
change engineering unit max 14-22
change engineering unit min 14-22
change inputs or units 14-19
changing scaling 14-6
resume last state 14-10
setting temperature limits 14-28
update time 14-21
placement of critical counters 2-15, 2-17
resetting TON and TOF 2-8, 2-20
SRT indexed address 4-27
status of BTR/BTW bits 15-7
STD indexed address 4-30
use of control address 12-3
using control addresses 8-2
using control addresses for instructions 11-2

AVE instruction 4-15

Average File instruction
AVE 4-15

AWA instruction 17-15
AWT instruction 17-17

B

Bit Distribute instruction
BTD 7-2

Bit Shift Left (BSL) instruction 11-2
Bit Shift Right (BSR) instruction 11-2

block transfer
BTR instruction 15-3
BTW instruction 15-3
direct communication mode 15-2
I/0 scan mode 15-1
instructions 15-1
programming examples 15-15
timing 15-13, 15-14
Block Transfer Read instruction
BTR 15-3

Block Transfer Write instruction
BTW 15-3

Break (BRK) instruction 13-5
BRK instruction 13-5

BSL instruction 11-2

BSR instruction 11-2

BTD instruction 7-2

BTR instruction 15-3

BTW instruction 15-3

C
CAR utility 18-1
ClO instruction 15-22
monitoring 15-24
status bits 15-24
using 15-23
Classic PLC5 processors 1

Clear instruction
CLR 4-17

CLR instruction 4-17

CMP
instruction 3-2

www.nicsanat.com

021-87700210 @

NIC SANAT r‘
AR =

Index

compare
EQU 3-5
expression 3-2
GEQ 3-5, 3-6
instructions 3-2
length of expressions 3-3
LEQ 3-6
LES 3-7
NEQ 3-10
compute
ACS 4-11
ADD 4-12
ASN 4-13
ATN 4-14
AVE 4-15
CLR 4-17
COS 4-18
CPT 4-5
DEG 6-3
DIV 4-19
EOT 13-18
expression 4-5
FSC 9-14
functions 4-9
10T 1-7
length of expressions 4-7
LN 4-20
LOG 4-21
MUL 4-22
NEG 4-23
ONS 13-14
order of operation 4-8
RAD 6-4
SIN 4-24
SQR 4-25
SRT 4-26
STD 4-28
SUB 4-31
TAN 4-32
XPY 4-33

Compute instruction
CPT 4-5

connecting to Ethernet PLC5 processors using
hostnames 16-6

control file
example 8-2

ControlNet I/O transfer
instruction 15-22

ControlNet PLC5 processors 1

convergent
scan time B-14

conversion
BCD 6-2
FRD 6-2

Convert from BCD instruction
FRD 6-2

Convert to BCD instruction
TOD 6-2

COP instruction 9-19
COS instruction 4-18

Cosine instruction
COS 4-18

Count Down instruction 2-17
Count Up instruction 2-15

counter
CTD 2-17
CTU 2-15
RES 2-20

counters
instructions 2-13

CPT instruction 4-5

CTD instruction 2-17

CTU instruction 2-15

custom application routine 18-1

D

data files
manipulating 8-3
range of values C-1
data storage
/0 image files 1-2

Data Transitional instruction

SRR \vww.nicsanat.com)
021-87700210

NIC SANAT r‘
AR =

Index

DDT instruction 10-2
DEG instruction 6-3

Degree instruction
DEG 6-3

derivative smoothing 14-4
DFA instruction 18-1

diagnostic
DDT 10-2
DTR 10-8
FBC 10-2
parameters 10-4, 10-8
search mode 10-2
status 10-5

Diagnostic Detect instruction
DDT 10-2

Diagnostic Fault Annunciator Instruction 18-1
diagnostic instructions 10-1

direct communication
block transfer 15-2

DIV instruction 4-19

divergent
scan time B-14

Divide instruction
DIV 4-19

DTR instruction 10-8

E

element manipulation
LIM 3-7
MEQ 3-9
MOV 7-3
MVM 7-4
End of Transmission instruction
EOT 13-18
engineering units
scaling 14-5
Enhanced PLC5 processors 1
EOT instruction 13-18

EQU instruction 3-5

Equal To instruction 3-5

Ethernet PLC5 processors 1
Examine Off instruction 1-3
Examine On instruction 1-3

expression
determining the length of 3-3, 4-7

F

FAL logical instruction 9-12
FBC instruction 10-2
FFL instruction 11-5
FFU instruction 11-5
FIFO Load (FFL) instruction 11-5
FIFO Unload (FFU) instruction 11-5
file

search and compare operations 9-17

File Arithmetic and Logic instruction
FAL 9-2

File Bit Comparison instruction
FBC 10-2

file concepts
control structure 8-2
manipulating data 8-3
modes of operation 8-5

File Copy instruction
COP 9-19

File Fill instruction
FLL 9-20

file instructions
logical 9-12

File Search and Compare instruction
FSC 9-14

021-87700210
NIC SANAT r‘
. =y

files

arithmetic operations 9-7
copy operations 9-5
functions 9-14
instruction

COP 9-19

FLL 9-20
logical operations 9-12
operation modes 8-5

FLL instruction 9-20

floating point
valid value range C-1

For (FOR) instruction 13-5
FOR instruction 13-5

FRD instruction 6-2

FSC instruction 9-14

G
gain constants 14-3
GEQ instruction 3-5, 3-6
Greater Than or Equal To instruction 3-5, 3-6

I
I/0 image files 1-2

I/0 scan mode
block transfer 15-1

IDI instruction 1-8
using 1-9

IDO instruction 1-8
using 1-9

lIN instruction 1-6

Immediate Data Input
instruction 1-8

Immediate Data Output
instruction 1-8

Immediate Input instruction 1-6

Immediate Output instruction
10T 1-7

incremental mode 8-7

instruction
ControlNet I/0 transfer 15-22
immediate data input 1-8
immediate data output 1-8

instructions
ASCII 17-1
block transfer 15-1
ClO

monitoring 15-24

compare 3-2
diagnostic 10-1
memory requirements A-1
message 16-1
operands C-1
program flow 13-1
relay-type 1-1, 2-1
sequencer 12-1
shift register 11-1
timer 2-1
timing A-1

INVALID OPERAND
error message 4-4

|OT instruction 1-7

J
JMP instruction 13-3
JSR instruction 13-8
Jump instruction 13-3
Jump to Subroutine instruction 13-8

L
Label (LBL) instruction 13-5
Label instruction 13-3
LBL instruction 13-3, 13-5
LEQ instruction 3-6
LES instruction 3-7
Less Than instruction 3-7
Less Than or Equal To instruction 3-6
LFL instruction 11-5

LFU instruction 11-5
021-87700210

NIC SANRAT

—

PR e]

)

-

Index

LIFO Load (LFL) instruction 11-5
LIFO Unload (LFU) instruction 11-5
LIM instruction 3-7

Limit Test instruction 3-7

LN instruction 4-20

LOG
instruction 4-21

Log to the base 10 instruction
LOG 4-21

logical
AND 5-2
NOT 5-3
OR 5-4
XOR 5-5

M

manipulating
file data 8-3

Masked Comparison for Equal instruction 3-9
Masked Move instruction 7-4

Master Control Reset instruction 13-2

MCR instruction 13-2

memory
instruction requirements A-1
SFC requirements B-3
MEQ instruction 3-9
message
instruction 16-1
modes
file operation 8-5
monitoring
ClO instructions 15-24
MOV instruction 7-3
Move instruction
MOV 7-3
MSG
instruction entry 16-10

MSG instruction 16-1
using 16-10

MUL instruction 4-22

Multiply instruction
MUL 4-22

MVM instruction 7-4

N

Natural Log instruction
LN 4-20

NEG instruction 4-23

Negate instruction
NEG 4-23

NEQ instruction 3-10

Next (NXT) instruction 13-5
Not Equal To instruction 3-10
NOT instruction 5-3

NOT Operation instruction
NOT 5-3

Number of Char in Buffer instruction 17-5
NXT instruction 13-5

0
One Shot Falling (OSF) instruction 13-16

One Shot instruction
ONS 13-14

One Shot Rising (OSR) instruction 13-15
ONS instruction 13-14

operands
instructions C-1

OR instruction 5-4

OR Operation instruction
OR 5-4

order of operation 4-8
OSF instruction 13-16
OSR instruction 13-15
OTE instruction 1-4
OTL instruction 1-4
OTU instruction 1-5

021-87700210
NIC SANAT r‘
e =

Index

Output Energize instruction 1-4
Output Latch instruction 1-4
Output Unlatch instruction 1-5

PID
biasing 14-9
equations 14-2
examples 14-29
instruction 14-10
integer examples 14-29
PD examples 14-33
selecting derivative term 14-7
setting output alarms 14-7
using manual mode 14-8
using output limiting 14-7
PID instruction 14-1
PLC2 compatibility file 16-15

process control
biasing 14-9
derivative smoothing 14-4
equations 14-2
gain constants 14-3
integer PID examples 14-29
PD PID examples 14-33
PID 14-10
PID examples 14-29
PID instruction 14-1
selecting derivative term 14-7
setting output alarms 14-7
using manual mode 14-8
using output limiting 14-7
program constant
valid value range C-1

program constants 3-2, 4-5

program flow
AFl 13-13
JMP and LBL 13-3
JSR, SBR, and RET 13-8
MCR 13-2
uID 13-19
UIE 13-20

program flow instruction
FOR, BRK, LBL, and RET 13-5
OSF 13-16
OSR 13-15
SFR 13-17
program flow instructions 13-1

Programming
SDS instruction 18-2

programming
instructions
operands C-1

Proportional, Integral, and Derivative instruction
14-10

R
RAD instruction 6-4

Radian instruction
RAD 6-4

relay-type
IIN 1-6
OTE 1-4
OTL 1-4
0TU 1-5
XIC 1-3
XI0 1-3

RES instruction 2-20

Reset instruction 2-20

RET instruction 13-8

Retentive Timer On instruction 2-10
Return instruction 13-8

RTO instruction 2-10

run times
determining B-12

021-87700210

NIC SANAT r‘
AR =

www.nicsanat.com @

Index

S
SBR instruction 13-8

scaling
to engineering units 14-5

scan sequence
SFC B-7

scan time
convergent B-14
divergent B-14
steady—state B-14

scanner mode
configuring 15-13, 15-14

SDS instruction 18-1

selection branch
scanning sequence B-8

sequencer
applying 12-1
instructions 12-1
SQI 12-2
SQL 12-2
SQO 12-2

Sequencer Input instruction 12-2
Sequencer Load instruction 12-2
Sequencer Output instruction 12-2
Sequential Function Chart Reset

instruction 13-17

SFC
constraints B-5
example

scanning sequence B-11

memory requirements B-3

scanning sequence
example B-11
selection branch B-8

simultaneous branch B-9

scanning sequences
step/transition B-7
status information B-1

SFR instruction 13-17

shift register instruction
applying 11-1
BSL and BSR 11-2
FFL and FFU 11-5
LFL and LFU 11-5

simultaneous branch
scanning sequence B-9

SIN instruction 4-24

Sine instruction
SIN 4-24

Smart Directed Sequencer (SDS) Instruction
overview 18-2
programming 18-2

Smart Directed Sequencer Instruction 18-1

Sort File instruction
SRT 4-26

SQl instruction 12-2

SQL instruction 12-2
SQO instruction 12-2
SQR instruction 4-25

Square Root instruction
SQR 4-25
SRT instruction 4-26

Standard Deviation instruction
STD 4-28

status hits
CIO instruction 15-24

status information
SFC B-1

STD instruction 4-28

steady-state
scan time B-14

step
scanning sequence B-7

SUB instruction 4-31
Subroutine Header instruction 13-8

Subtract instruction
SUB 4-31

021-87700210

NIC SANAT r‘
AR =

www.nicsanat.com @

Index

-
TAN instruction 4-32

Tangent instruction
TAN 4-32

Temporary End
instruction 13-13

Temporary End instruction 13-20
Test Buffer For Line instruction 17-4

timer
accuracy 2-3
instruction parameters 2-2, 2-13
RES 2-20
RTO 2-10
TOF 2-7
TON instruction 2-4

Timer Off Delay instruction 2-7

Timer On Delay instruction 2-4

timers 2-1

timing
block transfer 15-13, 15-14
instructions A-1

tip
connecting to Ethernet PLC5 processors

using hostnames 16-6

TND
instruction 13-13

TND instruction 13-19, 13-20
TOD instruction 6-2
TOF instruction 2-7
TON instruction 2-4

transition
scanning sequence B-7

U
units, engineering
scaling 14-5
User Interrupt Disable
UID 13-19

User Interrupt Enable
UIE 13-20

using
CIO instruction 15-23
IDI instruction 1-9
IDO instruction 1-9
MSG instruction 16-10

X

X to the Power of Y instruction
XPY 4-33

XIC instruction 1-3
XIO instruction 1-3
XOR instruction 5-5

XOR Operation instruction
XOR 5-5

XPY instruction 4-33

021-87700210
NIC SANAT r‘
e =

I-10 Index

Notes:

021-87700210

NIC SANAT r‘
AR =

Allen-Bradley
Publication Problem

Report

If you find a problem with our documentation, please complete and return this form

Pub. Name PLC-5 Programmable Controllers Instruction Set Reference

Cat. No. 1785 series

Pub. No. 1785-6.1 Pub. Date

November 1998 Part No. 955133-83

Check Problem(s) Type: Describe Problem(s): Internal Use Only
[] Technical Accuracy [[]text [] illustration
[] Completeness [] procedure/step [] illustration [] definition [] info in manual
What information is missing? | [] example [] guideline [[] feature (accessibility)
[] explanation [] other info not in
manual
[] Clarity
What is unclear?
[] Sequence
What is not in the right order?
[] other Comments
Use back for more comments.
Your Name Location/Phone

Return to: Marketing Communications, Allen-Bradley Co., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118Phone: (440)646-3166

FAX: (440)646-4320

021-87700210

NIC SANAT r‘
AR =

PLEASE FASTEN HERE (DO NOT STAPLE)

Other Comments

[S4)
-
o
=
[S4)
PLEASE FOLD HERE Ej
__ =
-1,
[S4)
._1
NO POSTAGE &~

NECESSARY

IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 18235 CLEVELAND OH

POSTAGE WILL BE PAID BY THE ADDRESSEE

N Roclewell Automation
Allen-Bradley

1 ALLEN BRADLEY DR
MAYFIELD HEIGHTS OH 44124-9705

021-87700210

NIC SANAT r‘
I!IIIIIIIIIIII”IIIIIIIIIIIIIIIIIIII”IIIIIIIIIIII” Lm '&"u

Customer Support

In the United States and Canada

Outside of the United States

If you need additional assistance in using your software,
Allen-Bradley offers telephone and on-site product support at
Customer Support Centers worldwide.

For technical assistance on the telephone, first contact your local sales
office, distributor, or system integrator. If additional assistance is
needed, then contact your local Customer Support Center or contact

System Support Services.

If you have a SupportPlus agreement or your software is under
warranty, you can contact System Support Services at:
1-800-289-2279. Have your support contract or software registration

number available.

For assistance that requires on-site support, contact your local sales
office, distributor, or system integrator. During non-office hours,
contact Allen-Bradley 24-hour Hot Line at 1-800-422-4913.

Contact your local Customer Support Center at:

Region or Area

Customer Support Center
Telephone Number

Canada (Cambridge, Ontario)

519-623-1810

Latin America (Mexico)

52-5-259-0040

United Kingdom (Milton Keynes)

44-908 838800

France (Paris)

(33-1) 3067-7200

Germany (Gruiten)

(49) 2104 6900

Italy (Milan)

(39-2) 939-721

Asia Pacific (Hong Kong)

(852) 887-4788

Spain (Barcelona)

(34-3) 331-7004

For assistance that requires on-site support, contact your local office,
distributor, or system integrator. During non-office hours, contact
your local Customer Support Center.

* Roclowel Asiomation Frackwell Automation helps ils cuslomess receiva a supanion retum an $eir imvesimeant by bringing

fogether leading brands in industrial sutomaton, creating a broed spectrum of assy-io-inkegraia
peoducts. Thess ans supporiad by local technical resounces available wordwids, a global rebwark
of sysiem solutions peoviders, and the advanced technokogy resourcas of Rockwell

Worldwide representation.

Arganting + Sgsirala ¢ Austria « Batwaln + Belgum + Bolhvia + Bzl « Bulgara + Canada « Chila » Ching, Peopla’s Rapublic of + Colombia + Costa Rica + Croata = Cyprus
Geech Republc + Danmark « Domincan Republc + Ecusdor « Egypt « E| Savador + Finland + France = Garmany = Ghana = Graece = Guatemala « Honduwas + Hong Kong
Hungary = lcaland = India = Indongela = ran + ineland + lsesal + [tely = Jamaica + Japan = Jomdan = Koeea = Kuwak * Lebanon + Macau = Malaysla « Mafla + Mesco
Mmoo « The Mafrarands = Mew Zaaland « Migaria = Konesy + Oman + Pakislan = Panama + Peeu = Phillppines + Poland = Porlegal « Puart Aice = Oatar = Romania « Ressia
Saud Arebia » Singapon « Sloveiia + Slovania « South Avica, Rapublic of « Spain « Swaden + Seizariand » Tasan + Thaland « Tinidad « Tunkia « Terkey « Urdled Arab Emirates
Linited Kingrom = United Siahes « Unaguay + Verazusla

Foclowsdl Automaticn Headguartars, 1200 South Second Street, Milvauken, W1 52204 USK, Tat (1) 414 3822000, Fasc (1) 414 3324444
Fiockwell Aulomation Exropean Headquariers SAMY, avenus Hermann Debmwdaan, 486, 1160 Brusseks, Belgium, Tel: (3 2653 06 00, Facx (32) 2863 05 40
Foclwsll Automaticn &sia Pacific Headquarters, 27F Citicorp Cantre, 18 Whithekl Poad, Caussway Bay, Hong Kong, Tet: (B52) 2087 4782, Faxc [R5X) 2508 1846

