
1

STL (S7-1500)

Manual

STL (S7-1500)

20.00.00.00

11/2024



2 Manual, 11/2024

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as
well as to prevent damage to property. The notices referring to your personal safety are
highlighted in the manual by a safety alert symbol, notices referring only to property damage
have no safety alert symbol. These notices shown below are graded according to the degree of
danger.

 DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

 CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest
degree of danger will be used. A notice warning of injury to persons with a safety alert symbol
may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel
qualified for the specific task in accordance with the relevant documentation, in particular its
warning notices and safety instructions. Qualified personnel are those who, based on their
training and experience, are capable of identifying risks and avoiding potential hazards when
working with these products/systems.

Proper use of Siemens products

Note the following:

 WARNING

Siemens products may only be used for the applications described in the catalog and in the
relevant technical documentation. If products and components from other manufacturers are
used, these must be recommended or approved by Siemens. Proper transport, storage,
installation, assembly, commissioning, operation and maintenance are required to ensure
that the products operate safely and without any problems. The permissible ambient



Manual, 11/2024 3

conditions must be complied with. The information in the relevant documentation must be
observed.

Trademarks

All names identified by ® are registered trademarks of Siemens Aktiengesellschaft. The
remaining trademarks in this publication may be trademarks whose use by third parties for their
own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and
software described. Since variance cannot be precluded entirely, we cannot guarantee full
consistency. However, the information in this publication is reviewed regularly and any
necessary corrections are included in subsequent editions.

Siemens Aktiengesellschaft
Digital Industries
Postfach 48 48
90026 NÜRNBERG
GERMANY

11/2024 Subject to change
Copyright © Siemens 2024.
All rights reserved



4 Manual, 11/2024

10
10
10
11
12
12
16
20
24
28
31
34
34
37
40
44
44
49
49
51

53

5456
57
58

59

6162
62
64
65

0
0
0

Table of content

1  STL (S7-1500)
1.1  Bit logic operations (S7-1500)
1.1.1  R_TRIG: Detect positive signal edge (S7-1500)
1.1.2  F_TRIG: Detect negative signal edge (S7-1500)
1.2  Timer operations (S7-1500)
1.2.1  TP: Generate pulse (S7-1500)
1.2.2  TON: Generate on-delay (S7-1500)
1.2.3  TOF: Generate off-delay (S7-1500)
1.2.4  TONR: Time accumulator (S7-1500)
1.2.5  RESET_TIMER: Reset timer (S7-1500)
1.2.6  PRESET_TIMER: Load time duration (S7-1500)
1.3  Counter operations (S7-1500)
1.3.1  CTU: Count up (S7-1500)
1.3.2  CTD: Count down (S7-1500)
1.3.3  CTUD: Count up and down (S7-1500)
1.4  Comparator operations (S7-1500)
1.4.1  CompType: Compare tag structured data types (S7-1500)
1.4.2  VARIANT (S7-1500)
1.4.2.1  EQ_Type: Compare data type for EQUAL with the data type of a tag (S7-1500)
1.4.2.2  NE_Type: Compare data type for UNEQUAL with the data type of a tag (S7-1500)
1.4.2.3 
EQ_ElemType: Compare data type of an ARRAY element for EQUAL with the data type of a tag (S7-
1500)
1.4.2.4 
NE_ElemType: Compare data type of an ARRAY element for UNEQUAL with the data type of a tag
(S7-1500)
1.4.2.5  IS_NULL: Check for EQUALS NULL pointer (S7-1500)
1.4.2.6  NOT_NULL: Check for UNEQUALS NULL pointer (S7-1500)
1.4.2.7  IS_ARRAY: Check for ARRAY (S7-1500)
1.4.2.8 
EQ_TypeOfDB: Compare data type of an indirectly addressed DB for EQUAL with a data type (S7-
1500)
1.4.2.9 
NE_TypeOfDB: Compare data type of an indirectly addressed DB for UNEQUAL with a data type (S7-
1500)
1.5  Math functions (S7-1500)
1.5.1  MIN: Get minimum (S7-1500)
1.5.2  MAX: Get maximum (S7-1500)
1.5.3  LIMIT: Set limit value (S7-1500)
1.6  Move operations (S7-1500)
1.6.1  MOVE: Move value (S7-1500)
1.6.2  Deserialize: Deserialize (S7-1500)



Manual, 11/2024 5

0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

00
0
0
0
0
0

1.6.3  Serialize: Serialize (S7-1500)
1.6.4  MOVE_BLK: Move block (S7-1500)
1.6.5  MOVE_BLK_VARIANT: Move block (S7-1500)
1.6.6  UMOVE_BLK: Move block uninterruptible (S7-1500)
1.6.7  FILL_BLK: Fill block (S7-1500)
1.6.8  UFILL_BLK: Fill block uninterruptible (S7-1500)
1.6.9  SCATTER: Parse the bit sequence into individual bits (S7-1500)
1.6.10 
SCATTER_BLK: Parse elements of an ARRAY of bit sequence into individual bits (S7-1500)
1.6.11  GATHER: Merge individual bits into a bit sequence (S7-1500)
1.6.12 
GATHER_BLK: Merge individual bits into multiple elements of an ARRAY of bit sequence (S7-1500)
1.6.13  AssignmentAttempt: Attempt assignment to a reference (S7-1500)
1.6.14  ARRAY DB (S7-1500)
1.6.14.1  ReadFromArrayDB: Read from ARRAY data block (S7-1500)
1.6.14.2  WriteToArrayDB: Write to ARRAY data block (S7-1500)
1.6.14.3  ReadFromArrayDBL: Read from array data block in load memory (S7-1500)
1.6.14.4  WriteToArrayDBL: Write to array data block in load memory (S7-1500)
1.6.15  Read / Write access (S7-1500)
1.6.15.1  PEEK: Read memory address (S7-1500)
1.6.15.2  PEEK_BOOL: Read memory bit (S7-1500)
1.6.15.3  POKE: Write memory address (S7-1500)
1.6.15.4  POKE_BOOL: Write memory bit (S7-1500)
1.6.15.5  POKE_BLK: Write memory area (S7-1500)
1.6.15.6  READ_LITTLE: Read data in little endian format (S7-1500)
1.6.15.7  WRITE_LITTLE: Write data in little endian format (S7-1500)
1.6.15.8  READ_BIG: Read data in big endian format (S7-1500)
1.6.15.9  WRITE_BIG: Write data in big endian format (S7-1500)
1.6.16  VARIANT (S7-1500)
1.6.16.1  VariantGet: Read out VARIANT tag value (S7-1500)
1.6.16.2  VariantPut: Write VARIANT tag value (S7-1500)
1.6.16.3  CountOfElements: Get number of ARRAY elements (S7-1500)
1.6.17  Symbolic move (S7-1500)
1.6.17.1  Symbolic access during runtime (S7-1500)
1.6.17.2  ResolveSymbols: Resolve several symbols (S7-1500)
1.6.17.3  System data type ResolvedSymbol (S7-1500)
1.6.17.4 
MoveResolvedSymbolsToBuffer: Read values from resolved symbols and write them into buffer (S7-
1500)
1.6.17.5 
MoveResolvedSymbolsFromBuffer: Read values from buffer and write them into resolved symbols
(S7-1500)
1.6.18  ARRAY[*] (S7-1500)
1.6.18.1  LOWER_BOUND: Read out low ARRAY limit (S7-1500)
1.6.18.2  UPPER_BOUND: Read out high ARRAY limit (S7-1500)
1.6.19  Legacy (S7-1500)
1.6.19.1  BLKMOV: Move block (S7-1500)
1.6.19.2  UBLKMOV: Move block uninterruptible (S7-1500)



6 Manual, 11/2024

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.6.19.3  FILL: Fill block (S7-1500)
1.7  Conversion operations (S7-1500)
1.7.1  SCALE_X: Scale (S7-1500)
1.7.2  NORM_X: Normalize (S7-1500)
1.7.3  VARIANT (S7-1500)
1.7.3.1  VARIANT_TO_DB_ANY: Convert VARIANT to DB_ANY (S7-1500)
1.7.3.2  DB_ANY_TO_VARIANT: Convert DB_ANY to VARIANT (S7-1500)
1.7.4  Legacy (S7-1500)
1.7.4.1  SCALE: Scale (S7-1500)
1.7.4.2  UNSCALE: Unscale (S7-1500)
1.8  Program control operations (S7-1500)
1.8.1  Runtime control (S7-1500)
1.8.1.1  ENDIS_PW: Locking and unlocking passwords of the CPU access levels (S7-1500)
1.8.1.2  RE_TRIGR: Restart cycle monitoring time (S7-1500)
1.8.1.3  STP: Exit program (S7-1500)
1.8.1.4  GET_ERROR: Get error locally (S7-1500)
1.8.1.5  GET_ERR_ID: Get error ID locally (S7-1500)
1.8.1.6  INIT_RD: Initialize all retain data (S7-1500)
1.8.1.7  WAIT: Configure time delay (S7-1500)
1.8.1.8  RUNTIME: Measure program runtime (S7-1500)
1.9  Word logic operations (S7-1500)
1.9.1  DECO: Decode (S7-1500)
1.9.2  ENCO: Encode (S7-1500)
1.9.3  SEL: Select (S7-1500)
1.10  Legacy (S7-1500)
1.10.1  DRUM: Implement sequencer (S7-1500)
1.10.2  DCAT: Discrete control-timer alarm (S7-1500)
1.10.3  MCAT: Motor control-timer alarm (S7-1500)
1.10.4  IMC: Compare input bits with the bits of a mask (S7-1500)
1.10.5  SMC: Compare scan matrix (S7-1500)
1.10.6  LEAD_LAG: Lead and lag algorithm (S7-1500)
1.10.7  SEG: Create bit pattern for seven-segment display (S7-1500)
1.10.8  BCDCPL: Create tens complement (S7-1500)
1.10.9  BITSUM: Count number of set bits (S7-1500)
1.11  STL Mnemonic (S7-1500)
1.11.1  Bit logic operations (S7-1500)
1.11.1.1  A: AND logic operation (S7-1500)
1.11.1.2  AN: Negated AND logic operation (S7-1500)
1.11.1.3  O: OR logic operation (S7-1500)
1.11.1.4  ON: Negated OR logic operation (S7-1500)
1.11.1.5  X: EXCLUSIVE OR logic operation (S7-1500)
1.11.1.6  XN: Negated EXCLUSIVE OR logic operation (S7-1500)
1.11.1.7  O: OR logic operation of AND functions (S7-1500)
1.11.1.8  A(: AND logic operation with branch (S7-1500)
1.11.1.9  AN(: Negated AND logic operation with branch (S7-1500)
1.11.1.10  O(: OR logic operation with branch (S7-1500)



Manual, 11/2024 7

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.11.1.11  ON(: Negated OR logic operation with branch (S7-1500)
1.11.1.12  X(: EXCLUSIVE OR logic operation with branch (S7-1500)
1.11.1.13  XN(: Negated EXCLUSIVE OR logic operation with branch (S7-1500)
1.11.1.14  ): Close branch (S7-1500)
1.11.1.15  =: Assignment (S7-1500)
1.11.1.16  R: Reset (S7-1500)
1.11.1.17  S: Set (S7-1500)
1.11.1.18  NOT: Invert RLO (S7-1500)
1.11.1.19  SET: Set RLO to 1 (S7-1500)
1.11.1.20  CLR: Reset RLO to 0 (S7-1500)
1.11.1.21  SAVE: Save RLO in BR bit (S7-1500)
1.11.1.22  FN: Scan RLO for negative signal edge (S7-1500)
1.11.1.23  FP: Scan RLO for positive signal edge (S7-1500)
1.11.2  Timer operations (S7-1500)
1.11.2.1  FR: Enable timer (S7-1500)
1.11.2.2  L: Load timer value (S7-1500)
1.11.2.3  LC: Load BCD-coded timer value (S7-1500)
1.11.2.4  R: Reset timer (S7-1500)
1.11.2.5  SP: Start pulse timer (S7-1500)
1.11.2.6  SE: Start extended pulse timer (S7-1500)
1.11.2.7  SD: Start on-delay timer (S7-1500)
1.11.2.8  SS: Start retentive on-delay timer (S7-1500)
1.11.2.9  SF: Start off-delay timer (S7-1500)
1.11.3  Counter operations (S7-1500)
1.11.3.1  FR: Enable counter (S7-1500)
1.11.3.2  L: Load counter (S7-1500)
1.11.3.3  LC: Load BCD-coded counter value (S7-1500)
1.11.3.4  R: Reset counter (S7-1500)
1.11.3.5  S: Set counter (S7-1500)
1.11.3.6  CU: Count up (S7-1500)
1.11.3.7  CD: Count down (S7-1500)
1.11.4  Comparator operations (S7-1500)
1.11.4.1  ? I: Compare 16-bit integers (S7-1500)
1.11.4.2  ? D: Compare 32-bit integers (S7-1500)
1.11.4.3  ? R: Compare floating-point numbers (S7-1500)
1.11.5  Math functions (S7-1500)
1.11.5.1  Integers (S7-1500)
1.11.5.2  Floating-point numbers (S7-1500)
1.11.5.3  Advanced floating-point numbers (S7-1500)
1.11.6  Load and transfer (S7-1500)
1.11.6.1  Load (S7-1500)
1.11.6.2  Transfer (S7-1500)
1.11.7  Conversion operations (S7-1500)
1.11.7.1  BTI: Convert BCD to integer (16 bit) (S7-1500)
1.11.7.2  ITB: Convert integer (16 bit) to BCD (S7-1500)
1.11.7.3  BTD: Convert BCD to integer (32 bit) (S7-1500)



8 Manual, 11/2024

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.11.7.4  ITD: Convert integer (16 bit) to integer (32 bit) (S7-1500)
1.11.7.5  DTB: Convert integer (32 bit) to BCD (S7-1500)
1.11.7.6  DTR: Convert integer (32 bit) to floating-point number (S7-1500)
1.11.7.7  INVI: Create ones complement integer (16 bit) (S7-1500)
1.11.7.8  INVD: Create ones complement double integer (32 bit) (S7-1500)
1.11.7.9  NEGI: Negate integer (16 bit) (S7-1500)
1.11.7.10  NEGD: Negate integer (32 bit) (S7-1500)
1.11.7.11  NEGR: Negate floating-point number (S7-1500)
1.11.7.12  CAW: Switch bytes in the right word of accumulator 1 (S7-1500)
1.11.7.13  CAD: Switch all bytes in accumulator 1 (S7-1500)
1.11.7.14  RND: Round numerical value (S7-1500)
1.11.7.15  TRUNC: Truncate numerical value (S7-1500)
1.11.7.16  RND+: Generate next higher integer from floating-point number (S7-1500)
1.11.7.17  RND-: Generate next lower integer from floating-point number (S7-1500)
1.11.8  Program control operations (S7-1500)
1.11.8.1  Jumps (S7-1500)
1.11.8.2  Data blocks (S7-1500)
1.11.8.3  Code blocks (S7-1500)
1.11.9  Word logic operations (S7-1500)
1.11.9.1  AW: AND logic operation word by word (S7-1500)
1.11.9.2  OW: OR logic operation word by word (S7-1500)
1.11.9.3  XOW: EXCLUSIVE OR logic operation word by word (S7-1500)
1.11.9.4  AD: AND logic operation double word by double word (S7-1500)
1.11.9.5  OD: OR logic operation double word by double word (S7-1500)
1.11.9.6  XOD: EXCLUSIVE OR logic operation double word by double word (S7-1500)
1.11.10  Shift and rotate (S7-1500)
1.11.10.1  Shift (S7-1500)
1.11.10.2  Rotate (S7-1500)
1.11.11  Additional instructions (S7-1500)
1.11.11.1  Accumulator (S7-1500)
1.11.11.2  Address register (S7-1500)
1.11.11.3  Null instructions (S7-1500)



Manual, 11/2024 9



10 Manual, 11/2024

This section contains information on the following topics:

Bit logic operations (S7-1500)

Timer operations (S7-1500)

Counter operations (S7-1500)

Comparator operations (S7-1500)

Math functions (S7-1500)

Move operations (S7-1500)

Conversion operations (S7-1500)

Program control operations (S7-1500)

Word logic operations (S7-1500)

Legacy (S7-1500)

STL Mnemonic (S7-1500)

1.1 Bit logic operations (S7-1500)

1.1.1 R_TRIG: Detect positive signal edge (S7-1500)

Description
With the "Detect positive signal edge" instruction, you can detect a state change from "0" to "1"
at the CLK input. The instruction compares the current value at the CLK input with the state of
the previous query (edge memory bit) that is saved in the specified instance. If the instruction
detects a state change at the CLK input from "0" to "1", a positive signal edge is generated at the
Q output, i.e., the output has the value TRUE or "1" for exactly one cycle.

In all other cases, the signal state at the output of the instruction is "0".

Parameters
The following table shows the parameters of the "Detect positive signal edge" instruction:

Parameters Declaration Data type Memory area Description

STL (S7-1500) 1 



Manual, 11/2024 11

CLK Input BOOL I, Q, M, D, L or
constant

Incoming signal, the edge of which is to
be queried.

Q Output BOOL I, Q, M, D, L Result of edge evaluation

Example
The following example shows how the instruction works:

STL Explanation

CALL R_TRIG,
"R_TRIG_DB"

// The instruction is called.

CLK := "TagIn" // Positive signal edge is detected.

Q := "TagOut" // Signal state "1" on positive signal
edge.

The previous state of the tag at the CLK input is stored in the "R_TRIG_DB" tag. If a change in the
signal state from "0" to "1" is detected in the "TagIn" operand, the "TagOut" output has signal
state "1" for one cycle.

See also
Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)
Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.1.2 F_TRIG: Detect negative signal edge (S7-1500)

Description
With the "Detect negative signal edge" instruction, you can detect a state change from "1" to "0"
at the CLK input. The instruction compares the current value at the CLK input with the state of
the previous query (edge memory bit) that is saved in the specified instance. If the instruction
detects a state change at the CLK input from "1" to "0", a negative signal edge is generated at the
Q output, i.e., the output has the value TRUE or "1" for exactly one cycle.
In all other cases, the signal state at the output of the instruction is "0".

Note

Behavior after CPU startup

The IEC61131 standard describes that the instruction "F_TRIG" sets the output "Q"
to TRUE for one cycle if the input "CLK" has the value FALSE at CPU startup.

In order for "F_TRIG" to show the behavior described in the standard after a CPU
startup, the "Stat_Bit" instance must be initialized with TRUE.



12 Manual, 11/2024

Parameters
The following table shows the parameters of the "Detect negative signal edge" instruction:

Parameters Declaration Data type Memory area Description

CLK Input BOOL I, Q, M, D, L or
constant

Incoming
signal, the
edge of which
is to be
queried.

Q Output BOOL I, Q, M, D, L Result of edge
evaluation

Example
The following example shows how the instruction works:

STL Explanation

CALL F_TRIG,
"F_TRIG_DB"

// The instruction is called.

CLK := "TagIn" // Negative signal edge is detected.

Q := "TagOut" // Signal state "1" on negative signal
edge.

The previous state of the tag at the CLK input is stored in the "F_TRIG_DB" tag. If a change in the
signal state from "1" to "0" is detected in the "TagIn" operand, the "TagOut" output has signal
state "1" for one cycle.
See also

Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)
Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.2 Timer operations (S7-1500)

1.2.1 TP: Generate pulse (S7-1500)

Description
You can use the "Generate pulse" instruction to set the Q output for a programmed duration.
The instruction is started when the result of logic operation (RLO) of the IN parameter changes



Manual, 11/2024 13

from "0" to "1" (positive signal edge). The programmed time PT begins when the instruction
starts. The Q parameter is set for the time PT, regardless of the subsequent changes in the input
signal. While the time PT is running, the detection of a new positive signal edge at the IN input
has no influence on the signal state at the Q output.
You can query the current time value at the ET output. The time value starts at T#0s and ends
when the value of the time PT is reached. When the time PT has elapsed and the signal state at
input IN is "0", the ET output is reset. If the instruction is not called in the program because it is
skipped, for example, the ET output returns a constant value as soon as the time has expired.

The operating system resets the instances of the "Generate pulse" instruction during a cold
restart. If you want instances of the instruction to be initialized after a warm restart, call the
instances to be initialized in a startup OB with the value "0" set for the PT parameter. If instances
of the "Generate pulse" instruction are located within another block, you can reset these
instances, for example, by initializing the higher-level block.

Use the "Call block" (CALL) instruction in the program code to call the "Generate pulse"
instruction.
After the selection of the data type from the drop-down list "???", the "Call options" dialog opens.

Each call of the "Generate pulse" instruction must be assigned to an IEC timer in which the
instance data is stored. An IEC Timer is a structure of the data type IEC_TIMER, IEC_LTIMER,
TP_TIME or TP_LTIME that you can declare as follows:

Declaration of a data block of system data type IEC_TIMER or IEC_LTIMER (for example,

"MyIEC_TIMER")

Declaration as a local tag of the type TP_TIME or TP_LTIME in the "Static" section of a block

(for example, #MyTP_TIMER)

Updating the actual values in the instance data
The instance data from "Generate pulse" is updated according to the following rules:

IN input

The "Generate pulse" instruction compares the current RLO with the RLO from the previous

query, which is saved in the IN parameter in the instance data. If the instruction detects a

change in the RLO from "0" to "1", there is a positive signal edge and the time measurement

is started. After the "Generate pulse" instruction has been processed, the value of the IN

parameter is updated in the instance data and is used as edge memory bit for the next

query.

Note that the edge evaluation is disrupted when the actual values of the IN parameter are

written or initialized by other functions.  

PT input

The value at the PT input is written to the PT parameter in the instance data when the edge

changes at the IN input.  

Q and ET outputs



14 Manual, 11/2024

The actual values of the Q and ET outputs are updated in the following cases:

- When the instruction is called, if the ET or Q outputs are interconnected.

Or

- At an access to Q or ET.  

If the outputs are not interconnected and also not queried, the current time value at the Q

and ET outputs is not updated. The outputs are not updated, even if the instruction is

skipped in the program.  

The internal parameters of the "Generate pulse" instruction are used to calculate the time

values for Q and ET. Note that the time measurement is disrupted when the actual values of

the instruction are written or initialized by other functions.

DANGER

Danger when reinitializing the actual values

Reinitializing the actual values of an IEC timer while the time measurement is
running disrupts the function of the IEC timer. Changing the actual values can result
in inconsistencies between the program and the actual process. This can cause
serious damage to property and personal injury.

The following functions can cause the actual values to be reinitialized:

Loading the block with reinitialization

Loading snapshots as actual values

Controlling or forcing the actual values

The "WRIT_DBL" instruction

Before you execute these functions, take the following precautions:

Make sure that the plant is in a safe state before you overwrite the actual values.

Make sure that the IEC timer has expired before initializing its actual values. 　

If you overwrite the actual values with a snapshot, make sure that the snapshot
was taken at a time when the system was in a safe state.

Make sure that the program does not read or write the affected data during
transmission.

Parameters
The following table shows the parameters of the "Generate pulse" instruction:



Manual, 11/2024 15

Parameters Declaration Data type Memory area Description

IN Input BOOL I, Q, M, D, L, P
or constant

Start input

PT Input TIME, LTIME I, Q, M, D, L, P
or constant

Duration of the pulse.

The value of the PT
parameter must be
positive.

Q Output BOOL I, Q, M, D, L, P Pulse output

ET Output TIME, LTIME I, Q, M, D, L, P Current timer value

Pulse timing diagram
The following figure shows the behavior of the "Generate pulse" instruction after the start:

Example
The following example shows how the instruction works:

STL Explanation

CALL TP, "TP_DB" // The instruction is called. The
"TP_DB" data block is assigned to the
instruction.

// Select the required data type from
the "???" drop-down list.

IN := "Tag_Start" // The instruction is executed on a
rising signal edge of the operand.



16 Manual, 11/2024

PT :=
"Tag_PresetTIME"

// Duration of the pulse

Q := "Tag_Output" // The operand is set for the duration
that was specified by the
"Tag_PresetTIME" operand.

ET :=
"Tag_ElapsedTIME"

// Current timer value

See also
Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)
Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.2.2 TON: Generate on-delay (S7-1500)

Description
You can use the "Generate on-delay" instruction to delay setting of the Q output by the
programmed time PT. The instruction is started when the result of logic operation (RLO) of the
IN parameter changes from "0" to "1" (positive signal edge). The programmed time PT begins
when the instruction starts. When the PT duration has expired, the Q parameter returns signal
state "1". The Q parameter remains set as long as the start input IN is still "1". When the signal
state at the start input changes from "1" to "0", the Q parameter is reset. The timer function is
started again when a new positive signal edge is detected at the start input.

You can query the current time value at the ET output. The time value starts at T#0s and ends
when the value of the time PT is reached. The ET parameter is reset as soon as the signal state of
the IN parameter changes to "0". If the instruction is not called in the program because it is
skipped, for example, the ET output returns a constant value as soon as the time PT has expired.
In the program code, you call the "Generate on-delay" instruction with the "Call block" (CALL)
instruction.
After the selection of the data type from the drop-down list "???", the "Call options" dialog opens.
Each call of the "Generate on-delay" instruction must be assigned to an IEC timer in which the
instance data is stored. An IEC Timer is a structure of the data type IEC_TIMER, IEC_LTIMER,
TON_TIME or TON_LTIME that you can declare as follows:

Declaration of a data block of system data type IEC_TIMER or IEC_LTIMER (for example,

"MyIEC_TIMER")

Declaration as a local tag of the type TON_TIME or TON_LTIME in the "Static" section of a

block (for example, #MyTON_TIMER)

Updating the actual values in the instance data
The instance data from "Generate on-delay" is updated according to the following rules:



Manual, 11/2024 17

IN input

The "Generate on-delay" instruction compares the current RLO with the RLO from the

previous query, which is saved in the IN parameter in the instance data. If the instruction

detects a change in the RLO from "0" to "1", there is a positive signal edge and the time

measurement is started. After the "Generate on-delay" instruction has been processed, the

value of the IN parameter is updated in the instance data and is used as edge memory bit

for the next query.

Note that the edge evaluation is disrupted when the actual values of the IN parameter are

written or initialized by other functions.  

PT input

The value at the PT input is written to the PT parameter in the instance data when the edge

changes at the IN input.  

Q and ET outputs

The actual values of the Q and ET outputs are updated in the following cases:

- When the instruction is called, if the ET or Q outputs are interconnected.

Or

- At an access to Q or ET.  

If the outputs are not interconnected and also not queried, the current time value at the Q

and ET outputs is not updated. The outputs are not updated, even if the instruction is

skipped in the program.  

The internal parameters of the "Generate on-delay" instruction are used to calculate the time

values for Q and ET. Note that the time measurement is disrupted when the actual values of

the instruction are written or initialized by other functions.



18 Manual, 11/2024

DANGER

Danger when reinitializing the actual values

Reinitializing the actual values of an IEC timer while the time measurement is
running disrupts the function of the IEC timer. Changing the actual values can result
in inconsistencies between the program and the actual process. This can cause
serious damage to property and personal injury.

The following functions can cause the actual values to be reinitialized:

Loading the block with reinitialization

Loading snapshots as actual values

Controlling or forcing the actual values

The "WRIT_DBL" instruction

Before you execute these functions, take the following precautions:

Make sure that the plant is in a safe state before you overwrite the actual values.

Make sure that the IEC timer has expired before initializing its actual values. 　

If you overwrite the actual values with a snapshot, make sure that the snapshot
was taken at a time when the system was in a safe state.

Make sure that the program does not read or write the affected data during
transmission.

Parameters
The following table shows the parameters of the "Generate on-delay" instruction:

Parameters Declaration Data type Memory area Description

IN Input BOOL I, Q, M, D, L, P
or constant

Start input

PT Input TIME, LTIME I, Q, M, D, L, P
or constant

Duration of the on-
delay

The value of the PT
parameter must be
positive.

Q Output BOOL I, Q, M, D, L, P Signal state that is
delayed by the time PT.

ET Output TIME, LTIME I, Q, M, D, L, P Current timer value

Pulse timing diagram



Manual, 11/2024 19

The following figure shows the behavior of the "Generate on-delay" instruction after the start:

Example
The following example shows how the instruction works:

STL Explanation

CALL "TON", "TON_DB" // The instruction is called. The
"TON_DB" data block is assigned to the
instruction.

// Select the required data type from
the "???" drop-down list.

IN := "Tag_Start" // The instruction is executed on a
rising signal edge of the operand.

PT :=
"Tag_PresetTIME"

// Specifies the time by which the
rising signal edge of the IN parameter
is delayed.

Q := "Tag_Output" // The operand is set if the duration
PT that was specified by the
"Tag_PresetTIME" tag has expired.

// The Q parameter remains set as long
as the "Tag_Start" variable is "1".

// When the signal state at the start
input changes from "1" to "0", the
operand of the Q parameter is reset.

ET :=
"Tag_ElapsedTIME"

// Current timer value



20 Manual, 11/2024

See also
Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)
Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.2.3 TOF: Generate off-delay (S7-1500)

Description
You can use the "Generate off-delay" instruction to reset the Q output by the programmed time
PT. The Q output is set when the result of logic operation (RLO) at input IN changes from "0" to
"1" (positive signal edge). When the signal state at input IN changes back to "0" (negative signal
edge), the programmed time PT starts. Output Q remains set as long as the time duration PT is
running. When the PT time duration expires, the Q output is reset. If the signal state at input IN
changes to "1" before the PT time duration expires, the timer is reset. The signal state at the
output Q continues to be "1".
The current time value can be queried in the ET parameter. The time value starts at T#0s and
ends when the value of the time PT is reached. When the time PT expires, the ET parameter
remains set to the current value until the IN parameter changes back to "1". If input IN changes
to "1" before the time PT elapses, the ET output is reset to the value T#0s. If the instruction is not
called in the program because it is skipped, for example, the ET output returns a constant value
as soon as the time has expired.
In the program code, you call the "Generate off-delay" instruction with the "Call block" (CALL)
instruction.
After the selection of the data type from the drop-down list "???", the "Call options" dialog opens.
Each call of the "Generate off-delay" instruction must be assigned to an IEC timer in which the
instance data is stored. An IEC Timer is a structure of the data type IEC_TIMER, IEC_LTIMER,
TOF_TIME or TOF_LTIME that you can declare as follows:

Declaration of a data block of system data type IEC_TIMER or IEC_LTIMER (for example,

"MyIEC_TIMER")

Declaration as a local tag of the type TOF_TIME or TOF_LTIME in the "Static" section of a

block (for example, #MyTOF_TIMER)

The operating system resets the instances of the "Generate off-delay" instruction during a cold
restart. If you want instances of the instruction to be initialized after a warm restart, call the
instances to be initialized in a startup OB with the value "0" set for the PT parameter. If instances
of the "Generate off-delay" instruction are located within another block, you can reset these
instances, for example, by initializing the higher-level block.

Updating the actual values in the instance data
The instance data from "Generate off-delay" is updated according to the following rules:

IN input



Manual, 11/2024 21

The "Start off-delay timer" instruction compares the current RLO with the RLO from the

previous query, which is saved in the "IN" parameter in the instance data. If the instruction

detects a change in the RLO from "1" to "0", there is a negative signal edge and the time

measurement is started. After the "Start off-delay timer" instruction has been processed, the

value of the IN parameter is updated in the instance data and is used as edge memory bit

for the next query.

Note that the edge evaluation is disrupted when the actual values of the "IN" parameter are

written or initialized by other functions.  

PT input

The value at the PT input is written to the PT parameter in the instance data when the edge

changes at the IN input.  

Q and ET outputs

The actual values of the Q and ET outputs are updated in the following cases:

- When the instruction is called, if the ET or Q outputs are interconnected.

Or

- At an access to Q or ET.  

If the outputs are not interconnected and also not queried, the current time value at the Q

and ET outputs is not updated. The outputs are not updated, even if the instruction is

skipped in the program.  

The internal parameters of the "Start off-delay timer" instruction are used to calculate the

time values for Q and ET. Note that the time measurement is disrupted when the actual

values of the instruction are written or initialized by other functions.



22 Manual, 11/2024

DANGER

Danger when reinitializing the actual values

Reinitializing the actual values of an IEC timer while the time measurement is
running disrupts the function of the IEC timer. Changing the actual values can result
in inconsistencies between the program and the actual process. This can cause
serious damage to property and personal injury.

The following functions can cause the actual values to be reinitialized:

Loading the block with reinitialization

Loading snapshots as actual values

Controlling or forcing the actual values

The "WRIT_DBL" instruction

Before you execute these functions, take the following precautions:

Make sure that the plant is in a safe state before you overwrite the actual values.

Make sure that the IEC timer has expired before initializing its actual values. 　

If you overwrite the actual values with a snapshot, make sure that the snapshot
was taken at a time when the system was in a safe state.

Make sure that the program does not read or write the affected data during
transmission.

Parameters
The following table shows the parameters of the "Generate off-delay" instruction:

Parameters Declaration Data type Memory area Description

IN Input BOOL I, Q, M, D, L, P
or constant

Start input

PT Input TIME, LTIME I, Q, M, D, L, P
or constant

Duration of the off
delay

The value of the PT
parameter must be
positive.

Q Output BOOL I, Q, M, D, L, P Signal state that is
delayed by the time PT.

ET Output TIME, LTIME I, Q, M, D, L, P Current timer value

Pulse timing diagram



Manual, 11/2024 23

The following figure shows the behavior of the "Generate off-delay" instruction after the start:

Example
The following example shows how the instruction works:

STL Explanation

CALL TOF, "TOF_DB" // The instruction is called. The
"TOF_DB" data block is assigned to the
instruction.

// Select the required data type from
the "???" drop-down list.

IN := "Tag_Start" // The instruction is executed on a
rising signal edge of the operand.

PT :=
"Tag_PresetTIME"

// Specifies the time by which the
falling signal edge of the IN parameter
is delayed.

Q := "Tag_Output" // The operand is set when the
instruction is started by a rising
signal edge of the IN parameter.

// When the value at the IN parameter
changes from "1" to "0", the
"Tag_Output" operand remains set as
long as the time specified by the
"Tag_PresetTIME" tag is running.

// When the time of the PT parameter
expires, the operand is reset.

ET :=
"Tag_ElapsedTIME"

// Current timer value



24 Manual, 11/2024

See also
Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)
Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.2.4 TONR: Time accumulator (S7-1500)

Description
The instruction "Time accumulator" is used to accumulate time values within a period set by the
parameter PT. When the signal state at the IN input changes from "0" to "1" (positive signal
edge), the time measurement is executed and the time PT starts. While the time PT is running,
the time values are accumulated that are recorded when the IN input has signal state "1". The
accumulated time is written to the ET output and can be queried there. When the duration PT
expires, the output Q has signal state "1". The Q parameter remains set to "1", even when the
signal state at the IN parameter changes from "1" to "0" (negative signal edge).
The R input resets the ET and Q outputs regardless of the signal state of the start input.

The "Time accumulator" instruction can be placed within or at the end of the network. It requires
a preceding logic operation.

In the program code, you call the "Time accumulator" instruction with the "Call block" (CALL)
instruction.

Each call of the "Time accumulator" instruction must be assigned an IEC timer in which the
instance data is stored. An IEC Timer is a structure of the data type IEC_TIMER, IEC_LTIMER,
TONR_TIME or TONR_LTIME that you can declare as follows:

Declaration of a data block of system data type IEC_TIMER or IEC_LTIMER (for example,

"MyIEC_TIMER")

Declaration as a local tag of the type TONR_TIME or TONR_LTIME in the "Static" section of a

block (for example, #MyTONR_TIMER)

After the selection of the data type from the drop-down list "???", the "Call options" dialog opens.

Updating the actual values in the instance data
The instance data from "Time accumulator" is updated according to the following rules:

IN input

The "Time accumulator" instruction compares the current RLO with the RLO from the

previous query, which is saved in the "IN" parameter in the instance data. If the instruction

detects a change in the RLO from "0" to "1", there is a positive signal edge and the time

measurement is continued. If the instruction in the RLO detects a change from "1" to "0",

there is a negative signal edge and the time measurement is interrupted. After the "Time



Manual, 11/2024 25

accumulator" instruction has been processed, the value of the IN parameter is updated in

the instance data and is used as edge memory bit for the next query.

Note that the edge evaluation is disrupted when the actual values of the IN parameter are

written or initialized by other functions.  

PT input

The value at the PT input is written to the PT parameter in the instance data when the edge

changes at the IN input.  

R input

The signal "1" at input R resets the time measurement and blocks it. Edges at the IN input

are ignored. The signal "0" at input R enables time measurement again.

Q and ET outputs

The actual values of the Q and ET outputs are updated in the following cases:

- When the instruction is called, if the ET or Q outputs are interconnected.

Or

- At an access to Q or ET.  

If the outputs are not interconnected and also not queried, the current time value at the Q

and ET outputs is not updated. The outputs are not updated, even if the instruction is

skipped in the program.  

The internal parameters of the "Time accumulator" instruction are used to calculate the time

values for Q and ET. Note that the time measurement is disrupted when the actual values of

the instruction are written or initialized by other functions.



26 Manual, 11/2024

DANGER

Danger when reinitializing the actual values

Reinitializing the actual values of an IEC timer while the time measurement is
running disrupts the function of the IEC timer. Changing the actual values can result
in inconsistencies between the program and the actual process. This can cause
serious damage to property and personal injury.

The following functions can cause the actual values to be reinitialized:

Loading the block with reinitialization

Loading snapshots as actual values

Controlling or forcing the actual values

The "WRIT_DBL" instruction

Before you execute these functions, take the following precautions:

Make sure that the plant is in a safe state before you overwrite the actual values.

Make sure that the IEC timer has expired before initializing its actual values. 　

If you overwrite the actual values with a snapshot, make sure that the snapshot
was taken at a time when the system was in a safe state.

Make sure that the program does not read or write the affected data during
transmission.

Parameters
The following table shows the parameters of the "Time accumulator" instruction:

Parameters Declaration Data type Memory area Description

IN Input BOOL I, Q, M, D, L, P
or constant

Start input

R Input BOOL I, Q, M, D, L, P
or constant

Reset input

PT Input TIME, LTIME I, Q, M, D, L, P
or constant

Maximum duration of
time recording
The value of the PT
parameter must be
positive.

Q Output BOOL I, Q, M, D, L, P Output that is set when
time PT expires.



Manual, 11/2024 27

ET Output TIME, LTIME I, Q, M, D, L, P Accumulated time

Pulse timing diagram
The following figure shows the pulse timing diagram of the "Time accumulator" instruction:

Example
The following example shows how the instruction works:

STL Explanation

CALL TONR, "TONR_DB" // The instruction is called. The
"TONR_DB" data block is assigned to the
instruction.

// Select the required data type from
the "???" drop-down list.

IN := "Tag_Start" // The instruction executes on a rising
signal edge of the operand and the time
duration at the PT input is started.

While the time PT is running, the time
values are accumulated that are



28 Manual, 11/2024

recorded when the IN input has signal
state "1".

R := "Tag_Reset" // The R input resets the outputs ET and Q
regardless of the signal state at the
start input.

PT :=
"Tag_PresetTIME"

// Specifies how long the time values are
accumulated.

Q := "Tag_Output" // The operand is set if the time at PT
has expired.

// The Q parameter remains set to "1",
even when the signal state at the IN
parameter changes from "1" to "0"
(negative signal edge).

ET :=
"Tag_ElapsedTIME"

// The accumulated time is written to
output ET and can be queried there.

See also

Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)
Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.2.5 RESET_TIMER: Reset timer (S7-1500)

Description
You can use the "Reset timer" instruction to reset an IEC timer to "0". The structure components
of the timer in the specified data block are reset to "0".

The instruction does not influence the RLO. At the TIMER parameter, the "Reset timer"
instruction is assigned an IEC timer declared in the program.

Updating of the actual values
The instruction data is updated only when the instruction is called and not each time the
assigned IEC timer is accessed. Querying the data is only identical from the call of the instruction
to the next call of the instruction.



Manual, 11/2024 29

DANGER

Danger when reinitializing the actual values

Reinitializing the actual values of an IEC timer while the timer is running disrupts the
function of the IEC timer. Changing the actual values can result in inconsistencies
between the program and the actual process. This can cause serious damage to
property and personal injury.

The following functions can cause the actual values to be reinitialized:

Loading the block with reinitialization

Loading snapshots as actual values

Controlling or forcing the actual values

The "WRIT_DBL" instruction

Before you execute these functions, take the following precautions:

Make sure that the plant is in a safe state before you overwrite the actual values.

Make sure that the IEC timer has expired before initializing its actual values. 　

If you overwrite the actual values with a snapshot, make sure that the snapshot
was taken at a time when the system was in a safe state.

Make sure that the program does not read or write the affected data during
transmission.

Parameters
The following table shows the parameters of the "Reset timer" instruction:

Parameters Declaration Data type Memory area Description

TIMER Output IEC_TIMER,
IEC_LTIMER,
TP_TIME,
TP_LTIME,
TON_TIME,
TON_LTIME,
TOF_TIME,
TOF_LTIME,
TONR_TIME,
TONR_LTIME

D, L IEC timer that is reset

You can select the data type of the instruction from the "???" drop-down list.

Example
The following example shows how the instruction works:



30 Manual, 11/2024

STL Explanation

CALL TON, "TON_DB" // The instruction is called. The
"TON_DB" instance data block is
assigned to the instruction.

// Select the required data type from
the "???" drop-down list.

IN := "Tag_Start" // The instruction executes on a rising
signal edge of the operand "Tag_Start".

PT :=
"Tag_PresetTIME"

// The IEC timer stored in the instance
data block "TON_DB" is started with the
time duration that is specified by the
operand "Tag_PresetTIME".

Q := "Tag_Output" // The operand "Tag_Output" is set if
the time duration PT specified by the
operand "Tag_PresetTIME" has expired.

// The parameter Q remains set as long
as the "Tag_Start" operand still has
the signal state "1".

// When the signal state at the start
input changes from "1" to "0", the
operand of the Q parameter is reset.

ET :=
"Tag_ElapsedTIME"

// Current timer value

   

A "Tag_Input_1" // When the operand "Tag_Input_1" and

A "Tag_Input_2" // The operand "Tag_Input_2" returns
the signal state "1",

   

CALL RESET_TIMER // The "Reset timer" instruction is
called.

// Select the required data type from
the "???" drop-down list.

TIMER := "TON_DB" // IEC timer is reset.

See also
Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)



Manual, 11/2024 31

Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.2.6 PRESET_TIMER: Load time duration (S7-1500)

Description
You can use the "Load time duration" instruction to set the time for an IEC timer. The instruction
is executed in each cycle. The instruction writes the specified time to the structure of the
specified IEC timer.
You assign an IEC timer declared in the program to the "Load time duration" instruction.

Note

If the specified IEC timer is running while the instruction executes, the instruction
overwrites the current time of the specified IEC timer. This can change the timer
status of the IEC timer.

Updating of the actual values
The instruction data is updated only when the instruction is called and each time the assigned
IEC timer is accessed. The query on Q or ET (for example, "MyTimer".Q or "MyTimer".ET) updates
the IEC_TIMER structure.



32 Manual, 11/2024

DANGER

Danger when reinitializing the actual values

Reinitializing the actual values of an IEC timer while the timer is running disrupts the
function of the IEC timer. Changing the actual values can result in inconsistencies
between the program and the actual process. This can cause serious damage to
property and personal injury.

The following functions can cause the actual values to be reinitialized:

Loading the block with reinitialization

Loading snapshots as actual values

Controlling or forcing the actual values

The "WRIT_DBL" instruction

Before you execute these functions, take the following precautions:

Make sure that the plant is in a safe state before you overwrite the actual values.

Make sure that the IEC timer has expired before initializing its actual values. 　

If you overwrite the actual values with a snapshot, make sure that the snapshot
was taken at a time when the system was in a safe state.

Make sure that the program does not read or write the affected data during
transmission.

Parameters
The following table shows the parameters of the "Load time duration" instruction:

Parameters Declaration Data type Memory area Description

<Time
duration>

Input TIME, LTIME I, Q, M, D, L or
constant

Duration with which
the IEC timer runs

<IEC
timer>

Output IEC_TIMER,
IEC_LTIMER,
TP_TIME,
TP_LTIME,
TON_TIME,
TON_LTIME,
TOF_TIME,
TOF_LTIME,
TONR_TIME,
TONR_LTIME

D, L IEC timer whose
duration is set

You can select the data type of the instruction from the "???" drop-down list.

Example



Manual, 11/2024 33

The following example shows how the instruction works:

STL Explanation

CALL TON, "TON_DB" // The instruction is called. The
"TON_DB" instance data block is
assigned to the instruction.

// Select the required data type from
the "???" drop-down list.

IN := "Tag_Start" // The instruction executes on a rising
signal edge of the operand "Tag_Start".

PT :=
"Tag_PresetTIME"

// The IEC timer stored in the instance
data block "TON_DB" is started with the
time duration that is specified by the
operand "Tag_PresetTIME".

Q := "Tag_Output" // The operand "Tag_Output" is set if
the time duration PT specified by the
operand "Tag_PresetTIME" has expired.

// The parameter Q remains set as long
as the "Tag_Start" operand still has
the signal state "1".

// When the signal state at the start
input changes from "1" to "0", the
operand of the Q parameter is reset.

ET :=
"Tag_ElapsedTIME"

// Current timer value

   

A "Tag_Input_1" // When the operand "Tag_Input_1" and

A "Tag_Input_2" // The operand "Tag_Input_2" returns
the signal state "1",

   

CALL PRESET_TIMER // The "Time accumulator" instruction
is called.

// Select the required data type from
the "???" drop-down list.

PT :=
"Tag_PresetTIME_new"

// The instruction writes the time
duration "Tag_PresetTIME_new" in the
instance data block "TON_DB", thereby
overwriting the time value of the
operand "Tag_PresetTIME" within the



34 Manual, 11/2024

instance data block. The signal state of the timer
status may therefore change at the next query or
when "MyTimer".Q or "MyTimer".ET are accessed.

TIMER :=
"TON_DB"

// IEC timer is reset.

See also
Overview of the valid data types
Basic information on the status word (S7-1500)
Inserting STL instructions (S7-300, S7-400, S7-1500)
Editing STL instructions (S7-300, S7-400, S7-1500)
Instances
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)

1.3 Counter operations (S7-1500)

1.3.1 CTU: Count up (S7-1500)

Description
You can use the "Count up" instruction to increment the value at the CV parameter. When the
signal state of the parameter CU changes from "0" to "1" (positive signal edge), the instruction is
executed and the current counter value of the parameter CV is incremented by one. The counter
value is incremented each time a positive signal edge is detected, until it reaches the high limit
for the data type specified at the output CV. When the high limit is reached, the signal state of
the CU parameter no longer has an effect on the instruction.
You can query the count status of the Q parameter. The signal state of the Q parameter is
determined by the PV parameter. When the current counter value is greater than or equal to the
value of the PV parameter, the Q parameter is set to signal state "1". In all other cases, the signal
state of the Q parameter is "0".
The value of the CV parameter is reset to zero when the signal state at the R parameter changes
to "1". As long as the signal state of the R parameter is "1", the signal state of the CU parameter
has no effect on the instruction.
In the program code, you call the "Count up" instruction with the "Call block" (CALL) instruction.

Note

Only use a counter at a single point in the program to avoid the risk of counting
errors.

Each call of the "Count up" instruction must be assigned an IEC counter in which the instruction
data is stored. An IEC counter is a structure with one of the following data types:

The operating system resets the instances of the "Count up" instruction during a cold restart. If
you want instances of the instruction to be initialized after a warm restart, call the instances to
be initialized in a startup OB with the value "1" set for the R parameter of the instruction. If
instances of the "Count up" instruction are located within another block, you can reset these
instances, for example, by initializing the higher-level block.



Manual, 11/2024 35

Instance data block of system data type IEC_<Counter> (shared DB / single
instance)
The system data type of the instance data block is derived from the data type of the instruction:

Data type of the instruction System data type of the instance data
block (shared DB)​

SINT / USINT IEC_SCOUNTER / IEC_USCOUNTER

INT / UINT IEC_COUNTER / IEC_UCOUNTER

DINT / UDINT IEC_DCOUNTER / IEC_UDCOUNTER

LINT / ULINT IEC_LCOUNTER / IEC_ULCOUNTER

When you set up the IEC Counter in a single instance, the instance data block is created by
default with "optimized block access" and the individual tags are defined as retentive.
For additional information on setting retentivity in an instance data block, refer to "See also".

Local tag (multi-instance)
The data type of the local tag is derived from the data type of the instruction:

Data type of the instruction Data type of the local tag

SINT / USINT CTU_SINT / CTU_USINT / IEC_SCOUNTER /
IEC_USCOUNTER

INT / UINT CTU_INT / CTU_UINT / IEC_COUNTER /
IEC_UCOUNTER

DINT / UDINT CTU_DINT / CTU_UDINT / IEC_DCOUNTER /
IEC_UDCOUNTER

LINT / ULINT CTU_LINT / CTU_ULINT / IEC_LCOUNTER /
IEC_ULCOUNTER

When you set up the IEC Counter as multi-instance in a function block with "optimized block
access", it is defined as retentive in the block interface.

Declaring IEC Counters
After the selection of the data type from the drop-down list "???", the "Call options" dialog opens.
You can then declare an IEC Counter as follows:

Single instance: Declaration of an instance data block of system data type IEC_<Counter>

(for example, "MyIEC_COUNTER")



36 Manual, 11/2024

Multi-instance: Declaration as a local tag of the type CTU_<Data type> or IEC_<Counter> in

the "Static" section of a block (for example #MyCTU_COUNTER)

Parameters
The following table shows the parameters of the "Count up" instruction:

Parameters Declaration Data type Memory area Description

CU Input BOOL I, Q, M, D, L or
constant

Count input

R Input BOOL I, Q, M, D, L, P
or constant

Reset input

PV Input Integers I, Q, M, D, L, P
or constant

Value at which the Q
output is set.

Q Output BOOL I, Q, M, D, L Counter status

CV Output Integers,
CHAR, WCHAR,
DATE

I, Q, M, D, L, P Current counter value

Example
The following example shows how the instruction works:

STL Explanation

CALL CTU, "CTU_DB" // The instruction is called. The
"CTU_DB" data block is assigned to the
instruction.

// Select the required data type from
the "???" drop-down list.

CU := "Tag_StartCTU" // When the signal state of the
"Tag_StartCTU" operand changes from "0"
to "1", the instruction is executed and
the current counter value of the
"Tag_CounterValue" operand is
incremented by one.

// The counter value is incremented
until the high limit of INT = 32767 is
reached.

R :=
"Tag_ResetCounter"

// When the signal state of the
"Tag_ResetCounter" operand changes to



Manual, 11/2024 37

"1", the "Tag_CounterValue" operand is
reset to "0".

PV :=
"Tag_PresetValue"

// The operand determines the value at
which the operand of the Q parameter is
set.

Q :=
"Tag_CounterStatus"

// The operand is set as long as the
current counter value is greater than or
equal to the value of the PV parameter.

CV :=
"Tag_CounterValue"

// Current counter value

See also
Overview of the valid data types
Setting retentivity in an instance data block
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.3.2 CTD: Count down (S7-1500)

Description
The "Count down" instruction is used to decrement the value at the parameter CV. When the
signal state of the CD parameter changes from "0" to "1" (positive signal edge), the instruction is
executed and the current counter value of the CV parameter is decremented by one. Each time a
positive signal edge is detected, the counter value is decremented until it reaches the low limit
of the specified data type. When the low limit is reached, the signal state of the CD parameter no
longer has an effect on the instruction.

You can query the count status of the Q parameter. If the current counter value is less than or
equal to zero, the Q parameter is set to signal state "1". In all other cases, the signal state of the
Q parameter is "0".
The value of the CV parameter is set to the value of the PV parameter when the signal state of
the LD parameter changes to "1". As long as the signal state of the LD parameter is "1", the signal
state of the CD parameter has no effect on the instruction.
In the program code, you call the "Count down" instruction with the "Call block" (CALL)
instruction.

Note

Only use a counter at a single point in the program to avoid the risk of counting
errors.

Each call of the "Count down" instruction must be assigned an IEC counter in which the
instruction data is stored. An IEC counter is a structure with one of the following data types:
The operating system resets the instances of the "Count down" instruction during a cold restart.
If you want instances of the instruction to be initialized after a warm restart, call the instances to
be initialized with the value "1" for the LD parameter of the instruction in a startup OB. In this
case the desired initial value for the CV parameter is specified in the PV parameter. If instances of



38 Manual, 11/2024

the "Count down" instruction are located within another block, you can reset these instances, for
example, by initializing the higher-level block.

Instance data block of system data type IEC_<Counter> (shared DB / single
instance)
The system data type of the instance data block is derived from the data type of the instruction:

Data type of the instruction System data type of the instance data
block (shared DB)​

SINT / USINT IEC_SCOUNTER / IEC_USCOUNTER

INT / UINT IEC_COUNTER / IEC_UCOUNTER

DINT / UDINT IEC_DCOUNTER / IEC_UDCOUNTER

LINT / ULINT IEC_LCOUNTER / IEC_ULCOUNTER

When you set up the IEC Counter in a single instance, the instance data block is created by
default with "optimized block access" and the individual tags are defined as retentive.
For additional information on setting retentivity in an instance data block, refer to "See also".

Local tag (multi-instance)
The data type of the local tag is derived from the data type of the instruction:

Data type of the instruction Data type of the local tag

SINT / USINT CTD_SINT / CTD_USINT / IEC_SCOUNTER /
IEC_USCOUNTER

INT / UINT CTD_INT / CTD_UINT / IEC_COUNTER /
IEC_UCOUNTER

DINT / UDINT CTD_DINT / CTD_UDINT / IEC_DCOUNTER /
IEC_UDCOUNTER

LINT / ULINT CTD_LINT / CTD_ULINT / IEC_LCOUNTER /
IEC_ULCOUNTER

When you set up the IEC Counter as multi-instance in a function block with "optimized block
access", it is defined as retentive in the block interface.

Declaring IEC Counters
After the selection of the data type from the drop-down list "???", the "Call options" dialog opens.
You can then declare an IEC Counter as follows:



Manual, 11/2024 39

Single instance: Declaration of an instance data block of system data type IEC_<Counter>

(for example, "MyIEC_COUNTER")

Multi-instance: Declaration as a local tag of the type CTD_<Data_type> or IEC_<Counter> in

the "Static" section of a block (for example #MyCTD_COUNTER)

Parameters
The following table shows the parameters of the "Count down" instruction:

Parameters Declaration Data type Memory area Description

CD Input BOOL I, Q, M, D, L or
constant

Count input

LD Input BOOL I, Q, M, D, L, P
or constant

Load input

PV Input Integers I, Q, M, D, L, P
or constant

Value to which the CV
output is set with LD =
1.

Q Output BOOL I, Q, M, D, L Counter status

CV Output Integers,
CHAR, WCHAR,
DATE

I, Q, M, D, L, P Current counter value

Example
The following example shows how the instruction works:

STL Explanation

CALL CTD, "CTD_DB" // The instruction is called. The
"CTD_DB" data block is assigned to the
instruction.

// Select the required data type from
the "???" drop-down list.

CD := "Tag_StartCTD" // When the signal state of the
"Tag_StartCTD" operand changes from "0"
to "1", the instruction is executed and
the current counter value of the
"Tag_CounterValue" operand is
decremented by one.

// The counter value of the CV
parameter is decremented until the low



40 Manual, 11/2024

limit of INT = -32768 is reached.

LD := "Tag_LoadPV" // When the signal state of the
"Tag_LoadPV" operand changes to "1", the
"Tag_CounterValue" operand is set to the
value of the "Tag_PresetValue" operand.

PV :=
"Tag_PresetValue"

// Specifies the value to which the
counter is set when the signal state is
"1" in the LD parameter.

Q :=
"Tag_CounterStatus"

// The operand is set when the current
counter value is less than or equal to
zero.

CV :=
"Tag_CounterValue"

// Current counter value

See also

Overview of the valid data types
Setting retentivity in an instance data block
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.3.3 CTUD: Count up and down (S7-1500)

Description
Use the "Count up and down" instruction to increment or decrement the counter value at the CV
parameter. When the signal state at the CU parameter changes from "0" to "1" (positive signal
edge), the current counter value is incremented by one and stored in the CV parameter. When
the signal state of the CD parameter changes from "0" to "1" (positive signal edge), the counter
value of the CV parameter is decremented by one. If there is a positive signal edge at the CU and
CD inputs in a program cycle, the current counter value of the CV parameter remains
unchanged.

The counter value can be incremented until it reaches the high limit of the data type specified at
the CV parameter. When the high limit is reached, the counter value is no longer incremented
on a positive signal edge. The counter value is no longer decremented once the low limit of the
specified data type has been reached.
When the signal state of the LD parameter changes to "1", the counter value of the CV
parameter is set to the value of the PV parameter. As long as the LD parameter has signal state
"1", the signal state of the CU and CD inputs has no effect on the instruction.

The counter value is set to zero when the signal state of the R parameter changes to "1". As long
as the R parameter has signal state "1", a change in the signal state of the CU, CD and LD
parameters has no effect on the "Count up and down" instruction.
You can query the status of the up counter at the QU parameter. When the current counter
value is greater than or equal to the value of the PV parameter, the QU parameter is set to signal
state "1". In all other cases, the signal state of the QU parameter is "0". You can also specify a
constant for the PV parameter.



Manual, 11/2024 41

You can query the status of the down counter at the QD parameter. If the current counter value
is less than or equal to zero, the QD parameter is set to signal state "1". In all other cases, the
signal state of the QD parameter is "0".
In the program code, you call the "Count up and down" instruction with the "Call block" (CALL)
instruction.

Note

Only use a counter at a single point in the program to avoid the risk of counting
errors.

Each call of the "Count up and down" instruction must be assigned an IEC counter in which the
instruction data is stored. An IEC counter is a structure with one of the following data types:
The operating system resets the instances of the "Count up and down" instruction during a cold
restart. If you want instances of the instruction to be initialized after a warm restart, you must
call the instances to be initialized with the following parameter values in a startup OB:

When used as up counter, the value at the R parameter must be set to "1".

When used as down counter, the value at the LD parameter must be set to "1". In this case

you specify the desired initial value for the CV parameter in the PV parameter.

If instances of the "Count up and down" instruction are located within another block, you can
reset these instances, for example, by initializing the higher-level block.

Instance data block of system data type IEC_<Counter> (shared DB / single
instance)
The system data type of the instance data block is derived from the data type of the instruction:

Data type of the instruction System data type of the instance data
block (shared DB)​

SINT / USINT IEC_SCOUNTER / IEC_USCOUNTER

INT / UINT IEC_COUNTER / IEC_UCOUNTER

DINT / UDINT IEC_DCOUNTER / IEC_UDCOUNTER

LINT / ULINT IEC_LCOUNTER / IEC_ULCOUNTER

When you set up the IEC Counter in a single instance, the instance data block is created by
default with "optimized block access" and the individual tags are defined as retentive.
For additional information on setting retentivity in an instance data block, refer to "See also".

Local tag (multi-instance)
The data type of the local tag is derived from the data type of the instruction:

Data type of the instruction Data type of the local tag



42 Manual, 11/2024

SINT / USINT CTUD_SINT / CTUD_USINT / IEC_SCOUNTER / IEC_USCOUNTER

INT / UINT CTUD_INT / CTUD_UINT / IEC_COUNTER / IEC_UCOUNTER

DINT / UDINT CTUD_DINT / CTUD_UDINT / IEC_DCOUNTER / IEC_UDCOUNTER

LINT / ULINT CTUD_LINT / CTUD_ULINT / IEC_LCOUNTER / IEC_ULCOUNTER

When you set up the IEC Counter as multi-instance in a function block with "optimized block
access", it is defined as retentive in the block interface.

Declaring IEC Counters
After the selection of the data type from the drop-down list "???", the "Call options" dialog opens.
You can then declare an IEC Counter as follows:

Single instance: Declaration of an instance data block of system data type IEC_<Counter>

(for example, "MyIEC_COUNTER")

Multi-instance: Declaration as a local tag of the type CTUD_<Data type> or IEC_<Counter>

in the "Static" section of a block (for example #MyCTUD_COUNTER)

Parameters
The following table shows the parameters of the "Count up and down" instruction:

Parameters Declaration Data type Memory area Description

CU Input BOOL I, Q, M, D, L or
constant

Count up input

CD Input BOOL I, Q, M, D, L or
constant

Count down input

R Input BOOL I, Q, M, D, L, P
or constant

Reset input

LD Input BOOL I, Q, M, D, L, P
or constant

Load input

PV Input Integers I, Q, M, D, L, P
or constant

Value at which the QU
output is set / value to
which the CV output is
set when LD = 1.

QU Output BOOL I, Q, M, D, L Status of the up
counter



Manual, 11/2024 43

QD Output BOOL I, Q, M, D, L Status of the down
counter

CV Output Integers, CHAR, WCHAR,
DATE

I, Q, M, D, L,
P

Current counter value

Example
The following example shows how the instruction works:

STL Explanation

CALL CTUD, "CTUD_DB" // The instruction is called. The
"CTUD_DB" data block is assigned to the
instruction.

// Select the required data type from
the "???" drop-down list.

CU := "Tag_StartCTU" // When the signal state of the
"Tag_StartCTU" operand changes from "0"
to "1", the instruction is executed and
the current counter value of the
"Tag_CounterValue" operand is
incremented by one.

// The counter value is incremented on
a rising signal edge of the CU
parameter until it reaches the high
limit of INT = 32767.

CD := "Tag_StartCTD" // When the signal state of the
"Tag_StartCTD" operand changes from "0"
to "1", the instruction is executed and
the current counter value of the
"Tag_CounterValue" operand is
decremented by one.

// The counter value of the CV
parameter is decremented until the low
limit of -32768 is reached.

R :=
"Tag_ResetCounter"

// When the signal state of the
"Tag_ResetCounter" operand changes to
"1", the "Tag_CounterValue" operand is
reset to "0".



44 Manual, 11/2024

LD := "Tag_LoadPV" // When the signal state of the
"Tag_LoadPV" operand changes to "1", the
"Tag_CounterValue" operand is set to the
value of the "Tag_PresetValue" operand.

PV :=
"Tag_PresetValue"

// Specifies the value to which the
counter is set when the signal state is
"1" in the LD parameter.

QU :=
"Tag_CounterStatus"

// The operand is set as long as the
current counter value is greater than or
equal to the value of the PV parameter.

QD :=
"Tag_CounterStatus"

// The operand is set when the current
counter value is less than or equal to
zero.

CV :=
"Tag_CounterValue"

// Current counter value

See also

Overview of the valid data types
Setting retentivity in an instance data block
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4 Comparator operations (S7-1500)

1.4.1 CompType: Compare tag structured data types (S7-1500)

Description
You can use the "Compare tag structured data types" instruction to determine if the first
comparison value of a structured tag (IN1) is equal to or not equal to a second comparison value
of another structured tag (IN2).
If the condition of the comparison is fulfilled, the instruction returns the result of logic operation
(RLO) "1" at the OUT parameter. If the comparison condition is not fulfilled, the instruction
returns RLO "0".

Comparison of floating-point numbers
When floating-point numbers are compared, the operands to be compared must have the same
data type regardless of the setting for the IEC Check.

The special bit patterns of invalid floating-point numbers (NaN) that are the outcome of
undefined results (e.g. root of -1) are not comparable. This means that if one of the operands
has the value NaN, both the "CompType EQ" and "CompType NE" instructions return FALSE as the
result.

Comparison of character strings



Manual, 11/2024 45

The individual characters are compared by means of their code (for example, 'a' is greater than
'A') during the comparison of the strings. The comparison is performed from left to right. The
first character to be different decides the result of the comparison.
The following table shows examples of EQ string comparisons:

<Operand1> <Operand2> RLO of the instruction

'AA' 'AA' 1

'Hello World' 'HelloWorld' 0

'AA' 'aa' 0

'aa' 'aaa' 0

The following table shows examples of NE string comparisons:

<Operand1> <Operand2> RLO of the instruction

'AA' 'aa' 1

'Hello World' 'HelloWorld' 1

'AA' 'AA' 0

'aa' 'aaa' 1

You can also compare individual characters of a string. The number of the character to be
compared is specified in square brackets next to the operand name. "MyString[2]", for example,
compares the second character of the "MyString" string.

Comparison of timers, date and time
Bit patterns of invalid timers, date and times, e.g. DT#2015-13-33-25:62:99.999_999_999,
cannot be compared. This means that if one of the operands has an invalid value, the
instructions return the following results:

"==: Equal" has the result FALSE.

"<>: Not equal" has the result TRUE.

Not all times can be compared directly with each other, such as S5TIME. In this case they are
implicitly converted into another time so that they can be compared, for example to TIME.
If you want to compare dates and times of different data types, the value of the smaller date or
time data type is implicitly converted into the larger date or time data type. This means the two
date and time data types DATE and DTL, for example, are compared on the basis of DTL.

When the implicit conversions fail, the comparison result is FALSE.

Comparison of structures



46 Manual, 11/2024

Note

Availability of comparison of structures

The option to compare structures is available for a CPU of the S7-1500 series as of
firmware version >= 2.0.

You can compare the values of two structured operands when both tags are of the same
structure data type. When structures are compared, the operands to be compared must have the
same data type regardless of the setting for the IEC Check. An exception is comparisons in which
one of the two operands is a VARIANT or an ANY. If the data type is not yet known when the
program is created, you can use the VARIANT data type. In this case you can also compare the
operand with a structured tag of any data type. You can also compare two tags of the data type
VARIANT or ANY with each other.

The following data types are possible:

PLC data type

STRUCT (the structure of the data type STRUCT must be contained in a PLC data type (UDT)

or the two structures to be compared are two elements of an ARRAY of STRUCT. Anonymous

structures are not permitted.)

Tag to which ANY is pointing

Tag to which VARIANT is pointing

The following requirements must be met to compare two tags of the data type ARRAY:

The elements must each have the same data type.

The two ARRAYs must have the same dimension.

All dimensions must have the same number of elements. The exact ARRAY limits do not have

to match.

The tables below show examples of a comparison of structures for "Equal":

<Operand1> <Operand2> RLO of the
instruction

Tag of data type A
<PLC data type>

Tag value Tag of data type
A <PLC data
type>

Tag value 1

  BOOL FALSE   BOOL FALSE

INT 2 INT 2

<Operand1> <Operand2> RLO of the
instruction



Manual, 11/2024 47

Tag of data type A <PLC data
type>

Tag
value

Tag of data type B <PLC data
type>

Tag
value

0

  BOOL FALSE   BOOL TRUE

INT 2 INT 3

<Operand1> <Operand2> RLO of the
instruction

Tag of data type A
<PLC data type>

Tag value VARIANT
(supplied with
tag of data type
A)

Tag value 1

  BOOL FALSE   BOOL FALSE

INT 2 INT 2

The tables below show examples of a comparison of structures for "Not equal":

<Operand1> <Operand2> RLO of the
instruction

Tag of data type A
<PLC data type>

Tag value Tag of data type
A <PLC data
type>

Tag value 0

  BOOL FALSE   BOOL FALSE

INT 2 INT 2

<Operand1> <Operand2> RLO of the
instruction

Tag of data type A
<PLC data type>

Tag value Tag of data type
B <PLC data
type>

Tag value 1

  BOOL FALSE   BOOL TRUE

INT 2 INT 3

<Operand1> <Operand2> RLO of the
instruction



48 Manual, 11/2024

Tag of data type A <PLC
data type>

Tag
value

VARIANT (supplied with tag of
data type A)

Tag
value

0

  BOOL FALSE   BOOL FALSE

INT 2 INT 2

Parameters
The following table shows the parameters of the instruction "Compare tag structured data
types":

Parameters Declaration Data type Memory area Description

IN1 Input Binary
numbers,
integers,
floating-point
numbers,
character
strings, timers,
date and time,
ARRAY of
<data type>
with fixed and
variable ARRAY
limits, STRUCT,
VARIANT, ANY,
PLC data type

I, Q, M, D, L, P First comparison value

IN2 Input Binary
numbers,
integers,
floating-point
numbers,
character
strings, timers,
date and time,
ARRAY of
<data type>
with fixed and
variable ARRAY
limits, STRUCT,
VARIANT, ANY,
PLC data type

I, Q, M, D, L, P Second value to
compare



Manual, 11/2024 49

OUT Output BOOL I, Q, M, D, L Result of the instruction

As detailed above, the data types ARRAY, STRUCT (in a PLC data type), VARIANT, ANY and
PLC data type (UDT) are only available as of firmware version 2.0.

Example
The following example shows how the instruction works:

STL Explanation

CALL CompType // The instruction is called.

// Select the required function.
Either "EQ" or "NE" from the drop-
down list.

IN1 := "Tag_Operand1" // First comparison value

IN2 := "Tag_Operand2" // Second comparison value

OUT := "Tag_Result" // The "Tag_Result" output returns
the signal state "1" if the condition
of the comparison instruction is
fulfilled. i.e. the "Tag_Operand1"
operand is equal to "Tag_Operand2".

See also
Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4.2 VARIANT (S7-1500)

1.4.2.1 EQ_Type: Compare data type for EQUAL with the data type of a tag (S7-1500)

Description
You can use the "Compare data type for EQUAL with the data type of a tag" instruction to query
the data type of a tag to which the VARIANT points. You are comparing the data type of the tag
at IN1 parameter, which you declared in the block interface, with the data type of a tag at IN2
parameter for "Equal".
The tag at the IN1 parameter must have the VARIANT data type. The tag at the IN2 parameter
can be an elementary data type or a PLC data type.

Comparison of timers, date and time
Not all times can be compared directly with each other, such as S5TIME. In this case they are
implicitly converted into another time so that they can be compared, for example to TIME.



50 Manual, 11/2024

If you want to compare dates and times of different data types, the value of the smaller date or
time data type is implicitly converted into the larger date or time data type. This means the two
date and time data types DATE and DTL, for example, are compared on the basis of DTL.
When the implicit conversions fail, the comparison result is FALSE.

Comparison of structures
For the comparison of structures, you can use the instruction "CompType". Anonymous
structures cannot generally be compared unless they are part of the same ARRAY.
For additional information on the comparison of structures, please refer to: CompType: Compare
tag structured data types

Parameters
The following table shows the parameters of the "Compare data type for EQUAL with the data
type of a tag" instruction:

Parameters Declaration Data type Memory area Description

IN1 Input VARIANT L (The
declaration is
possible in the
"Input",
"InOut" and
"Temp"
sections of the
block
interface.)

First operand

IN2 Input Binary
numbers,
integers,
floating-point
numbers,
timers, date
and time,
character
strings, ARRAY,
PLC data types

I, Q, M, D, L, P Second operand

RET_VAL Output BOOL I, Q, M, D, L Result of the
instruction

Example
The following example shows how the instruction works:

STL Explanation

CALL EQ_Type // The instruction is called.



Manual, 11/2024 51

IN1 :=
#Tag_Operand1

// First operand to be compared

IN2 :=
"Tag_Operand2"

// Second operand to be compared

RET_VAL :=
"Tag_Result"

// The "Tag_Result" output returns the signal
state "1" if the condition of the comparison
instruction is fulfilled. i.e. the
#Tag_Operand1 operand is not equal to
"Tag_Operand2".

See also
Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4.2.2 NE_Type: Compare data type for UNEQUAL with the data type of a tag (S7-1500)

Description
You can use the "Compare data type for UNEQUAL with the data type of a tag" instruction to
query the data type which a tag does not have to which a VARIANT points. You are comparing
the data type of the tag at IN1 parameter, which you declared in the block interface, with the
data type of a tag at IN2 parameter for "Not equal".
The tag at the IN1 parameter must have the VARIANT data type. The tag at the IN2 parameter
can be an elementary data type or a PLC data type.

Comparison of timers, date and time
Not all times can be compared directly with each other, such as S5TIME. In this case they are
implicitly converted into another time so that they can be compared, for example to TIME.
If you want to compare dates and times of different data types, the value of the smaller date or
time data type is implicitly converted into the larger date or time data type. This means the two
date and time data types DATE and DTL, for example, are compared on the basis of DTL.

When the implicit conversions fail, the comparison result is FALSE.

Comparison of structures
For the comparison of structures, you can use the instruction "CompType". Anonymous
structures cannot generally be compared unless they are part of the same ARRAY.

For additional information on the comparison of structures, please refer to: CompType: Compare
tag structured data types

Parameters
The following table shows the parameters of the "Compare data type for UNEQUAL with the
data type of a tag" instruction:



52 Manual, 11/2024

Parameters Declaration Data type Memory area Description

IN1 Input VARIANT L (The
declaration is
possible in the
"Input",
"InOut" and
"Temp"
sections of the
block
interface.)

First operand

IN2 Input Binary
numbers,
integers,
floating-point
numbers,
timers, date
and time,
character
strings, ARRAY,
PLC data types

I, Q, M, D, L, P Second operand

RET_VAL Output BOOL I, Q, M, D, L Result of the
instruction

Result
The following example shows how the instruction works:

STL Explanation

CALL NE_Type // The instruction is called.

IN1 := #Tag_Operand1 // First operand to be compared

IN2 := "Tag_Operand2" // Second operand to be compared

RET_VAL := "Tag_Result" // The "Tag_Result" output returns
the signal state "1" if the
condition of the comparison
instruction is fulfilled. i.e. the
#Tag_Operand1 operand is not equal
to "Tag_Operand2".

See also
Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)



Manual, 11/2024 53

1.4.2.3 EQ_ElemType: Compare data type of an ARRAY element for EQUAL with the data type of a tag (S7-
1500)

Description
You can use the "Compare data type of an ARRAY element for EQUAL with the data type of a tag"
instruction to query the data type of a tag to which the VARIANT points. You are comparing the
data type of the tag at IN1 parameter, which you declared in the block interface, with the data
type of a tag at IN2 parameter for "Equal".
The tag at the IN1 parameter must have the VARIANT data type. The tag at the IN2 parameter
can be an elementary data type or a PLC data type.
If the data type of the VARIANT tag is an ARRAY, the data type of the ARRAY elements is
compared.

Comparison of timers, date and time
Not all times can be compared directly with each other, such as S5TIME. In this case they are
implicitly converted into another time so that they can be compared, for example to TIME.
If you want to compare dates and times of different data types, the value of the smaller date or
time data type is implicitly converted into the larger date or time data type. This means the two
date and time data types DATE and DTL, for example, are compared on the basis of DTL.

When the implicit conversions fail, the comparison result is FALSE.

Comparison of structures
For the comparison of structures, you can use the instruction "CompType". Anonymous
structures cannot generally be compared unless they are part of the same ARRAY.
For additional information on the comparison of structures, please refer to: CompType: Compare
tag structured data types

Parameters
The following table shows the parameters of the "Compare data type of an ARRAY element for
EQUAL with the data type of a tag" instruction:

Parameters Declaration Data type Memory area Description

IN1 Input VARIANT L (The
declaration is
possible in the
"Input",
"InOut" and
"Temp"
sections of the
block
interface.)

First operand

IN2 Input Binary
numbers,
integers,
floating-point



54 Manual, 11/2024

numbers, timers, date and time,
character strings, ARRAY, PLC data
types

I, Q, M,
D, L, P

Second operand

RET_VAL Output BOOL I, Q, M,
D, L

Result of the
instruction

Result
The following example shows how the instruction works:

STL Explanation

CALL EQ_ElemType // The instruction is called.

IN1 := #Tag_Operand1 // First operand to be compared

IN2 := "Tag_Operand2" // Second operand to be compared

RET_VAL := "Tag_Result" // The "Tag_Result" output
returns the signal state "1" if
the condition of the comparison
instruction is fulfilled. i.e.
the #Tag_Operand1 operand is not
equal to "Tag_Operand2".

See also

Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4.2.4 NE_ElemType: Compare data type of an ARRAY element for UNEQUAL with the data type of a tag
(S7-1500)

Description
You can use the "Compare data type of an ARRAY element for UNEQUAL with the data type of a
tag" instruction to query the data type which the tag does not have to which the VARIANT
points. You are comparing the data type of the tag at IN1 parameter, which you declared in the
block interface, with the data type of a tag at IN2 parameter for "Not equal".
The tag at the IN1 parameter must have the VARIANT data type. The tag at the IN2 parameter
can be an elementary data type or a PLC data type.
If the data type of the VARIANT tag is an ARRAY, the data type of the ARRAY elements is
compared.

Comparison of timers, date and time
Not all times can be compared directly with each other, such as S5TIME. In this case they are
implicitly converted into another time so that they can be compared, for example to TIME.



Manual, 11/2024 55

If you want to compare dates and times of different data types, the value of the smaller date or
time data type is implicitly converted into the larger date or time data type. This means the two
date and time data types DATE and DTL, for example, are compared on the basis of DTL.
When the implicit conversions fail, the comparison result is FALSE.

Comparison of structures
For the comparison of structures, you can use the instruction "CompType". Anonymous
structures cannot generally be compared unless they are part of the same ARRAY.
For additional information on the comparison of structures, please refer to: CompType: Compare
tag structured data types

Parameters
The following table shows the parameters of the "Compare data type of an ARRAY element for
UNEQUAL with the data type of a tag" instruction:

Parameters Declaration Data type Memory area Description

IN1 Input VARIANT L (The
declaration is
possible in the
"Input",
"InOut" and
"Temp"
sections of the
block
interface.)

First operand

IN2 Input Binary
numbers,
integers,
floating-point
numbers,
timers, date
and time,
character
strings, ARRAY,
PLC data types

I, Q, M, D, L, P Second operand

RET_VAL Output BOOL I, Q, M, D, L Result of the
instruction

Result
The following example shows how the instruction works:

STL Explanation

CALL NE_ElemType // The instruction is called.



56 Manual, 11/2024

IN1 :=
#Tag_Operand1

// First operand to be compared

IN2 :=
"Tag_Operand2"

// Second operand to be compared

RET_VAL :=
"Tag_Result"

// The "Tag_Result" output returns the signal
state "1" if the condition of the comparison
instruction is fulfilled. i.e. the
#Tag_Operand1 operand is not equal to
"Tag_Operand2".

See also
Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4.2.5 IS_NULL: Check for EQUALS NULL pointer (S7-1500)

Description
You can use the instruction "Check for EQUALS NULL pointer" to query whether the VARIANT or
the reference points to a NULL pointer and therefore does not point to an object.
The tag at the parameter OPERAND must have the data type VARIANT or REF_TO <data type>.

Note

VARIANT tag points to an ANY pointer

If the VARIANT tag points to an ANY pointer, the instruction always returns the
result RLO = "0" even if the ANY pointer is NULL.

Parameters
The following table shows the parameters of the "Check for EQUALS NULL pointer" instruction:

Parameters Declaration Data type Memory area Description

OPERAND Input VARIANT or
REF_TO <data
type>

L (The
declaration is
possible in the
"Input",
"InOut" and
"Temp"
sections of the
block
interface.)

Operand that is
compared for EQUALS
NULL



Manual, 11/2024 57

RET_VAL Output BOOL I, Q, M, D, L Result of the instruction

You can find more information on the valid data types under "See also".

Example
The following example shows how the instruction works:

STL Explanation

CALL IS_NULL // The instruction is called.

OPERAND := #Tag_Operand // Operand to be compared

RET_VAL := "Tag_Result" // The "Tag_Result" output returns
the signal state "1" if the
condition of the comparison
instruction is fulfilled. i.e. the
#Tag_Operand operand does not
point to an object.

See also
Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4.2.6 NOT_NULL: Check for UNEQUALS NULL pointer (S7-1500)

Description
You can use the instruction "Check for UNEQUALS NULL pointer" to query whether the VARIANT
or the reference does not point to a NULL pointer and therefore points to an object.
The tag at the parameter OPERAND must have the data type VARIANT or REF_TO <data type>.

Note

VARIANT tag points to an ANY pointer

If the VARIANT tag points to an ANY pointer, the instruction always returns the
result RLO = "1" even if the ANY pointer is NULL.

Parameters
The following table shows the parameters of the "Check for UNEQUALS NULL pointer"
instruction:

Parameters Declaration Data type Memory area Description



58 Manual, 11/2024

OPERAND Input VARIANT or
REF_TO
<data type>

L (The declaration is
possible in the "Input",
"InOut" and "Temp" sections
of the block interface.)

Operand that is
compared for
UNEQUALS NULL

RET_VAL Output BOOL I, Q, M, D, L Result of the
instruction

For more information on valid data types, refer to "See also".

Example
The following example shows how the instruction works:

STL Explanation

CALL NOT_NULL // The instruction is called.

OPERAND := #Tag_Operand // Operand to be compared

RET_VAL := "Tag_Result" // The "Tag_Result" output returns
the signal state "1" if the
condition of the comparison
instruction is fulfilled. i.e. the
#Tag_Operand operand does not
point to an object.

See also

Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4.2.7 IS_ARRAY: Check for ARRAY (S7-1500)

Description
You can use the "Check for ARRAY" instruction to query whether the OPERAND parameter points
to a tag of the ARRAY data type.
The tag at the OPERAND parameter has the VARIANT or ResolvedSymbol data type. The result of
the query is output at the RET_VAL parameter.

Parameters
The following table shows the parameters of the "Check for ARRAY" instruction:

Parameters Declaration Data type Memory area Description



Manual, 11/2024 59

OPERAND Input VARIANT,
ResolvedSymbol

L (The declaration is
possible in the "Input",
"InOut" and "Temp"
sections of the block
interface.)

Operand that
is queried for
ARRAY

RET_VAL Output BOOL I, Q, M, D, L Result of the
instruction

For more information on valid data types, refer to "See also".

Note

Checking an ARRAY data block

If you use the IS_ARRAY instruction with an ArrayDB and generate the VARIANT
input parameter via DB_ANY_TO_VARIANT , a symbolic use of the ArrayDB must be
present elsewhere in the program as an actual parameter of a formal parameter of
the data type VARIANT. To work correctly, it is sufficient if the point of use is
downloaded. It is not necessary to execute it.

Example
The following example shows how the instruction works:

STL Explanation

CALL IS_ARRAY // The instruction is called.

OPERAND := #Tag_Input // Operand to be queried at
ARRAY

RET_VAL := "Tag_Result" // The "Tag_Result" output
returns the signal state "1"
if the condition of the
comparison instruction is
fulfilled. // In other words,
if the VARIANT at the
#Tag_Input operand points to
an ARRAY.

See also

Overview of the valid data types
Basic information on VARIANT (S7-1200, S7-1500)
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.4.2.8 EQ_TypeOfDB: Compare data type of an indirectly addressed DB for EQUAL with a data type (S7-
1500)



60 Manual, 11/2024

Description
The "Compare data type of an indirectly addressed DB for EQUAL with a data type" instruction is
used to query which data type of the data block has that the tag of the DB_ANY data type
addresses. You compare the data type of the DB addressed by the tag at the IN1 parameter
either with the data type of another tag or directly with a data type at the IN2 parameter for
"Equal".
The tag at the IN1 parameter must have the DB_ANY data type. The tag at the IN2 parameter, for
example, can be a PLC data type, a system data type, an axis or an FB.
If the condition of the comparison is fulfilled, the instruction returns the result of logic operation
(RLO) "1". If the comparison condition is not fulfilled, the instruction returns RLO "0".

Parameter
The following table shows the parameters of the instruction:

Parameter Declaration Data type Memory area Description

IN1 Input DB_ANY L (The
declaration is
possible in the
"Input", "InOut"
and "Temp"
sections of the
block
interface.)

First operand

IN2 Input TYPE_ID I, Q, M, D, L, P Second
operand

RET_VAL Output BOOL I, Q, M, D, L Result of
comparison

You can find additional information on valid data types under "See also".

Example
The following example shows how the instruction works:

STL Description

CALL EQ_TypeOfDB // Call the instruction

IN1 := #InputDBAny // Operand to query for DB_ANY

IN2 := TO_SpeedAxis // The condition of the
comparison instruction is
fulfilled if the data type of
the #InputDBAny operand
addressed DB is equal with the
data type TO_SpeedAxis.



Manual, 11/2024 61

RET_VAL := "TagOut" // Result of comparison

The "TagOut" output is not set when the following conditions are fulfilled:

The number of the data block is "0".

The data block does not exist.

The data block is an ARRAY DB.

The data block contains a tag of the data type UDT (PLC data type).

See also
Overview of the valid data types
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)
Using the DB_ANY data type (S7-1200, S7-1500)

1.4.2.9 NE_TypeOfDB: Compare data type of an indirectly addressed DB for UNEQUAL with a data type (S7-
1500)

Description
The "Compare data type of an indirectly addressed DB for UNEQUAL with a data type" instruction
is used to query which data type the data block does not have, that the tag of the DB_ANY data
type addresses. You compare the data type of the DB addressed by the tag at the IN1 parameter
either with the data type of another tag or directly with the data type at the IN2 parameter for
"Not equal".
The tag at the IN1 parameter must have the DB_ANY data type. The tag at the IN2 parameter, for
example, can be a PLC data type, a system data type, an axis or an FB.
If the condition of the comparison is fulfilled, the instruction returns the result of logic operation
(RLO) "1". If the comparison condition is not fulfilled, the instruction returns RLO "0".

Parameter
The following table shows the parameters of the instruction:

Parameter Declaration Data type Memory area Description

IN1 Input DB_ANY L (The
declaration is
possible in the
"Input", "InOut"
and "Temp"
sections of the
block
interface.)

First operand

IN2 Input TYPE_ID I, Q, M, D, L, P Second
operand



62 Manual, 11/2024

RET_VAL Output BOOL I, Q, M, D, L Result of comparison

You can find additional information on valid data types under "See also".

Example
The following example shows how the instruction works:

STL Description

CALL NE_TypeOfDB // Call the instruction

IN1 := #InputDBAny // Operand to query for DB_ANY

IN2 := TO_SpeedAxis // The condition of the
comparison instruction is
fulfilled if the data type of
the #InputDBAny operand
addressed DB is unequal with
the data type TO_SpeedAxis.

RET_VAL := "TagOut" // Result of comparison

The "TagOut" output is not set when the following conditions are fulfilled:

The number of the data block is "0".

The data block does not exist.

The data block is an ARRAY DB.

The data block contains a tag of the data type UDT (PLC data type).

See also
Overview of the valid data types
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)
Using the DB_ANY data type (S7-1200, S7-1500)

1.5 Math functions (S7-1500)

1.5.1 MIN: Get minimum (S7-1500)

Description
The "Get minimum" instruction compares the values at the inputs IN1, IN2 and IN3 and writes
the lowest value to the OUT output. The instruction is only executed if the tags of all inputs are
of the same data type.
The value of the OUT parameter is invalid if one of the following conditions is met:

The specified tags are not of the same data type.



Manual, 11/2024 63

A floating-point number has an invalid value.

Parameters
The following table shows the parameters of the "Get minimum" instruction:

Parameters Declaration Data type Memory area Description

IN1 Input Integers,
floating-point
numbers

I, Q, M, D, L, P
or constant

First input value

IN2 Input Integers,
floating-point
numbers

I, Q, M, D, L, P
or constant

Second input value

IN3 Input Integers,
floating-point
numbers

I, Q, M, D, L, P
or constant

Third input value

OUT Output Integers,
floating-point
numbers

I, Q, M, D, L, P Result

If the IEC check is not activated, you can also use tags with the data types TIME, LTIME,
TOD, LTOD, DATE and LDT by selecting a bit string or integer with the same length as the
data type of the instruction (e.g. instead of TIME => DINT, UDINT or DWORD = 32 bits).

You can select the data type for the parameters INn and OUT from the "???" drop-down list.

Example
The following example shows how the instruction works:

STL Explanation

CALL MIN // The instruction is called.

// Select the required data type from
the "???" drop-down list.

IN1 := "TagIn_Value1" // First input value is compared.

IN2 := "TagIn_Value2" // Second input value to be compared.

IN3 := "TagIn_Value3" // Third input value to be compared.

OUT := "Tag_Minimum" The "Tag_Minimum" operand is written
with the value of the "TagIn_Value1"
operand because this has the lowest
value.



64 Manual, 11/2024

The following table shows how the instruction works using specific operand values:

Parameters Operand Value

IN1 TagIn_Value1 12222

IN2 TagIn_Value2 14444

IN3 TagIn_Value3 13333

OUT Tag_Minimum 12222

See also
Overview of the valid data types
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)

1.5.2 MAX: Get maximum (S7-1500)

Description
The "Get maximum" instruction compares the values at the inputs IN1, IN2 and IN3 and writes
the highest value to the OUT output. The instruction is only executed if the tags of all inputs are
of the same data type.
The value of the OUT output is invalid if one of the following conditions is fulfilled:

The specified tags are not of the same data type.

A floating-point number has an invalid value.

Parameters
The following table shows the parameters of the "Get maximum" instruction:

Parameters Declaration Data type Memory area Description

IN1 Input Integers,
floating-point
numbers

I, Q, M, D, L, P
or constant

First input value

IN2 Input Integers,
floating-point
numbers

I, Q, M, D, L, P
or constant

Second input value

IN3 Input Integers,
floating-point
numbers

I, Q, M, D, L, P
or constant

Third input value



Manual, 11/2024 65

OUT Output Integers, floating-point
numbers

I, Q, M, D, L,
P

Result

If the IEC check is not activated, you can also use tags with the data types TIME, LTIME,
TOD, LTOD, DATE and LDT by selecting a bit string or integer with the same length as the
data type of the instruction (e.g. instead of TIME => DINT, UDINT or DWORD = 32 bits).

You can select the data type for the parameters INn and OUT from the "???" drop-down list.

Example
The following example shows how the instruction works:

STL Explanation

CALL MAX // The instruction is called.

// Select the required data type from
the "???" drop-down list.

IN1 := "TagIn_Value1" // First input value is compared.

IN2 := "TagIn_Value2" // Second input value to be compared.

IN3 := "TagIn_Value3" // Third input value to be compared.

OUT := "Tag_Maximum" // The "Tag_Maximum" operand is written
with the value of the "TagIn_Value2"
operand because this has the highest
value.

The following table shows how the instruction works using specific operand values:

Parameters Operand Value

IN1 TagIn_Value1 12222

IN2 TagIn_Value2 14444

IN3 TagIn_Value3 13333

OUT Tag_Maximum 14444

See also
Overview of the valid data types
Querying and setting status bits in STL (S7-1500)
Memory areas (S7-1500)
STL Basics (S7-300, S7-400, S7-1500)


