Foreword

Thank you for using the SY9000 series of high-performance vector inverter.

New SY9000 series is a general current vector control inverter integrated with the performance and features in a high degree.

SY9000 with industry-leading drive performance and functionality control, using unique current vector control algorithm can efficiently drive induction motor to achieve high accuracy, high torque and high-performance control.

Customer success, Market Serivce ! SY9000 in terms of performance and control are worthy of trust!

This guide explains how to properly use SY9000 series inverter. Before using (installation, operation, maintenance, inspection, etc.), be sure to carefully read the instructions. Understanding of product safety precautions before using this product.

General notes

- This manual due to product improvement, specifications change, as well as to the instructions of their ease of use will be appropriate changes. We will update the information number of instructions, issued a revised edition.
- Due to damage to or loss need to order the manual, please contact SANYU or SANYU agents to order it as per the information number on the cover.
- This icon in the instructions with the products you ordered may be different, please refer to the specific documentation for products supplied.

Definition of security

In this manual, safety issues the following two categories:

Warning: Due to the dangers posed against the required operation, may result in serious injury and even death;

Causion: Due to the dangers posed against the required operation, may lead to moderate harm or minor injuries, and damage to the equipment;

Installation, commissioning and maintenance of the system, please carefully read this chapter (safety precautions), follow the required safety precautions to operate. In case of any injuries and losses caused as a result of illegal operations, that is nothing to do with SANYU.

Safety precautions

Before Installation

Warning

DO not install inverter finding the control system with water in, or inverter with missing parts or damaged parts.

Please DO not install inverter when the packing list is not consistent with the physical name.

Warning

Carefully handled when loading, otherwise it may damage the inverter.

Please DOn't use the damaged driver or missing parts inverter, there may be risk of injury. DO not touch components of the control system, otherwise it will cause danger of static electricity.

During Installation

Warning

Mount the inverter on incombustible surface like metal, and keep away from flammable substances. Otherwise it may cause fire.

Do not twist the mounting bolt of the equipment, especially the screw bolt marked in RED.

Prohibit the use in the dangerous environment where inflammable or combustible or explosive gas, liquid or solid exists. Or it may cause electric shock or fire.

Caution

DO not drop the conducting wire stub or screw into the inverter. Otherwise ,it may cause damage to the inverter.

Please install the inverter at the place of less direct sunlight and vibration.

Please mind the location of its installation when more than two inverters are installed in one cabinet, so that radiation effect is promised.

During Wiring

Warning

Operation shall be performed by the professional engineering technician. Otherwise there will be unexpected danger.

There shall be circuit breaker between the inverter and power supply. Otherwise, there may be fire.

Make sure the power is disconnected prior to the connection. Otherwise there will be danger of electric shock.

The earth terminal shall be earthed reliably. Otherwise there may be danger of electric shock.

Please DOn't put the power line and the signal line from the same pipeline, when operating wiring, please make power line and signal line apart above 30cm.

The encoder must use shielded cable, and the shield must ensure that a single side of a reliable ground!

Do not connect the input power cable to the output terminals(U, V, W). Attention to the terminals of the mark and DO not make wrong connection. Otherwise it may damage the inverter.

The brake resistor cannot be directly connected between the DC bus terminals (+), (B). Otherwise it may cause fire.

Ensure the wiring meet the EMC requirements and the local safety standard.

The wire size shall be determined according to the manual. Otherwise, accident may be caused!

Before Power-on:

Caution

Any part of the inverter need not to carry on voltage test, which has been done before leaving factory.Or accident may be caused.

Please confirm whether the power voltage class is consistent with the rated voltage of the inverter and the Input terminal (R, S, T) and Output terminal(U, V, W)cable connecting positions are correct, and check whether the external circuit is short circuited and whether the connecting line is firm,otherwise it may damage the inverter.

DO not frequently turn ON/OFF power .If continuously ON/OFF power is needed, please make sure the time interval more than 1 minute.

Caution

The cover must be well closed prior to the inverter power-on. Otherwise electric shock may be caused!

All the external fittings must be connected correctly in accordance with the circuit provided in this manual.Or accident may occur.

Upon Power-on

DO not open the cover of the inverter upon power-on.Otherwise there will be danger of electric shock!

DO not touch the inverter and its surrounding circuit with wet hand. Otherwise there will be danger of electric shock.

DO not touch the inverter terminals (including control terminal). Otherwise there will be danger of electric shock.

At power-on, the inverter will perform the security check of the external stong-current circuit automatically. Thus, at this time please DO not touch the terminals $U_{\infty} V_{\infty} W$, or the terminals of motor, otherwise there will be danger of electric shock.

If the parameter identification is required, pay attention to the danger of injury arising from the rotating motor. Otherwise accident may occur.

DO not change the factory settings at will. Otherwise it may damage the equipment.

During the Operation

DO not touch the fan, heat sink or discharge resistor to sense the temperature. Otherwise, you may get burnt.

Detection of signals during the operation shall only be conducted by qualified technician. Otherwise, personal injury or equipment damage may be caused.

Cautions

DO not control run/stop by using contactor.Or equipment damage may be caused!

Avoid anything falling into the equipment when inverter is running.Or damage may be caused.

Maintenance

Warning

DO not carry out repairs and maintenance of equipment with power on. Otherwise, there is a risk of electric shock!

No specially trained personnel can not make inverter implementation of repairs and maintenance. Otherwise, personal injury or equipment damage may be caused!

Make sure the inverter when the inverter voltage is lower than AC36V implementation of the maintenance and repair, five minutes after power prevail. Otherwise, the residual charge on the capacitor will cause damage!

Make the inverter parameter settings, only with all pluggable plug in and out in the case of power outages!

Precautions

Motor Insulation Inspection

Motor in use for the first time, placed a long time before re-use and periodic inspection should be done, the motor insulation should be checked, to prevent the motor winding insulation failure and damage to the inverter. To motor insulation check connection separate from the inverter, 500V megger is recommended, should ensure that the measured insulation resistance of not less than $5M\Omega$.

Motor Thermal Protection

If the rated capacity of the motor is not match those of the inverter, especially when the rated power of the inverter is higher than the rated power of the motor, be sure to adjust the inverter motor protection parameter values , or thermal relay shall be mounted for motor protection.

•Running with Frequency higher than Power Frequency

This inverter can provide output frequency from 0Hz to 500Hz. If the customer is required to run 50Hz above, consider the mechanical endurance of the device.

•Vibration of Mechanical Device

The inverter may encounter the mechanical resonance point at certain output frequencies, which can be avoided by setting the skip frequency parameters in the inverter.

Motor Heat and Noise

Since the output voltage of inverter is PWM wave and contains certain harmonics, the temperature rise, noise and vibration of the motor comparing with the power frequency will be increased slightly.

•Use with the voltage different with the rated voltage

If the SY9000 series inverter is used outside the allowable working voltage range as specified in this manual, it is easily lead to the inverter devices damage. If needed, use the corresponding boost or lower voltage transformer processing.

•The output side with the voltage-sensitive devices or to improve the power factor capacitor

Since the inverter output is PWM wave, the output side if installed with capacitors to improve the power factor or lightning variators. Easily lead to the inverter instantaneous overcurrent or even damage the drive, DO not use.

•Switching Devices like Contactors Used at the Input and Output terminal

If a contactor is installed between the power supply and the input terminal of the inverter, it is not allowed to use the contactor to control the startup/stop of the inverter. Necessarily need to use the contactor control inverter start and stop of not less than an hour. Frequent charge and discharge will reduce the service life of the capacitor inside the inverter. If switching devices like contactor are installed between the output terminal and the motor, should ensure that the inverter output off operation, otherwise easily lead to the inverter module damage.

•Change Three-phase Input to Two-phase Input

It is not allowed to change the SY9000 series three-phase inverter into two-phase.

Otherwise, it may cause fault or damage to the inverter. This operation must be handed under SANYU technical guidance.

Lightning Surge Protection

The series inverter has lightning over current protection device, and has certain selfprotection ability against the lightning. In applications where lightning occurs frequently, the user shall install additional protection devices in front of the inverter.

•Altitude and Derating Use

Altitude of over 1000m of the region, the heat sink's cooling effect of the inverter may turn poorer due to the thin air. Therefore, it needs to derate the inverter for use. This case please contact our technical advice.

Some Special Use

If the user needs to use the inverter with the methods other than the recommended wiring diagram in this manual, such as DC bus, please consult our company.

•Cautions of Inverter scrapped

The electrolytic capacitors on the main circuit and the PCB may explode when they are burnt. Emission of toxic gas may be generated when the plastic parts are burnt. Processed as industrial waste.

Adaptable Motor

 The standard adaptable motor is four-pole squirrel-cage asynchronous induction motor. If such motor is not available, be sure to select adaptable motors in according to the rated current of the motor.

2) The cooling fan and the rotor shaft of the non-frequency-conversion motor adopt coaxial connection. When the rotating speed is reduced, the heat sink cooling effect will be reuduced. Therefore, overheating occasions should be retrofitted with a strong exhaust fan or replace the variable frequency motor.

3) Since the inverter has built-in standard parameters of the adaptable motors, it is necessary to perform motor parameter identification or modify the default values so as to comply with the actual values as much as possible, or it may affect the performance and protective properties.

4)Since short circuit cable or internal circuit of motor may cause alarm,or even machine explosion,please do insulation and short circuit test before the initial use as well as daily maintenance.Note: be sure to DO this test, inverter and tested parts must be all separated!

EMC Guidance

According to the national standard of GB/T12668.3, SY9000comply with the requirements for electromagnetic interference and anti-electromagnetic interference.

SY9000 series inverter meet international standard as below,the products have passed CE certification.

IEC/EN 61800-5-1: 2003 Safety Regulationson Commissionable Electric Drive System IEC/EN 61800-3: 2004 Commissionable Electric Drive System

To obtain good electromagnetic compatibility in general industrial environment, please refer to the following instruction:

Installation of EMC guidance:

- 1) Ground wire of inverter and other electrical products should be well grounded.
- Try not set parallel arrangement for inverter input/output power line and weak electric signal lines, set vertical arrangement if possible.
- 3) The inverter output power line is recommended to use shielded cable, or steel shielded power line, and shielding layer should be reliable grounded. Twisted pair shielded control cable is recommended for wiring of interference device.
- If the distance between the inverter and the motor exceeds 100 meters, output filter or reactor shall be installed.

Input filter installation EMC guidance:

- Note: The filters should strictly be used according to the rated value. As filter belongs to class I appliances, filter metal shell ground shold be large area well connected to installation cabinet metal gound, and good conductive continuity is required. Otherwise there will be risk of electric shock and serious impact on the EMC effect.
- EMC test proves, filter and PE end must be connected to the same public ground, otherwise it will seriously affect the EMC effect.
- 3) Filter should be installed as close as possible to the inverter power supply input.

Contents

SECT	ION I. PRODUCT INFORMATION	1
1-1	NAMEPLATE SPECIFICATION	1
1-2	MODEL SPECIFICATION	1
1-3	PRODUCT SERIES	2
1-4	PRODUCT SHAPE	4
1-5	STANDARD SPECIFICATION	8
SECT	ION II. INSTALLATION & WIRING	11
2-1	USE OF THE ENVIRONMENT	11
2-2	HANDLING AND INSTALLATION	11
2-4	WIRING	13
2-5	MAIN CIRCUIT TERMINALS(G TYPE)	14
2-6	CONTROL CIRCUIT TERMINALS	16
SECT	ION III. FITTINGS	21
3-1	CONNECTION WITH PERIPHERAL DEVICES	21
3-2	MOUNTING HOLE DIMENSION	24
SECT	ION IV. KEYBOARD OPERATION	26
4-1	KEYBOARD SIZE	26
4-2	DISPLAY INTERFACE	27
4-3	EXAMPLES FOR PARAMETER SETTING	29
4-4	TEST RUNNING	32
SECT	ION V. PARAMETER FUNCTION TABLE	33
5-1	MONITOR FUNCTION GROUP: U0.00-U0.61	33
5-2	BASIC FUNCTION GROUP: P0.00-P0.28	38
5-3	PARAMETERS FOR MOTOR 1: P1.00-P1.37	46
5-4	VECTOR CONTROL FUNCTION GROUP: P2.00-P2.23	48
5-5	V/F CONTROL GROUP: P3.00-P3.26	51

5-6	INPUT TERMINAL: P4.00-P4.40	55
5-7	OUTPUT TERMINAL: P5.00-P5.22	67
5-8	START/STOP CONTROL: P6.00-P6.15	72
5-9	KEYBOARD AND DISPLAY: P7.00-P7.14	76
5-10	AUXILIARY FUNCTION: P8.00-P8.53	79
5-11	OVERLOAD AND PROTECTION: P9.00-P9.73	88
5-12	PID FUNCTION GROUP: PA.00-PA.28	97
5-13	FIXED LENGTH AND COUNTING: PB.05-PB.09	- 102
5-14	MS SPEED FUNCTION& SIMPLE PLC FUNCTION: PC.00-PC.51	- 103
5-15	COMMUNICATION FUNCTION GROUP: PD.00-PD.06	- 106
5-16	USER CUSTOMIZATION FUNCTION CODE: PE.00-PE.29	- 107
5-17	' FUNCTION CODE MANAGEMENT: PP.00-PP.04	- 108
5-18	TORQUE CONTROL GROUP: A0.00-A0.08	- 110
5-19	VIRTUALIO: A1.00-A1.21	- 111
5-20	THE SECOND MOTOR CONTROL: A2.00-A2.65	- 116
5-21	CONTROL OPTIMIZATION: A5.00-A5.11	- 118
5-22	2 AI CURVE SETUP: A6.00-A6.29	- 119
5-23	USER PROGRAMMABLE CARD PARAMETERS: A7.00-A7.09	- 121
5.24	POINT TO POINT COMMUNICATION: A8.00-8.11	- 122
5-25	EXTENDED FUNCTION GROUP: A9.00-A9.09	- 123
5-26	AIAO CORRECTION: AC.00-AC.19	- 124
0507		496
SECI	ION VI. FAULI DIAGNOSIS & SOLUTIONS	- 126
6-1	FAULT ALARM AND SOLUTIONS	- 126
6-2	COMMON FAULT AND SOLUTIONS	- 133
SECT	ION VII. INSPECTION & MAINTENANCE	- 135
7-1	INSPECTION AND MAINTENANCE	- 135
7-2	REGULAR REPLACEMENT OF THE DEVICE	- 136
7-3	STORAGE	- 136
7-4	MEASURING AND JUDGMENT	- 136
7-5	SAFETY PRECAUTION	- 136
		100

APPENDIX I RS4	85COMMUNICATION PROTOCOL 138
I-1 RS485 CARD	138
I-2 COMMUNICATIO	N PROTOCOL 138
APPENDIX II PAR	AMETER SETTINGS LIST 148
POINT TO POINT COM	MUNICATION: A8.00-8.11 166
APPENDIX III REC	COMMENDED ACCESSORIES SELECTION 169 -
PRODUCT FEEDBA	ACK

Section I. Product Information

SANYU frequency inverters have been tested and inspected before leaving the manufacturer. Before unpacking the product, please check product packaging for shipping damage caused by careless transportation and whether the specifications and type of the product complies with the order. If any questions, please contact the supplier of SANYU products, or directly contact the company.

- Inspect that the contents are complete (one unit of SY9000 frequency inverter, one operation manual).
- Check the nameplate on the side of the frequency inverter to ensure that the product you have received is right the one you ordered.

1-1 Nameplate specification

1-2 Model specification

	Users check factory models through P0.00. P type is one lower power than G type.
	E.g. If you need 11kw P type, 7.5kw G type could be selected as a replacement. Its input
	current is the rated input current (20.5A) of 7.5kw G type, but its rated power is that of 11kw
GP unification	G type, and output current is the rated output current(25A) of 11kw G type.
description	Though inverter hardware of GP unification is different, there are some optimizations of
description	software parameters for different load types .
	P type model is only suitable for pump, fan etc light load models, can not work at the rated
	current or more than the rated frequency for a long time.

1-3 Product series

	Motor a	dapter				
Inverter model	kW	HP	Rated input A	Rated output A		
1PH single phase input: AC 220V, 50/60Hz						
SY9000-0R4G-S2	0.4	0.5	5.9	2.5		
SY9000-0R7G-S2	0.75	1	8.3	4		
SY9000-1R5G-S2	1.5	2	14.1	7		
SY9000-2R2G-S2	2.2	3	24.2	10		
3PH 3-phase input: AC	220V, 50/60	Hz				
SY9000-0R4G-2	0.4	0.5	4.1	2.5		
SY9000-0R7G-2	0.75	1	5.3	4		
SY9000-1R5G-2	1.5	2	8.0	7		
SY9000-2R2G-2	SY9000-2R2G-2 2.2 3 11.8		11.8	10		
SY9000-004G-2	4.0	5.5	18.1	16		
SY9000-5R5G-2	5.5	7.5	28.0	25		
SY9000-7R5G-2	7.5	10	37.1	32		
SY9000-011G-2	11	15	49.8	45		
SY9000-015G-2	15	20	65.4	60		
SY9000-018G-2	18.5	25	81.6	75		
SY9000-022G-2	22	30	97.7	90		
SY9000-030G-2	30	40	122.1	110		
SY9000-037G-2	37	50	157.4	152		
SY9000-045G-2	45	60	185.3	176		
SY9000-055G-2	55	70	215.8	210		
3PH 3-phase input: AC 380V, 50/60Hz						
SY9000-0R7G-4	0.75	1	4.3	2.5		
SY9000-1R5G-4	1.5	2	5.2	3.7		
SY9000-2R2G-4	2.2	3	6.0	5		
SY9000-004G-4	4.0	5	10.5	8.5		
SY9000-5R5G-4	5.5	7.5	15.5	13		

SY9000-7R5G-4	7.5	10	20.5	16
SY9000-011G-4	11.0	15	27.5	25
SY9000-015G-4	15.0	20	37.1	32
SY9000-018G-4	18.5	25	41.9	38
SY9000-022G-4	22	30	49.3	45
SY9000-030G-4	30	40	65.7	60
SY9000-037G-4	37	50	80.6	75
SY9000-045G-4	45	60	96.4	90
SY9000-055G-4	55	70	117.6	110
SY9000-075G-4	75	100	166.4	150
SY9000-093G-4	90	125	184.3	170
SY9000-110G-4	110	150	226.8	210
SY9000-132G-4	132	175	268.1	250
SY9000-160G-4	160	210	321.1	300
SY9000-185G-4	185	245	368.0	340
SY9000-200G-4	200	260	406.6	380
SY9000-220G-4	220	300	442.7	415
SY9000-250G-4	250	350	503.0	470
SY9000-280G-4	280	370	555.9	520
SY9000-315G-4	315	500	650.7	600
SY9000-355G-4	355	420	734.5	650
SY9000-400G-4	400	530	787.6	725
SY9000-450G-4	450	595	846.0	820
SY9000-500G-4	500	670	885.0	860
SY9000-560G-4	560	750	990.0	950
SY9000-630G-4	630	840	1150.0	1100

Table 1-3

1-4 Product shape

1-4-1 Product Component Name

SY9000-0R4G-S2/G-2~SY9000-2R2G-S2/G-2

SY9000-0R4G-S2/G-2~SY9000-2R2G-S2/G-2

SY9000-7R5G-4 and below power class, SY9000-011G-4 and above power class

1-4-2 Product Outline, Mounting Dimension, and Weight

SY9000-004G-2~SY9000-022G-2、SY9000-007G-4~SY9000-075G-4 and blow power class

SY9000-110G-4~SY9000-200G-4 power class SY9000-185G-4~ SY9000-400G-4

		Shap	e dimension	and nstalla	tion dimens	sion (mm)		
Shape DIM	w	н	D	W1	H1	D1	H2	Asse mbly apert ure	Weight (kg)
SY9000-0R4G-S2									
SY9000-0R7G-S2	118.5	185	171	106.5	174.5	159		5.5	2.2
SY9000-1R5G-S2									
SY9000-2R2G-S2	160	247	184	143	230	177		5.5	5
SY9000-0R4G-2									
SY9000-0R7G-2	118.5	185	171	106.5	174.5	159		5.5	2.2
SY9000-1R5G-2									
SY9000-2R2G-2	160	247	184	143	230	177		5.5	5
SY9000-004G-2	220	320	210	205	305	197		7	8.7
SY9000-5R5G-2									
SY9000-7R5G-2	220	320	210	205	305	197		7	8.7
SY9000-011G-2									
SY9000-015G-2	285	501	230.2	200	182	217	460	7	10
SY9000-018G-2	205	501	230.2	200	402	217	400		19
SY9000-022G-2									
SY9000-030G-2	352	585	274.2	220	559		538	10	25
SY9000-037G-2									
SY9000-045G-2	384	650	310	300	628		600	10	48
SY9000-055G-2	004	000	010	000	020		000	10	40
SY9000-0R7G-4									
SY9000-1R5G-4	118.5	185	171	106.5	174.5	159		5.5	2.2
SY9000-2R2G-4									
SY9000-004G-4									
SY9000-5R5G-4	160	247	184	143	230	177		5.5	5
SY9000-7R5G-4									
SY9000-011G-4									
SY9000-015G-4	220	320	210	205	305	197		7	8.7
SY9000-018G-4									
SY9000-022G-4									
SY9000-030G-4	285	501	230.2	200	482	217	460	7	19
SY9000-037G-4									
SY9000-045G-4									
SY9000-055G-4	352	585	274.2	220	559		538	10	25
SY9000-075G-4									
SY9000-090G-4	384	650	310	300	628		600	10	48
SY9000-110G-4	485	760	316	325	739		713	12	66
Wall mounting									
SY9000-132G-4	533	830	405	325	809		780	12	94
SY9000-160G-4									

SY9000-185G-4									
Cabinet installation									
SY9000-132G-4	522	1010	405	225	4404	790	10	150	
SY9000-160G-4	555	1212	405	320	1191	760	12	150	
SY9000-185G-4									
Cabinet installation									
SY9000-200G-4	638	1402	374	350	1372		14	175	
SY9000-220G-4	1								
Cabinet installation									
SY9000-250G-4	700	1607	460	520	1502		11	050	
SY9000-280G-4	700	700 1627	1627	1027 400	520	1592		14	203
SY9000-315G-4									
SY9000-355G-4	200	1770	460	500	4707		4.4	200	
SY9000-400G-4	800	1//2	400	520	1/3/		14	300	
SY9000-450G-4									
SY9000-500G-4	1200	0000	500					400	
SY9000-560G-4		2000	568				14	400	
SY9000-630G-4									

1-5 Standard specification

Item		Specifications					
	Control system	High performance of current vecto asynchronous motor control	r control technology to realize				
	Drive performance	High efficiency driving for induction motor					
nction	Maximum frequency	0~500Hz	0~500Hz				
	Carrier frequency	0.8k~8kHz; the carrier frequency according to the load characteristics	will be automatically adjusted				
	Input frequency resolution	Digital setting: 0.01Hz Analog setting: maximum frequency ×0.025%					
	Control mode	Open loop vector control(SVC) Closed loop vector control(FVC) V/F control					
c fui	Startuptorque	Type G: 0.5Hz/150%(SVC); 0Hz/180%(FVC)					
Basi	Speed range	1: 100(SVC)	1:1000(FVC)				
	Speed stabilizing precision	±0.5%(SVC)	0.02%(FVC)				
	Torque control precision	±3%(FVC)					
	Over load capability	G type:rated current 150% -1 minute, rated current 180% -3 seconds; P type:rated current 120% -1 minute, rated current 150% -3 seconds:					
	Torque boost	Auto torque boost function; Manual t	orque boost 0.1%~30.0%				
	V/Fcurve	Linear V/F,Multi-point V/F and Square V/F curve(power of 1.2, 1.4, 1.6, 1.8, 2.0)					
	V/F separation	In 2 ways: separation ,semi seperation	on				
	Acc. /deccurve	Straight line or S curve acceleration and deceleration mode.					

		Four kinds of acceleration and deceleration time. Acceleration and
		deceleration time range between 0.0s to 6500.0s
	DC brake	DC brake frequency: 0.00Hz to maximum frequency, brake time: 0.0s to 36.0s, and brake current value: 0.0% to 100.0%.
	Jog control	Jog frequency range: 0.00Hz~50.00Hz. Jog acceleration/decelerationtime 0.0s~6500.0s.
	Simple PLC and MS speed	It can realize at maximum of 16 segments speed running via the built- in PLC or control terminal
	Built-in PID	It is easy to realize process-controlled close loop control system
	Auto voltage regulation (AVR)	It can keep constant output voltage automatically in case of change of network voltage.
	Over-voltage/current stall	It can limit the running voltage/current automatically and prevent
	Quick current limit	Minimize the over-current fault, protect normal operation of the inverter
	Torque limit & control	"Excavators" characteristics,automatically limit torque during operation,prevent frequent over-current trip; Closed loop vector mode can realize the torque control.
	Instantaneous stop non-stop	When instantaneous power off,voltage reduction is compensated through load feedback energy,which could make inverter keep running in a short period of time.
zed	Rapid current limit	To avoid inverter frequent over-current fault.
nali	Virtual IO	5 groups of virtual DI,DO to realize simple logic control
erso	Timing control	Timing control function: set time range 0Min~6500.0Min
ď	Multiple motor switch	2 groups of motor parameter, which can realize 2-motor switch control
	Communication support	Stardard modbus: RS485
	Multi-encoder support	Support difference,open collector, rotary transformer, etc.
	Running command channel	Three typesof channels: operation panel reference,control terminal reference and serial communication port reference.These channels can be switched in various modes.
	Frequency source	There are totally eleven types of frequency sources, such as digital reference, analog voltage reference, analog current reference, pulse reference, MS speed, PLC, PID and serial port reference.
	Auxiliary frequency source	11 kinds of auxiliary frequency source which can flexible achieve auxiliary frequency tuning, frequency synthesis
Running	Input terminal	Standard: There are 6 digital input terminals, DI5 can be used as 100kHz high- speed input pulse. 2 analog input terminals, Al1can be used as 0-10V voltage input, Al2 can be used as 0-10V voltage input or 0~20mA current input.
	Output terminal	 Standard: 1 digital output terminals, Y1 is high-speed pulse output terminal (can be choosen as open circuit collector type), support 0~10kHz square wave signal; 2 relay output terminal; 2 analog output terminals, support 0~20mA output current or 0~10V output voltage;
0	LED display	Realize parameter setting, status monitoring function

	Keyboard potentiometer	Equipped with keyboard potentiometer or coding potentiometer
	Key lock&function selection	Realize button locking, define operation range for part of buttons to prevent operation fault.
	Protection function	It can implement power-on motor short-circuit detection, input/output phaseloss protection, overcurrent protection, overvoltage protection, undervoltage protection, overheating protection and overload protection.
	Optionalparts	Differential input PG card, OC input PG card, sin&cos endoser PG card
	Using place	Indoor,and be free from direct sunlight, dust, corrosive gas, combustible gas, oilsmoke, vapor, drip or salt.
ent	Altitude	Below 1000m
vironme	Ambient temperature	-10 $^\circ\rm C$ to +40 $^\circ\rm C$ (Derating use when under ambient temperature of 40 $^\circ\rm C$ to 50 $^\circ\rm C$)
ED	Humidity	Less than 95%RH, without condensing
	Vibration	Less than 5.9 m/s2(0.6g)
	Storage temperature	− 20 °C ~ +60°C

Table: 1-5.1

Section II. Installation & Wiring

2-1 Use of the environment

- 1) Ambient temperature-10°C~50°C.
- 2) Avoid electromagnetic interference and keep the unit away from the source of interference.
- 3) Prevent dropping water, steam, dust powder, cotton fiber or fine metal powderfrominvasion.
- 4) Prevent oil, salt and corrosive gas from entering it.
- 5) Avoid vibration. Vibration should be less than 0.6G. Keep away from punching machine etc.
- Avoid high temperature, moisture or being wetted due to raining, with the humidity below 95%RH (non-condensing).
- 7) Prohibit the use in the dangerous environment where inflammable or combustible or explosive gas, liquid or solid exists.

2-2 Handling and installation

- When transporting inverter, right lifting tools are required to prevent inverter from damaging.
- * The number of stacked box of the inverter are not permitted higher than the limit.
- * Please DOn't run the inverter if there is damage or lacking of components.
- ※ DO not place heavy objects on the frequency inverter.
- Please prevent screw, cable pieces or other conductive objects or oil etc inflammable objects invading the frequency inverter.
- ※ DO not make it fall or have a strong impact.
- Confirm if the installation location and object could withstand the weight of the inverter. The frequency inverter must be installed by wall hooking, inYor room withadequate ventilation, with enough space left between it and the adjacent objects or retaining board (walls) around, as shown in the picture below:

Heat dissipation problems should be concerned when DOing mechanical installation, please mind rules belows:

- Mounting space is shown in 2-2.1, which could ensure the heat sinking space of the inverter. However, the heat sinking of other devices in the cabinet shall also be considered.
- 2) Install the inverter vertically so that the heat may be expelled from the top. However, the equipment cannot be installed upsideDOwn. If there are multiple inverters in the cabinet, parallel installation is better. In the applications where up-down installation is required, please install the thermal insulating guide plate referring to the Fig. 2-2.2 for standalone installation and up-down installation.
- 3) Installing support must be flame retardant materials.
- It is suggested that cooling cabinet be put outside at places where powder dust exists. Space inside the sealed cabinet shall be large as much as possible.

2-4 Wiring

The wiring of frequency inverter includes two parts: main circuit and control circuit. Users must ensure correct connections according to the following connection diagram.

2-4-1 SY9000 diagram

Fig. 2-4.1

2-5 Main circuit terminals(G type)

Terminal Name	Function description
R, S, T	Three phase power input terminal
P+、PB	External Break resistor reserved terminal(0.4KW~22KW)
U, V, W	Three phase AC output terminal
PE	Earth terminal

2-5-1 SY9000 main circuit terminals

The main circuit terminals are located on the front and bottom of the inverter. The smallcapacity model is placed directly on the main circuit printed circuit board, and the medium and large-capacity models are fixed on the chassis. The number of terminals and their arrangement positions vary depending on function and capacity. See below for details: SY9000-R75G-4~022G-4/030P-4:

P-	PB	P-	E	R	S	Т	U	V	W
	BRA	(E	ᆂ	P	OWE	R	N	ото	R

SY9000-030G-4/037P-4~037G-4/045P-4:

Е	R	S	Т	PB	P+	P-	U	۷	W
Ŧ	POWER		BRAKE			MOTOR			

SY9000-045G-4/055P-4~055G-4/075P-4:

SY9000-075G-4/090P-4~315G-4/355P-4:

SY5000-355G-4/400P-4~560G-4/630P-4:

The input terminal for the input power supply is above the cabinet, as shown below:

The output terminals of the inverter are below the cabinet, as shown below:

2.5.2 Main circuit wiring method of the inverter

SY9000 series inverters are built-in power brake units up to 37kW, the main circuit only needs to be connected to the braking resistor; the power brake unit above 45kW is external and needs external connection.

2.5.3 Main Circuit Wiring Precautions

1) Input power R, S, T:

The input side of the inverter no phase sequence requirement.

2) DC bus (P+), (P-):

Note that after the power failure, the DC bus (P+) and (P-) terminals have residual voltage. After the panel is not displayed, confirm the power failure for 10 minutes before wiring operation, otherwise there is danger of electric shock.

When using an external brake assembly of 45kW or more, be careful that the (P+) and (P-) polarities cannot be reversed, otherwise the inverter may be damaged or even fire.

The wiring length of the brake unit should not exceed 10m. Twisted pair or tight two-

wire parallel wiring should be used. Do not connect the braking resistor directly to the DC bus, which may cause damage to the inverter or even fire.

3) Brake resistor connection terminals (P+), PB:

□Refer to the recommended values for braking resistor selection and the wiring distance should be less than

5m. Failure to do so may result in damage to the inverter.

4) Output power U, V, W:

The specifications and installation methods of the external power wiring must comply with local regulations and relevant IEC standards.

Refer to the wiring shown in Table 3.2.2 for power cable wiring.

The capacitor side or the surge absorber cannot be connected to the output side of the inverter, otherwise

the inverter will be often protected or damaged.

When the motor cable is too long, due to the influence of distributed capacitance, it is easy to generate electrical resonance, which may cause motor insulation damage or generate large leakage current to protect the inverter from overcurrent. When the motor cable length is greater than 100m, an AC output reactor must be installed near the inverter.

5) Ground terminal PE

The terminals must be reliably grounded and the ground wire resistance must be less than 10Ω. Failure to do so may result in abnormal or even damage to the equipment.

Do not share the ground terminal with the power supply neutral N terminal.

□The impedance of the protective earthing conductor must be such as to withstand the large short-circuit currents that may occur in the event of a fault.

The protective earthing conductor must be a yellow-green cable.

6) Requirements for the pre-protection device:

Appropriate protection devices should be installed on the input distribution line to protect the device from overcurrent protection, short circuit protection and isolation protection.

□ Factors such as power cable current capacity, system overload capability requirements, and short-circuit capability of the pre-stage power distribution of the equipment should be considered when selecting the protection device;

2-6 Control circuit terminals

2-6-1 Control circuit terminal arrangement

SY9000 Control circuit terminals

2-6-2 Control circuit terminals description

Terminals function description:

Туре	Terminal sign	Terminal Name	FunctionDescription			
Power supply	Power GND 10V power supply		Provide +10V power supply for external units, with maximum output current of 10mA. It is generally used as the operating power supply for the external potentiometer. The potentiometer resistance range is 1kQ to 5kQ.			
	+24V-CM	External terminalof	Provide +24V power supply for external units. It is			

	24V powersupply		generally used as the operating power supply for digital input/output terminal and the external sensor. Maximum output current: 200mA				
	SP	External power input terminals	When using external signal to drive DI1~DI6 ,SP should be connected to external power supply, connection with +24V as factory default.				
Angles input	AI1-GND	Analog input terminal 1	 Input voltage range: DC 0V to 10V /4mA to 20mA, chosen by jumper J3 on control board. Input impedance: 22kΩ of voltage input, 500Ω of current input. 				
Analog input	AI2-GND	Analog input terminal 2	 Input range: DC 0V~10V/4mA~20mA, chosen by jumper JP4 on control board Input impedance : 22kΩ of voltage input, 500Ω of current input. 				
	DI1-SP	Digital Input 1					
	DI2-SP	Digital Input 2	Oplical coupling isolation, bipolar input.				
	DI3-SP	Digital Input 3	2. Input Impedatioe: 4.7 N2.				
Distal	DI4-SP	Digital Input 4	3. Electrical level input range: 9V~30V.				
Digital	DI5-SP	Digital Input 5	1. Input impedance: 2.4 kΩ.				
mpat	DI6-SP	Digital Input 6	-				
	HDI DI5-SP	High-speed pulse input terminal	DI5 can be used as high-speed pulse input channel. Maximum input frequency: 100kHz.				
	AO1-GND	Analog output 1	The voltage or current output is determined by jumper J1 on the control panel. Output voltage range: 0V to 10V Output current range: 0mA to 20mA.				
Analog output	AO2-GND	Analog output 2	The voltage or current output is determined by jumper J2 on the control panel. Output voltage range: 0V to 10V Output current range: 0mA to 20mA.				
Relay	TB1-TC1	Normally closed	Contact driving capacity: AC250V, 3A, COSø=0.4				
output1	TA1-TC1	Normally open					
Duluu utu 10	TB2-TC2	Normally closed	Contact driving capacity: AC250V, 3A, COSø=0.4				
Relay output2	TA2-TC2	Normally open					
Communication	485+,485-	MODBUS	MODBUS port, non isolation.				

2-6-3 Description of wiring of control terminals

1) Analoginput terminal

Because the weak analog signal will be easily affected by the external interference, generally shielded cable shall be used, the cable length shall be as short as possible and no longer than 20 meters, as shown in Fig. 2-6.1. In case the analog signal is subject to severe interference, analog signal source side shall be installed with filter capacitor or ferrite magnetic ring, as shown in Fig.2-6.2.

Fig. 2-6.1 Analog input terminal wiring diagram

Fig.2-6.2 Analog input terminal processing wiring diagram

2) Digital input terminal

It needs to employ shielded cable generally, with wiring distance of no longer than 20 meters. When valid driving is adopted, necessary filtering measures shall be taken to prevent the interference to the power supply.

It is recommended to use the contact control mode.

a)DI terminal wiring method (The drain wiring mode)

Fig.2-6.3 Drain wiring mode

This is one of the most commonly used connection mode. If you use an external power supply, J9 jumper must be removed, and connect the external positive power supply to SP,while negative power supply to DI port.

b)DI terminal wiring method (The source wiring mode)

This connection mode must make SP of jumper J9 connect to COM port, and connect +24V and public terminal of external controller together. If you use an external power supply, jumper J9

must be removed, and connect external negative power supply to SP , while positive power supply to DI port.

3) Digital output terminal

When drive relay is essencial for digital output terminal, you should add absorption diode to both sides of relay coil.Or +24V dc power supply will be easily damaged.

Caution: The polarity of the absorption diode must be installed correctly according to the picture below.Or +24V dc power supply will immediately get burnt after digital output terminal outputs.

Fig. 2-6.5 Digtal output terminal wiring diagram

2-7 Standby circuit

Inverter fault or jump may cause great breakdown loss or other accident. To avoid this happens, please add the standby circuit below to ensure security.

Note: Confirm and test the running characteristic of the standby circuit, make sure that the industrial phase and the converter phase are in the same direction.

Fig. 2-7.1

Section III. Fittings

3-1 Connection with peripheral devices

3-1-1 Connection of the Product and Peripheral Devices

Fig.3-1 Connection diagram of the product and peripheral devices

3-1-2 Peripheral Electric Parts of SY9000

PartName	InstallationLocation	FunctionDescription				
Circuit breaker The front-end of the input circuit		Disconnect the powersupply in case of downstream equipment is over current				
Contactor	Between the circuit breaker and the inverter input side	Power-on and power-off of the inverter.Frequent power-on/power-off operation(at least once per minute) on the inverter should be avoided				
AC input reactor	Input side of the inverter	 Improve the power factor of the input side: 1.Eliminate the high order harmonics of the input side effectively, and prevent other equipment from damagingdue to voltage waveform deformation. 2.Eliminate the unbalancedinput current due to the unbalanced power phases. 				
EMCinputfilter	Input side ofthe inverter	 Reduce the external conduction and radiation interference of the inverter; Reduce the conduction interference flowing from the power end to the inverter, thus improving the anti-interference capacity of the inverter. The common size of 3-phase EMI noise filter is shown as following: confirm the power supply is 3-phase three lines or 3-phase four lines or single phase. Grounding wire is as short as possible, try to place the filter near the converter. Please choose EMI filter when the inverter is used in residential area, commercial area, science area as well as situations where higher demand to prevent radio interference is needed or meeting CE、UL、CSA standard but existing equipment that anti-interference ability is not sufficient. If needing the filter, please connect with the company. 				
DCreactor	SY9000 series can aYpt external DC reactor according to the need.	Improve the power factor of the input side: 1.Improve the overall efficiency and thermal stability 2.Effectively reduce the influence of high order harmonicsat the input side on the inverter and reduce the external conduction and radiation interference.				
AC output reactor	Between the inverter output side and the motor,close to the inverter	The inverter output side generally has higher harmonic.When the motor is far from the inverter, since there are many capacitors in the circuit, certain harmonics will cause resonance in the circuit and bring in the following results: 1.Degrade the motor insulation performance and damage the motor for the long run 2.Generate large leakage current and cause frequent				

		inverter protection action 3.In general, if the distance between the inverter and themotor exceeds 100 meters, output AC reactor should be installed
Output EMI filter	Between the inverter output side and the motor,closetothe inverter	The fittings can restrain the disturbance noise and lead line leak current produced in the output side.

Table: 3-1.1

3-2 Mounting hole dimension

3-2-1 Braking unit & Braking resistance

When customers choose the type with braking, there will be braking unit inside the inverter, maximum braking torque is 50%. Please refer to the table below and choose the matched braking resistance separately.

	Braking	Braking unit			
Shape DIM	unit	Braking		Quanti ty	Braking moment %
SY9000-0R4G-S2/G-2		100W	300Ω	1	220
SY9000-0R7G-S2/G-2		120W	200Ω	1	125
SY9000-1R5G-S2/G-2		300W	100Ω	1	125
SY9000-2R2G-S2/G-2		300W	70Ω	1	120
SY9000-0R7G-4		100W	300Ω	1	130
SY9000-1R5G-4		200W	300Ω	1	125
SY9000-2R2G-4	Standard built in	200W	200Ω	1	135
SY9000-3R7G-4		400W	150Ω	1	135
SY9000-5R5G-4		500W	100Ω	1	135
SY9000-7R5G-4		800W	75Ω	1	130
SY9000-011G-4		1040W	50Ω	1	135
SY9000-015G-4		1560W	40Ω	1	125
SY9000-018G-4		4800W	32Ω	1	125
SY9000-022G-4		4800W	27.2Ω	1	125
SY9000-030G-4		6000W	20Ω	1	125
SY9000-037G-4	outlay	9600W	16Ω	1	125
SY9000-045G-4		9600W	13.6Ω	1	125
SY9000-055G-4]	6000W	20Ω	2	135
SY9000-075G-4		9600W	13.6Ω	2	145

Table: 3-2.1

If you need accessories in the table, please declare in order.

For larger built-in braking torque,please use the SANYU braking unit.do ou can refer to SANYU braking unit manual for details.

Other large power models do not contain a built-in braking. If large power model need to be equipped with braking function, please choose SANYU braking unit.

External DC reactor installation:

For SY9000 series inverter, external DC reactor can be ordered according to your needs.When installation,you should tear Down copper platoon between DC+1 and DC+2 of

inverter main circuit.And then add reactor between DC+1 and DC+2, wiring between reactor terminals and inverter terminals DC+1 and DC+2 have no polarity. After installation of dc reactor, short circuit copper platoon between DC+1 and DC+2 is no more used.

3-2-3 Specifications of circuit breaker, cable and contactors

Shape DIM (A) r (A)		contacto	R、S、T、⊕、B、⊖、U、V、₩			Terminal screwPE		
		r (A)	Termina I screw	FasteningMo ment(N·m)	wiresta ndard(mm²)	Termina I screw	FasteningMo ment(N⋅m)	wiresta ndard(mm²)
SY9000-0R4G-S2/G-2	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
SY9000-0R7G-S2/G-2	25	16	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
SY9000-1R5G-S2/G-2	32	25	M4	1.2~1.5	4	M4	1.2~1.5	2.5
SY9000-2R2G-S2/G-2	40	32	M4	1.2~1.5	6	M4	1.2~1.5	4
SY9000-0R7G-4	10	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
SY9000-1R5G-4	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
SY9000-2R2G-4	16	10	M4	1.2~1.5	2.5	M4	1.2~1.5	2.5
SY9000-3R7G-4	25	16	M4	1.2~1.5	4	M4	1.2~1.5	4
SY9000-5R5G-4	32	25	M4	1.2~1.5	6	M4	1.2~1.5	6
SY9000-7R5G-4	40	32	M4	1.2~1.5	6	M4	1.2~1.5	6
SY9000-011G-4	63	40	M5	2.5~3.0	6	M5	2.5~3.0	6
SY9000-015G-4	63	63	M5	2.5~3.0	6	M5	2.5~3.0	6
SY9000-018G-4	100	63	M6	4.0~5.0	10	M6	4.0~5.0	10
SY9000-022G-4	100	100	M6	4.0~5.0	16	M6	4.0~5.0	16
SY9000-030G-4	125	100	M6	4.0~5.0	25	M6	4.0~5.0	16
SY9000-037G-4	160	100	M8	9.0~10.0	25	M8	9.0~10.0	16
SY9000-045G-4	200	125	M8	9.0~10.0	35	M8	9.0~10.0	16
SY9000-055G-4	315	250	M10	17.6~22.5	50	M10	14.0~15.0	25
SY9000-075G-4	350	330	M10	17.6~22.5	60	M10	14.0~15.0	35
SY9000-090G-4	315	250	M10	17.6~22.5	70	M10	14.0~15.0	35
SY9000-110G-4	350	330	M10	17.6~22.5	100	M10	14.0~15.0	50
SY9000-132G-4	400	330	M12	31.4~39.2	150	M12	17.6~22.5	75
SY9000-160G-4	500	400	M12	31.4~39.2	185	M12	17.6~22.5	50×2
SY9000-200G-4	630	500	M12	48.6~59.4	240	M12	31.4~39.2	60×2
SY9000-220G-4	800	630	M12	48.6~59.4	150×2	M12	31.4~39.2	75×2
SY9000-280G-4	1000	630	M12	48.6~59.4	185×2	M12	31.4~39.2	100×2
SY9000-315G-4	1000	800	M14	48.6~59.4	250×2	M14	31.4~39.2	125×2
SY9000-355G-4	1200	800	M14	48.6~59.4	325×2	M14	31.4~39.2	150×2
SY9000-400G-4	1500	1000	M14	48.6~59.4	325×2	M14	31.4~39.2	150×2

Table: 3-2.

Section IV. Keyboard Operation

4-1 Keyboard size

4-1-1 SY9000 keyboard specification

Fig. 4-1.1

4-1-2 Keyboard warehouse JP3 dimension

4-2 Display Interface

Modification of function parameter, monitoring of inverter operation, control of inverter operation (start and stop) can be performed through the operation panel. Its shape and function area are shown as below:

Fig. 4-2.1

4-2-1 Function description of operation panel

Keyboard Parameter	Description
	Forward/Reverse Running Light
FWD/REV	*ON: forward running
	*OFF: reverse running
	Running indicator
RUN	*ON: running state
	*OFF: stop state
	Command source indicator
	keyboard operation, terminal operation and remote
	operation(communication control) indicator
LUCAL/REIVIOT	*ON: terminal operation control state
	*OFF: keyboard operation control state
	*Flashing: remote operation control state
	Tuning/Fault indicator
TUNE/TC	*ON: torque control mode
TONE/TO	*Slow flashing: tuning state
	*Quick flashing: fault state
	Unit indicator
	* Hz frequency unit
κεινι(HZ+A)	*A current unit
V 1 7 1 0 1	*V voltage unit

	*RMP(Hz+A)revolving speed unit
	*%(A+V)percentage
	Digital display area
Digital display	*5-bit LED display, monitor set frequency, output frequency, various monitoring
	data,alarm code etc.
PRG+>>/SHIFT=QUIC	Menu mode selection code, shift different menu mode according to the value
K	of PP.03 (Function parameter mode as default)
PRC	Programming key
FKG	*Primary menu enter or exit
	Shift key
>>/SHIFT	*On the stop display interface or running display interface, it can be used to
	circularly select the display parameters. When modifying the parameters, it
	can be used to select the bits of parameter for modification
ENTER	Confirmation key
LINIER	*Gradually step into the menu screen,set parameters confirmation
^	Increase key
/ \	*Increase of the data or functioncode
V.	Decrease key
v	*Decrease of the data or functioncode
MF/REV	Multi-function selection key
	*It is used as function switching selection according to P7.01.
	Potentiometer
Potentiometer	* P0.03 is set to 4 as default;
1 otentionneter	* Control board jumper J6 is in 1-2,keyboard potentiometer set frequency
	* Control board jumper J6 is in 2-3, Al3 terminal set frequency
RUN	Runningkey
1.0N	* Itisusedtostartthe runningoftheinverterunderkeyboard controlmode
	Stop/reset
STOD/DESET	* In running status, it can stop the running by pressing this key. In
STOF/RESET	alarmstatus, it can reset operation with this key. The characteristics of this
	key are limited by function code P7.02.

Table 4-2.1

4-3 Examples for parameter setting

4-3-1 Description of function code viewing and modification method

The operation panel of SY9000 inverter adopts three-level menu structure to perform parameter setting. The three-level menu includes: function parameter group(level1 menu) \rightarrow functioncode(level2 menu) \rightarrow setting value of function code(level3 menu).The operation process is as shown in Figure below.

Caution: When operating on level 3 menu, press PRG key or ENTER key to return to level 2 menu. The difference between ENTER and PRG keys is that pressing ENTER KEY will save the setup parameter and return to level 2 menu and then automatically shift to the next function code, while pressing PRG key will directly return to level 2 menu without saving the parameter, and it will return to the current function code.

Take the modification of function code P3.02(ranging from 10.00Hz to 15.00Hz) as an example. (The boldface bit indicates the flashing bit).

In level 3 menu, if the parameter has no flashing bit, it indicates that the function code cannot be modified. The possible reasons include:

1) The function code is an unchangeable parameter, such as actual detection parameter, running record parameter, etc.

2) The function code cannot be modified in running status but can be modified after the unit is stopped.

4-3-2 Parameter display mode

Parameter display mode is mainly established to view different arrangement forms of function parameters according to user's actual needs.3 kinds of display mode:

Name	Description
E	Sequence display inverter function parameters ,there are
Function parameter mode	P0~PF、A0~AF、U0~UF fuction groups respectively.
Lloor oot poromotor mode	User set individual function parameters(32 at most), parameters
User set parameter mode	that needed to be displayed can be set through PE group
User modify parameter mode	Inconsistent with factory default parameters

Table 4-3.1

	Parameters displa	ay mode	Default	11	
	attributes		value		
		1bit	U group display selection		
		0	No display		
PP.02	Catazara	1	Display		
	Set range	10bit	A group display selecton		
		0	No display		
		1	Display		
	Individual parameter mode		Default	00	
	display selection		value	00	
		1bit	User set parameter display selection		
PP.03	Set range	0	No display		
		1	Display		
		10bit	User modify parameter display selection		
		0	No display		
		1	Display		

Relevant function parameters PP.02、PP.03, set as below:

Table 4-3.2

When there is 1bit display existing in the individual parameter mode display selection(PP.03), you can enter different parameter display mode by pressing PRG+>>/SHIFT key at the same time. Each parameter display codes:

Parameter display mode	Display
Function parameter mode-FunC	-Fun[
User set parameter mode –USEt	-USEE
User modify parameter mode -UC	-UC

Table 4-3.3

Switching mode as below:

E.g. To switch current function parameter mode to user set parameter mode.

4-3-3 User set parameter operation mode

User set menu is established for quick checkup and modification. The display mode is "uP3.02",which represents function parameter P3.02. It has the same effect of modifying parameter in user set menu and normal programming state.

Function parameters of user set menu come from PE group.PE group chooses function parameter: when PE is set to P0.00, it means no choosing, totally 30 functions can be set. If display "NULL" when entering menu, it means user set menu is null.

16 parameters have been stored at initial time for user's convenience:

P0.01:	Control mode	P0.02:	Command source selection
P0.03:	Main frequency source selection	P0.07:	Frequency source selection
P0.08:	Preset frequency	P0.17:	Acceleration time
P0.18:	Deceleration time	P3.00:	V/F curve set
P3.01:	Torque boost	P4.00:	DI1Terminal function selection
P4.01:	DI2terminal function selection	P4.02:	DI3 terminal function selection
P5.04:	DO1output selection	P5.07:	AO1 output selection
P6.00:	Startup mode	P6.10:	Stop mode

Users could modify the user set parameter according to specific need of your own.

4-3-4 Check method of state parameter

When the inverter is in stop or running status, multiple status parameters can be displayed. It can select if this parameter is to be displayed in binary bit with the function codes P7.03 (running parameter1), P7.04 (running parameter2) and P7.05(stop parameter).

In stop status, there are 4 running state parameter: set frequency, bus voltage,analog input voltage Al1, analog input voltage Al2 which of them are of default display.Other display parameters respectively: DI input state,DO output state,analog input voltage Al3, actual count value, actual length value, PLC running steps, load speed display, PID set, PULSE input pulse frequency and 3 reserved parameters (whether to display or not is determined by function code P7.05 binary bit choice). Selected parameter are switched in sequence order.

In running status, there are a total of 5 running status parameters, including: setup frequency, running frequency, bus voltage,output voltage,output current ,which of them are of default display. Other display parameters respectively: output power, output torque, DI input state,DO output state, analog input voltage Al1, analog input voltage Al2, analog input voltage Al3, actual count value, actual length value, linear velocity, PID set, PID feedback etc. Whether to display or not is determined by function code P7.03, P7.04 binary bit choice. Selected parameter are switched in sequence order.

When inverter power on after powered off, the display parameter is the one that chosen before power off as default.

4-3-5 Password Setting

The inverter provides user password protection function. When PP.00 is set to non-zero value, it is user password and enabled after exiting the function code editing status. When the user presses the PRG key again, "-----"will be displayed to require the user to enter user password, or the user cannot enter the general menu.

To cancel the password protection function, the user needs to enter the relevant interface through password, and change the PP.00 setting to 0.

4-3-6 Motor parameter automatic tuning

Vector control running mode: before running, user must accurately input motor nameplate parameters. SY9000 series inverter will be matching standard motor parameter according to this nameplate. Vector control methods are very much dependent on motor parameters, to get good control performance, accurate control motor parameters must be acquired.

Motor parameter auto tuning procedure is as follows:

Firstly, select command source(P0.02) as operation panel command channel.Secondly, input parameters below in accordance with motor actual parameter:

Motor selection	Parameter			
	P1.00: Motor type selection	P1.01: Motor rated power		
Motor 1	P1.02: Motor rated voltage	P1.03: Motor rated current		
	P1.04: Motor rated frequency	P1.05: Motor rated revolving speed		
	A2.00: Motor type selection	A2.01: Motor rated power		
Motor 2	A2.02: Motor rated voltage	A2.03: Motor rated current		
	A2.04: Motor rated frequency	A2.05: Motor rated revolving speed		

Table 4-3.4

E.g: Asynchronous motor parameter tuning

If motor and the load can be totally separated, please select P1.37(Motor 2\3\4 as A2\A3\A4.37) to 2(Asynchronous machine complete tuning), then press RUN key on keyboard panel, inverter will automatically calculate the motor of the following parameters:

Motor selection	Parameter		
	P1.06: Asynchronous motor stator resistance		
	P1.07: Asynchronous motor rotor resistance		
Motor 1	P1.08: Asynchronous motor leakage inductance		
	P1.09: Asynchronous motor mutual inductance		
	P1.10: Asynchronous motor no-load current		
	A2.06: Asynchronous motor stator resistance		
	A2.07: Asynchronous motor rotor resistance		
Motor 2	A2.08: Asynchronous motor leakage inductance		
	A2.09: Asynchronous motor mutual inductance		
	P2.10: Asynchronous motor no-load current		
	Table4-3.5		

If motor and the load can not be totally separated, please select P1.37(Motor 2\3\4 as A2\) to 1(Asynchronous machine static tuning), then press RUN key on keyboard panel.

4-4 Test running

SY9000 General machine type factory setting value

Code	Factory setting	Description
P0.01	0	Speed sensorless vector control(SVC)
P0.02	0	Operation panel command channel(LED OFF)
P0.03	4	Al3(Potentiometer)

Users set motor parameters P1.00~P1.05 to correct values, after parameters auto tuning, motor operation can be directly controlled through keyboard, while frequency can be set through keyboard potentiometer.

Section V. Parameter Function Table

Caution:

The symbols in the function table are explained as follows:

"★": indicates that the parameter setup value cannot be modified when the inverter is in the running status.

"•": indicates that the parameter value is the actual detection record and cannot be modified.

" σ' ": indicates that the parameter setup value can be modified when the inverter is in stop status and running status.

"▲": indicates that the parameter is "Factory default parameter" and can be set only by the manufacturer, and the user is forbidden to perform any operation.

"-": indicates that the parameter factory value is relevant to power or model, for specifications please refer to corresponding parameter description.

"Change limit" indicates if the parameter is adjustable during operation.

When PP.0 is set to non-zero value, it means that the parameter protection password is set and only when correct password is input can the user enter the parameter menu. To cancel the password, PP.00should be set to 0.

In the user set parameter mode, parameter menu is not protected by password protection.

P group, A group are of basic function parameters, U group is the monitor function group.

5-1 Monitor function group: U0.00-U0.61

U0 parameter group is used to monitor inverter running status .Customers can check through panel for field commissioning as well as read parameter value through communication for position machine monitoring. Among which, U0.00~U0.31 is defined for running or stop monitor parameter by P7.03 and P7.04.

For specific parameter function code, parameter name and minimum unit, please refer to the table below.

Function code	Designation	Unit					
U0.00	Running frequency(Hz)	0.01Hz					
Inverter current actual setting frequency	Inverter current actual setting frequency						
U0.01	Setting frequency(Hz)	0.01Hz					
Inverter current actual output frequency							
U0.02	DC bus voltage(V)	0.1V					
Detection value of DC bus voltage							
U0.03	The output voltage(V)	1V					
Inverteractual output voltage							
U0.04	Motor output current(A)	0.01A					
Valid value of motor actual current							

Al2 input voltage, corrected by AC.04~AC.	.07					
U0.11	Al3 voltage(V)	0.01V				
Al3 input voltage, corrected by AC.08~AC.	11					
U0.12	Count value	1				
Fb function group count function Pb.08~Pb.09						
U0.13	Length value	1				
Fb function group fixed length function Pb.	05~Pb.07					
U0.14	Load speed display	1				
Motor actual running speed	•					
U0.15	PID set point	1				
PID percentage of reference value for runr	ning adjustment.					
U0.16	PID feedback	1				
PID percentage of feedback value for runn	ing adjustment.					
U0.17	PLC stage	1				
PLC program running stage-display						
U0.18	PULSE pulse input frequency(kHz)	0.01kHz				
Display PULSE pulse input frequency, un	it 0.01Khz					
U0.19	Speed feedback(Unit 0.1Hz)	0.1Hz				
synchronous speed, accurate to 0.1hz						
U0.20	Surplus running time	0.1Min				
Display surplus running time, used for regu	ular operation control.					
U0.21	Al1 voltage before correction	0.001V				
Al1 voltage before correction ,used for AC function group parameter AC.00~AC.03 to correct Al1 voltage						
U0.22	Al2 voltage before correction	0.001V				
Al2 voltage before correction ,used for AC	function group parameter AC.04~AC.07 to c	orrect AI2 voltage				
U0.23	AI3 voltage before correction	0.001V				
Al3 voltage before correction ,used for AC function group parameter AC.08~AC.11 to correct Al3 voltage						
U0.24	Linear velocity	1m/Min				
Linear velocity is calculated according to and constant linear velocity control.	angular velocity and diameter, used for con	stant tension control				
U0.25	Current power on time	1Min				
The cumulative power on time of the inverter.						
U0.26	Current running time	0.1Min				
The cumulative running time of the inverter.						
U0.27	PULSE pulse input frequency	1Hz				
Display PULSE pulse input frequency , u	nit 1Hz.					

U0.28	Communication set value	0.01%
Communication set value		
U0.29	Encoder feedback speed	0.01Hz
PG feedback speed, accurate to 0.1hz		
U0.30	Main frequency X display	0.01Hz
P0.03 main frequency source set frequence	ÿ	•
U0.31	Auxiliary frequency Y display	0.01Hz
P0.04 auxiliary frequency source set frequ	ency	
U0.32	View arbitrary memory address value	1
To view arbitrary memory address, advanc	ed commissioning function.	
U0.33	Reserve	0.0°
U0.34	Motor temperature	1°C
Display motor temperature. Other device measuring point.	temperature can also be tested through o	lifferent temperature
U0.35	Target torque(%)	0.1%
Target torque setup. In torque control mode	e, it is used to check the set target torque.	
U0.36	Rotary variable position	1
It's rotor position when speed feedback.		
U0.37	Power factor angle	0.1
Current power factor angle, power factor-	=COS(angle), angle=0, maximum power.	
U0.38	ABZ position	0.0
ABZ incremental feedback position information	ation of encoder calculation.	
U0.39	VF target voltage separation	1V
VF target voltage when power supply sepa	arating.	
U0.40	VF output voltage separation	1V
VF output voltage when power supply sep	arating.	
U0.41	DI input status intuitive display	-

U0.62	Current fault code	1
U0.63	Point to point communication	0.01%
U0.64	From the number of stations	1
U0.64	Torque limit	0.01%

5-2 Basic function group: P0.00-P0.28

Code	Description/Display	Setting Range		Factory Setting	Change Limit
DO 00		G type(constant torque load type)	1		
P0.00	GP type display	P type(draught fan,pump load type)	2	-	•
This par	rameter is only for the use of vie	wing the factory model. It is can not be modif	ïed.		
1: It is	applicable to the constant torque	e load of specified rated parameter			
2: It is	applicable to the variable torque	load of specified rated parameter(draught fa	n,pump	load type	:)
		Speed sensorless vector control(SVC)	0		
P0.01	Motor 1 control mode	Speed sensor vector control(FVC)	1	2	*
		V/F control	2		

0: Speed sensorless vector control

It refers to the open-loop vector control that is generally applied to high performance control field. One inverter can only drive one motor. E.g. machine tool, centrifugal machine, fiber drawing machine, injection molding machine' load etc.

1: Speed sensor vector control

It refers to the closed-loop vector control and encoder must be added to the motor end.Inverter must be matching with the same type PG card of the encoder. This control mode is suitable for high precision speed control and torque control field. One inverter can only drive one motor. E.g. high speed papermaking machinery , hoisting machinery , elevator'load etc.

2: V/F control

V/F control mode is suitable for fields that load demand is not high or one inverter can drive multiple motos. E.g. draught fan, pump' load etc.

Tips: Motor parameters must be indentified before choosing vector control mode.Only accurate motor parameters can play the advantage of vector control mode. Users can get better performance by adjusting speed regulator group P2 parameters(motor 2,motor 3,motor 4 respectively for group A2,A3,A4)

P0.02		Operation panel command channel(LED off)			
	Command source selection	Terminal command channel(LED on)	1	0	☆
		Serial port communication command channel(LED flashing)	2		

Inverter control commands include: run, stop, forward rotation (FWD), reverse rotation (REV), forward jog (FJOG), reverse jog (RJOG), etc.

0: Operation panel command channel ("LOCAL/REMOT" LED off);

Perform running command control with RUN, MF.K and STOP/RESET keyson the operation panel.

1: Terminal command channel ("LOCAL/REMOT" LED on);

Perform running command control with multifunctional input terminals such as FWD, REV, FJOG, RJOG, and so on.

2: Serial port communication command channel ("LOCAL/REMOT" LED flashing).

The running command is given by the host computer via the communication mode. When the item is choosen, it must be equipped with communication card(Modbus RTU 、 ProfibusDP card 、 users programmable control card or CANopen card and so on).

For the communication protocol, please refer to "PD group communication parameters" and supplementary explanation of corresponding communication card for details.

Supplementary explanation for communication card is allotted with communication card. This manual contains a brief description of communication card.

		Digital setup(Preset frequency P0.08, UP/DOWN can be modified, power off without memory)	0		
		Digital setup(Preset frequency P0.08, UP/DOWN can be modified, power off with memory)	1		
		Al1	2		
P0 03	Main frequency source X selection	AI2	3	4	*
. 0.00		Al3(Potentiometer)	4		^
		Pulse setup(DI5)	5		
		MS command	6		
		Simple PLC	7		
		PIDsetup	8		
		Communicaton setup	9		

This parameter is used to select the main reference frequency input channel. Totally 10 main reference frequency channels:

0: Digital setup(power off without memory)

Initial value of set frequency equals to P0.08 "preset frequency". User can change inverter set frequency value through keyboard \land key and \lor key (or multi-function input terminal UP,DOWN).

Inverter power on after powered off, frequency set value restored to P0.08 "Preset frequency".

1: Digital setup(power off with memory)

Initial value of set frequency equals to P0.08 "preset frequency". User can change inverter set frequency value through keyboard \land key and \lor key (or multi-function input terminal UP,DOWN).

Inverter power on after powered off, frequency set value restored to the value that equals to setupof last power off time. Correction is memorized through keyboard \land key and \lor key or terminal UP,DOWN.

What needs to be reminded is, P0.23 is "Digital setup frequency memory selection". P0.23 is used to select correction whether to be memorized or cleared and is relevant to stop, irrelevant to power off memory, please pay attention during operation.

- 2: Al1
- 3: Al2
- 4: AI3(Potentiometer)

Frequency is determined by analog input terminal. SY9000 series control board offers 2 analog input

terminal(AI1, AI2), optional device TZ5PC1 card can offer 1 isolated analog input terminal(AI3x).

Al1, Al2 can be chosen as 0V~10V voltage input as well as 0mA~20mA current input by the jumper J3, J4 on control board.

Al1、 Al2 input voltage value has a corresponding relationship with target frequency, users can choose them at will. SY9000 offers 5 groups of corresponding relation curve, which 3 of them are linear relationship(2-point correspondence), 2 of them are 4-point correspondence(any curve among them). User can set through P4 group or A6 function code.

Function code P4.33 is used to set Al1~Al22-channel analog input. Choose 1 curve among the 5 respectively. For specific correspondence please refer to P4 \times A6 groups.

5: Pulse setup(DI5)

Pulse setup is set through terminal pulse. Signal standard: voltage range 9V~30V, frequency range 0kHz~100kHz. Set pulse can be only input through multi-function input terminal DI5.

Relationship between DI5 input pulse frequency and corresponding settings is set through P4.28~P4.31. It is linear relationship(2-point correspondence). Pulse input 100.0% refers to the percentage of P0.10. 6: MS command

MS command running mode is set through different combination mode of digital input DI terminal. There are 4 MS command terminals with 16 status of SY9000 series. PC group function codes correspond to 16 "MS command". "MS command" is percentage relativing to P0.10(maximum frequency).

When digital input terminal DI is used as MS command terminal, user should set through P4 group.For specifications please refer to P4 group.

7: Simple PLC

When frequency source is set to 7, running frequency source can be switched to any frequency command during $1\sim 16$.

User can set frequency command retention time and acceleration/deceleration time respectively.For specifications please refer to PC group .

8: PID

Running frequency is the output of PID control process. Generally used for field process closed-loop control.

When PID is choosen, user should set relevant parameters of PA group "PID function".

9: Communicaton setup

Communication setup refers to main frequency source that setting through communication method of position machine.

SY9000 series support 4 kinds of communication mode: Modbus, Profibus.DP, CANopen 3 kinds of communication can not be used at the same time.

Communication card should be installed during the use of communication.4 kinds of communication card are optional.User can select to buy according to the needs, and set parameter P0.28 correctly.

P0.04	Auxiliaryfrequencysource Y selection	Digital setup(preset frequency P0.08, UP/DOWN adjustable, power off without memory)	0		
		Digital setup(preset frequency P0.08, UP/DOWN adjustable, power off with memory)	1		
		Al1	2	0	*
		Al2	3		
		Al3(Potentiometer)	4		
		PULSE setup (DI5)	5		
		MS command	6		

	Simple PLC	7	
	PID setup	8	
	Communication setup	9	

When the auxiliary frequency source is used as independent frequency reference channel (i.e. frequency source switching from X to Y), it is used in the same way as the relative specifications of P0.03.

When the auxiliary frequency source is used as overlap reference (i.e. frequency source selection switching from X plus Y or X to X plus Y), it has special points as follows:

1. When the auxiliary frequency source is digital reference, the preset frequency (P0.08) is nonsensical, and it needs to adjust the main reference frequency through the keys " \land "and " \lor " of the keyboard (or UP and DOWN of multifunctional input terminals).

2. When the auxiliary frequency source is analog input reference (Al1 $\$ Al2 $\$ Al3) or pulse input reference, 100% of input setup is relative to the auxiliary frequency source range,and can be set through P0.05 and P0.06.

3. When the frequency source is pulse input reference, it is similar to the analog value.

Prompt: There is difference between the auxiliary frequency source Y selection and the main frequency source X setup value. That is to say, P0.03 and P0.04 cannot use the same frequency reference channel.

P0.05	Auxiliary frequency source	Relative to maximum frequency 0		0	_^_
	Y range selection	Relative to frequency source X	1	0	17
P0.06	Auxiliary frequency source Y range	0%~150%		0	☆

When the frequency source selection is frequency overlap reference(P0.07 is set to 1, 3 or 4), it is used to determine the adjustment range of auxiliary frequency source. P0.05 is used to determine the relative object within the range. If it is relative to main frequency, that range will vary with the main frequency X.

	1bit	Frequency source selection				
	Main fr	equency source X	0			
	Main /a determ	uxiliary operation result (10bit ine operation relationship)	1			
	Switchi	ng between X & Y	2			
		Switchi	ng between X & option 1	3		
P0.07	Frequency source stacking	Switching between Y & option 1			00	-A-
1 0.07	selection	10bit	Relationship betweenmain /auxiliaryfrequency source		00	A
		Main+auxiliary				
		Main-auxiliary				
		MAX(main frequency source X, auxiliary frequency source Y)				
		MIN(ma frequer	ain frequency source X, auxiliary ncy source Y)	3		

This parameter is used to select frequency setup channel, and of realizing frequency setup through the compound of main frequency X and auxiliary frequency Y.

1bit : Frequency source selection

0: Main frequency source X

Main frequency source X is the target frequency.

1: 2: Wh con 3: Wh con 4: Wh con 10bit : 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	 Switching between main frequency source X and auxiliary frequency source Y When terminal 18 (frequency switching) is invalid, main frequency X is target frequency. On the contrary, auxiliary frequency Y is the target frequency. Switching between main frequency X and main /auxiliary operation result When terminal 18 (frequency switching) is invalid, main frequency X is target frequency. On the contrary, auxiliary frequency Y is the target frequency. Switching between auxiliary frequency Y and main /auxiliary operation result When terminal 18 (frequency switching) is invalid, auxiliary operation result When terminal 18 (frequency switching) is invalid, auxiliary frequency Y is the target frequency. On the contrary, main frequency X is target frequency. Switching between auxiliary frequency Source Main frequency source + auxiliary frequency source Y Operation result of main + auxiliary is target frequency. Main frequency source - auxiliary frequency source Y Operation result of main - auxiliary is target frequency. MAX(main frequency source X, auxiliary frequency source Y) Choose bigger absolute value of the two as target frequency MIN(main frequency source X, auxiliary frequency source Y) Choose smaller absolute value of the two as target frequency. Besides, when frequency source is main& auxiliary operation, users can set offset frequency through P0.21.By stacking offset frequency on main& auxiliary operation result, it could flexible cope with all kinds of needs. 								
P0.00	Preset frequency	when frequency source is set to "digital set	tting")	50.00HZ	X				
Wh	en set the frequency source to '	digital setting" or "terminal UP/DOWN", the	parame	ter value	is the				
initial va	lue of the inverter frequency dig	tal setting.	0						
P0.09	Running direction		0	0	☆				
		Reverse direction	1	L					
Modification of this parameter can change the rotary direction of the motor without changing any other parameters, which is equivalent to the role of switching the rotary direction through adjusting any two lines of the motor (U, V and W). When needing to change the rotary direction of the motor, users can modify this parameter rather than adjust the wiring of the motor. Caution: When the function code is restored to the factory default value, this parameter value is restored to 0, which should be used prudently in the applications where the motor rotary direction is not									
P0.10	Maximum frequency	50.00Hz~500.00Hz		50.00Hz	*				
Wh 100% a SYs comman	When analog input, pulse input(DI5), MS command etc are used as frequency source, their respective 100% are relatively calibrated through P0.10. SY9000 maximum frequency could reach 500.00Hz. Users can set decimal digits of frequency command through P0.22 to balance the idex of frequency command resolution and frequency input range.								
		P0.12 setup Al1	0 1						
P0.11	Frequency source upper limit	AI2	2	0	*				
		AI3(Potentiometer)	3						

						_		
			Communica	tion setup		5		
It defines the source of frequency upper limit. Frequency upper limit comes from digital setup (P0.12) or analog input channel. When upper limit is set through analog input, 100% of analog input corresponds to P0.12								
E.g phenom value of	: When enon,use	n winding control fie ers can set upper limit nit , inverter maintains o	ld is in the frequency thro operation at th	torque control mo ough analog value. W e upper limit frequenc	de, to hen runn y.	avoid iing freo	material quency rea	oreak aches
P0.12	Freque	ency upper limit	Frequency I frequency(P	ower limit(P0.14) to m 0.10)	aximum		50.00Hz	☆
P0.13	Freque	ency upper limit offset	0.00Hz~ma	ximum frequency P0.1	0		0.00Hz	☆
Wh valueoff the final	ien uppe fset. The I setup v	r limit is set through addition of offset frequ alue of frequency uppe	analog value uency and and r limit.	e or PULSE setup, F alog setup value of fro	P0.13 wi equency	ll be u upper	sed as a limit is use	nalog ed as
P0.14	Freque	ency lower limit	0.00Hz to fr	equency upper limit P	0.12		0.00Hz	☆
Wh run at fr	ien the r	unning frequency of th lower limit or stop the	e inverter is le inverter. Refe	ower than the frequer er to P8.14 function co	ncy lowe ode for d	r limit, etails.	it can sele	ect to
P0.15	Carrier	frequency	0.8kHz~8.0l	кНz			-	\$
Thi	s functio	on is used to adjust	the carrier f	requency of the inv	erter. By	/ adjus	ting the	carrier
frequen	cy, the n	notor noise can be redu	uced, the reso	onance of the mechar	nical syst	tem car	n be avoid	ed, so
that the	leakage	current to the ground a	and the interfe	erence of the inverter	can be r	educed	l.	
Wh	ien the o	carrier wave frequency	is low, the	output current higher	harmor	nic com	ponent w	ill be
increase	ed, the n	notor loss will be increa	sed, and the	motor temperature ris	se will als	so be ir	creased.	
Wh	ien the c	arrier wave frequency	is high, the	motor loss is reduce	d, and th	he mot	or temper	ature
rise is i	reduced,	but the inverter loss	and inverter	temperature rise wil	ll be inc	reased	, and thu	3 the
The	ence will a adiustri	pe increased.	w will influence	e the following items	on the n	erform	ance.	
The	s aujusti	Carrier freque			high		ance.	
		Motor nois	۵	biq→small	nign			
		Output current wa	aveform	poor→	well			
		Motor temperatu	re rise	high→	low			
		Inverter temperat	ure rise	low→	high			
		Leakage curr	ent	small→	large			
		Radiation interfe	erence	small→	big			
Diff	ferent po	wer of inverter is set v	vith different of	carrier frequency by t	he facto	ry. Tho	ugh user (could
modify	it , atter	ntion should be paid: i	f carrier frequ	ency is set higher the	an the fa	ictory s	et valule,	it will
lead to	inverte	r radiator temperature	rise increasin	g. User should take	inverter	derating	g use, or	there
will be	danger	of overheating alarm.						
50.40	Carrier	frequency adjusting	No			0		
P0.16	with te	mperature	Yes			1	0	17
Car	rrier freg	uency adjusting with the	emperature re	fers to the detecting	of radiat	or temr	perature \	Nhen
the tem	perature	is high , carrier freque	encv automati	cally decreased to re	educe the	e invert	er temper	ature
rise. Or	n the co	ntrary, when the tem	perature is lo	ow, carrier frequency	gradual	ly resto	pred to th	e set
value.Tl	his funct	on could help to reduc	e the chance	of inverter overheatin	g alarm.	-		
P0.17	Accele	ration time 1	0.00s~6500	0s			-	$\stackrel{\wedge}{\simeq}$
P0.18	Decele	ration time 1	0.00s~6500	0s			-	☆

	memory selection upon stop	Memory	1	1					
This	This function is only valid when frequency source is digital setup.								
0: Wit	0: Without memory								
Upon power fault or stop of the inverter, set the frequency value back to the setup value of "Preset									
Frequer	Frequency" (P0.08). Frequency modification which set through keyboard " \land "、 " \lor " or terminal UP、								
DOWN	is cleared.								
1: Me	mory	tantian th	at recorded at last stan time. K	aubaar		/" or			
terminal	UP. DOWN to make the corre	ection vali	d	eyboan	J // 、	0			
		Motor 1		0					
P0.24	Motor selection	Notor 1		1	0	*			
0)//		Motor 2	A marked to diverse the state of a set		h				
nomoni	9000 support applications that	aromotor	4 motors in time-sharing. 4 moto	ors car	be set r	notor			
namepia	are parameters, muepenuem p	arameter	tuning, control mode, parameters	sielaui	ig to oper	allon			
Mo	tor 1 corresponding function of	aroups ar	e P1 group and P2 group. Moto	or 2.mo	tor 3. mo	tor 4			
corresp	onding groups are A2 group, A3	, , 3 group ai	nd A4 group respectively.	,	-,				
Use	ers select current motor throug	h P0.24 f	unction code as well as digital in	put tern	ninal DI. \	Vhen			
function	code selecton conflicting with	terminal [I selection, DI terminal selection	is priori	ty.				
		Maximu	m frequency(P0.10)	0					
P0.25	Acceleration / deceleration	Set freq	uency	1	0	*			
	relefence nequency	100Hz		2					
Acceleration / deceleration time means the time needed for the inverter varying from 0Hz to the									
frequen	cy ofP0.25, Fig5.1 is accelerati	on / dece	leration time schematic diagram.						
Wh	en P0.25 is choosen to 1, acco	eleration	deceleration time is connected v	vith set	frequenc	y.If set			
frequen	cy change frequently, the motor	r accelera	tion willchange,attention should b	e paid i	n applicat	ions.			
P0.26	Frequency UP/DOWN	Running	g frequency	0	0	*			
	reference upon running	Set freq	uency	1					
Thi	s parameter is only valid when	frequency	/ source is digital setting.						
lo	select(through keyboard /	∨ key	or terminal UP/DOWN) the mod	lifying	method o	t set			
frequen	cy, namely, larger nequency is	ncreasin	g/decreasing based on the runnin	y nequ	ency or se	sung			
The	e difference between the tw	o settino	is become apparently in inver	ter ac	celeration	and			
decelera	ation process.		,,,,,						
		41.11	Operation panel command bound	d					
1		TDIT	frequency source selection						
		Without	binding	0					
		Digital s	setup frequency source	1					
	Commond course 8 from some	Al1		2					
P0.27	source binding	Al2		3	000	☆			
		AI3(Pot	entiometer)	4					
		PULSE	pulse setup(DI5)	5					
		MS com	nmand	6					
		Simple	PLC	7					
						_			

			S. S
PIE)	8	
Co	mmunication setup	9	
10	bit Terminal command bound freque	ency	
Wit	thout bound	0	
Dig	ital setup frequency source	1	
AI1		2	
AI2	2	3	
AI3	(Potentiometer)	4	
PU	LSE pulse setup(DI5)	5	
MS	command	6	
Sin	nple PLC	7	
PIE)	8	
Co	mmunication setup	9	
10	0bit Communication command bindir frequency source selection	ıg	
Wit	thout bound	0	
Dig	ital setup frequency source	1	
AI1		2	
AI2		3	
AI3	B(Potentiometer)	4	
PU	LSE pulse setup(DI5)	5	
MS	command	6	
Sin	nple PLC	7	
PIE)	8	
Co	mmunication setup	9	
It defines bound combination betwee	en 3 running command channels an	id 9 frequen	ncy setup
channels, which is easy to achieve synchron	nous switching.		

Frequency setup channels above have the same definition with P0.03 "main frequency source X selection", please refer to P0.03 for details. Different running command channels can bind the same frequency setup channel. When the command source is valid during command source & frequency source binding, set frequency source of P0.03~P0.07 is invalid.

P0.28 Comr card	Communication expansion	Modbus communication card	0	0	
	card	Profibus.DP communication card	1	0	12

SY9000 series offers 3 kinds of communication mode. All of the 3 need to be equipped with optional communication card .And they can not be used at the same time.

P0.28 is used to set the type of the optional communication card. When user replace the communication card , P0.28 should be properly set.

5-3 Parameters for motor 1: P1.00-P1.37

Code	Description/Display	Setting Range	Factory Setting	Change Limit	
		General asynchronous motor	0		
P1.00	Motor type selection	Variable frequency asynchronous motor	1	0	*
P1.01	Rated power	0.1kW~1000.0kW		-	*
P1.02	Rated voltage	1V~2000V		-	*
P1.03	Rated current	0.01A~655.35A(Inverter power ≤ 55kW) 0.1A~6553.5A(Inverter power > 55kW)			*
P1.04	Rated frequency	0.01Hz~maximum frequency	-	*	
P1.05	Rated revolving speed	1rpm~65535rpm	-	*	
Fur chooser For the regu	nction codes above are motor na n mode, users should accurately better VF or vector control perf ulation results has intimate relati	ameplate parameters. No matter VF control v set the relating parameter according to the ormance, users should tune the motor paran onship with the accuracy of set motor name	or vecto motor neter. 1 plate pa	or control i nameplate The accura arameters	is the e. acy of
P1.06	Asynchronous motor stator resistance	Asynchronous motor stator $0.001\Omega \sim 65.535\Omega$ (Inverter power <=55kW) $0.001\Omega \sim 65.535\Omega$ (Inverter power <=55kW)		-	*
P1.07	Asynchronous motor rotor resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)		-	*
P1.08	Asynchronous motor leakage inductance	0.01mH~655.35mH(Inverter power <=55kW) 0.001mH~65.535mH(Inverter power >55kW)			*
P1.09	Asynchronous motor mutual inductance	ce 0.01mH~655.35mH(Inverter power <=55kW)			*
	Asynchronous motor no	0.01A~P1.03(Inverter power <=55kW)			

P1.06~P1.10 are parameters for asynchronous motor.Generally, motor nameplatedosen't contain such parameters, users can get them throung inverter auto tuning. Among them, 3 parameters (P1.06~P1.08) can be get through " asynchronous motor static tuning", while all the 5 parameters as well as encoder phase ,current loop PI etc can be get through "asynchronous motor complete tuning". When change the motor rated power (P1.01) or motor rated voltage (P1.02), inverter would automatically modify the P1.06~P1.10 parameter value and restore them to common standard of Y series motor parameter.

0.1A~P1.03(Inverter power >55kW)

Asynchronous motor no

load current

P1.10

If the asynchronous motor is unable to be tuned, users could input above parameters with factory offered motor value.

P1.27	Encoder pulses number	1~65535	2500	*
To s	To set ABZ or UVW incremental encoder pulse number per revolution.			

In the speed sensor vector control mode, P1.27 must be set accurately.Or motor would not normally

operate.						
P1.28 Encoder type		ABZ incremental encoder	0			
	Reserved	1				
	Encoder type	Rotary transformer	2	0	*	
		Reserved	3			
		Reserved	4			

					10000	
SYS card. Fo motor, w Afte	9000 support multiple encoder or specifications please refer to while only ABZ incremental enco er installing the PG card, make s	types. Different encoder should be equip o Appendix IV. All the 5 encoders are sui der and rotary transformer are suitable for a sure that P1.28 is accurate according to actu	ped wit table fo asynchro ual situa	h differer or synchro onous mo tion.	nt PG onous tor.	
	ABZ incremental encoder AB	Forward	0			
P1.30	phase	Reserve	1	0	*	
This increme It is phase s	s function code is only valid intal encoder AB signal phase su s valid for both synchronous m equence through asynchronous	to ABZ incremental encoder(P1.28=0).lt equence. otor and asynchronous motor. Users could motor complete tuning or synchronous mot	is use I get AE or no-lo	d to set 3Z encode ad tuning	ABZ er AB	
P1.34	Rotary transformer pole pairs	1~65535		1	*	
Rot set to it.	tary transformer is equipped wit	h pole pairs.When using the encoder, correct	ct parar	neters mu	ist be	
P1.36	PG dropped inspection time	0.0s: no action 0.1s~10.0s		0.0s	*	
lt is	s used to set inspection time	of encoder disconnection fault.When fee	edback	signal is	0.0s,	
encoder	disconnection fault will not be i	nspected.				
lf i	inverter detected disconnection	on fault,and the feedback value exceed	ed the	P1.36	setup	
range.ir	iverter lauit alarm No. 20= E.PG	-52.				
	P1.37 Tuning selection	Without operation	0	0		
P1.37		Asynchronous static tuning 1	1		*	
		Asynchronous complete tuning	2		~	
		Asynchronous static tuning 2	3			
Caution	: Correct motor ratings must be	e set before tuning				
0: No c	operation, tuning is forbidden.					
1: Asyr	nchronous motor static tuning 1					
It is	used for occasions that asynch	nronous motor and the load are not easily to	orn off, v	vhich may	/ lead	
to comp	blete tuning invalid. Correct mo	tor type and motor nameplate parameters	P1.00~	P1.05 mu	ist be	
	ion description. Set P1 37 to 1	and then press RUN button inverter will c	arry out	asynchro	nous	
static tu	ning.		arry out	asynome	nous	
2 : Asyr	nchronous complete tuning					
Asy	nchronous complete tuning car	n guarantee inverter dynamic control perfor	mance.	Motor an	d the	
load sho	ould be disconnected to keep mo	otor complete status.				
In t	he process of asynchronous co	omplete tuning , asynchronous complete tu	ning is t	aken first	, and	
then acc	celerate to 80% of motor rated f	frequency according to P0.17. After keeping	y the sta	ate for a p	eriod	
of time,	then decelerate to stop accordin	ng to P0.18 and stop tuning.				
Bef	ore asynchronous complete t	tuning , users should set motor type a	and mo	tor name	eplate	
parame	parameters P1.00~P1.05 as well as encoder type and encoder pulse numbers P1.27、P1.28.					
Inverter can get 5 motor parameters P1.06~P1.10 as well as AB phase sequence P1.30, vector						
Control current loop PI parameter P2.13~P2.16 from tuning.						
complete tuning						
3 : Asvr	nchronous motor static tuning					
It is	It is used for no encoder					

5-4 Vector control function group: P2.00-P2.23

Code	Description/Display	Setting Range	Factory Setting	Change Limite
P2.00	Speed loop proportional gain1	1~100	30	☆
P2.01	Speed loop integration time1	0.01s~10.00s	0.50s	☆
P2.02	Switching frequency1	0.00~P2.05	5.00Hz	☆
P2.03	Speed loop proportional gain 2	0~100	20	\$
P2.04	Speed loop integration time 2	0.01s~10.00s	1.00s	☆
P2.05	Switching frequency 2	P2.02~maximum frequency	10.00Hz	☆

P2 group function codes are valid for vector control and invalid for V/F control.

Users could choose different speed loop PI parameters under different running frequency. When running frequency is less than the switching frequency(P2.02), adjusting parameters for speed loop PI are P2.00 and P2.01. When running frequency is greater than the switching frequency (P2.02), adjusting parameters for speed loop PI are P2.03 and P2.04. Speed loop PI parameters between switching frequency1 and switching frequency2 are two groups of linear switching. As shown in fig.5.2:

Users can adjust vector control speed dynamic response characteristics through setting proportional coefficient and integration time of the speed regulator.

Both increasing proportional gain and reducing integration time can accelerate the speed loop dynamic response.But excessive proportional gain or insufficient integration time may led to system oscillation.

Suggestions for regulating method:

If the factory parameters can not meet the requirements, users can fine-tuning it on the basis of factory value parameters. First increase the proportional gain to restrain system oscillation, then reduce integration time so that system has fast response characteristic and smaller overshoot.

Notice: Improper PI parameter setting may lead to excessive speed overshoot, even voltage fault during overshoot drop.

P2.06	Vector control slip gain	50%~200%	100%	$\stackrel{\wedge}{\simeq}$
-------	--------------------------	----------	------	-----------------------------

This parameter is used to adjust motor steady speed precision for zero-speed sensor vector control mode. Please turn up the parameter value when with load motor running in low speed. On the contrary, when the with load motor running in high speed, please turn down the parameter value.

This parameter is also used to adjust the output current value with the same load for speed sensor vector control.

P2.07	Speed-loop filter time	0.000s~0.100s	0.015s	☆			
ln v	In vector control mode, speed-loop regulator outputs torque current command. P2.07 is used to filter						

the torque command.

Generally speaking, the parameter needs not to be modified. Users could properly increase the filtering time when speed fluctuation is relatively big, and decrease the value when motor oscillation occurs.						
IT TII	tering time is small, inverter outp	P2.10	se spee 0		ast.	
		Al1	1			
		Al2	2			
	Tennus un en lineit esume in	AI3(Potentiometer)	3			
P2.09	speed control mode	PULSE setup	4	0	☆	
		Communication setup	5			
		Min(Al1,Al2)	6			
		Max(Al1,Al2)	7			
P2.10	Torque upper limit digital setup in speed control mode	0.0%~200.0%	I	150.0%	☆	
In s Rar P2. commur inverter.	peed control mode, inverter may nge for 1-7 selections of P2.09 a 09 is used to select torque upp nication setup, which 100% con	cimum torque output is controlled by torque u re corresponding to the setting range of P2.1 er limit source. When P2.09 is set through responding to P2.10. 100% of P2.10 is th	ipper lin 0. analog, ne rateo	nit. PULSE s d torque c	etup, of the	
	Torque upper limit source in speed control mode (regenerative)	P2.10	0			
		Al1	1			
		AI2	2			
D2 11		AI3(Potentiometer)	3			
P2.11		PULSE setup	4	0	¥	
		Communication setup	5			
		Min(AI1,AI2)	6			
		Max(Al1,Al2)	7	1		
P2.12	Torque upper limit digital setup in speed control mode (regenerative)	0.0%~200.0%		150.0%	☆	
P2.13	3 Excitation regulation 0~20000		2000	Å		
P2.14	2.14 Excitation regulation 0~20000		1300	☆		
P2.15	Torque regulation proportional gain	0~20000		2000	☆	
P2.16	Torque requlation integration gain	0~20000		1300	☆	

Vector control current-loop PI regulation, which is automatically obtained after asynchronous motor complete tuning or synchronous motor complete tuning. It generally needs not to be modified.

Caution: Integration regulator of current loop directly set integration gain without taking integration time as the dimension. Excessive current loop PI gain may lead oscillation to the entire control loop circuit. If current oscillation or torque fluctuation is relatively big, users could manually turn down the PI proportional gain or integration gain.

P2.17	Speed loop intergral seperation	Disable	0		
	selection	enable	1	0	¥
P2.21	Max torque coefficient of field weakening area	50~200%		100%	☆
P2.22	Regenerative power limit selection	Disable	0	0	Σţ
		enable	1	0	
P2.23	Regenerative power limit	0.0~200.0%		Mode dependent	☆

5-5 V/F control group: P3.00-P3.26

This function group is only valid for V/F control mode.

V/F control is suitable for general load such as draught fan, pump. It is also appropriate for situations where one inverter driving multiple motors or there is big difference between inverter power and motor power.

Code	Description/Display	Setting Range		Factory Setting	Change Limite
P3.00	V/F curve setup	Line V/F	0	- 0	
		Multi-point V/F	1		*
		VF complete separation mode	10		
		VF semi separation mode	11		

This parameter defines the V/F setup mode so as to meet the requirements of various load characteristics. 0: Line V/F

It is suitable for the ordinary constant torque load.

1: Multi-point V/F

It is suitable for special loads such as dehydrator and centrifugal machine. It can be self-defined. Refer to the description of functional codes of Group F1-07 to F1-12 for details.

2~9: Reserved

10: VF complete separation mode

Inverter output frequency and output voltage are mutually independent. Output frequency is decided by frequency source, while output voltage is decided by P3.13(VF separation voltage source).

VF complete separation mode is generally applied in induction heating, inverter power supply, torque motor control fields etc.

11: VF semi separation mode

In this case, V is proportional to F. Proportional relationship can be set by the voltage source P3.13. The relationship between V&F is connected with P1 group(motor rated voltage and rated frequency).

Suppose that voltage source input is X (X from $0\sim100\%$), the V,F relationship is:

Six parameters of P3.03 to P3.08 define the multi-point V/F curve.

The setup value of multi-point V/F curve is generally set in accordance with the load characteristics of the motor.

Caution:

V3

1) It must be set as follows: V1 \leq V2 \leq V3, F1 \leq F2 \leq F3. Fig5.4 is schematic diagram for multi-point V/F curve.

2) If the voltage is set too high at the time of low frequency, it may cause overheating and even burning of the motor as well as stall over current or over current protection of the inverter.

This parameter is only valid for asynchronous motor.

VF slip compensation can compensate asynchronous motor speed deviation ,in this way ,motor rotary speed could be maintained in basically stable state during load change. In general, 100% corresponds to the rated slip of the motor with rated load. For motor rated slip , it can be get through auto calculation of P1 motor rated frequency and rated revolving speed.

The slip compensation gain adjustment may be performed referring to the following principle: When the load is rated load, and the slip compensation coefficient is set to 100%, the rotary speed of the motor is close to the reference speed.

-	P3.10	VF over-excitation gain	0~200	64	☆
---	-------	-------------------------	-------	----	---

The role of over excitation gain function is to suppress the rise of bus voltage during the inverter deceleration process, thus avoiding occurrence of over voltage fault due to bus voltage exceeding over voltage protection limitation value. The higher the over excitation gain is, more powerfully the suppression effect is. The setting is described as follows:

In the applications where over-voltage alarm easily occurs, it needs to improve the over-excitation gain. Excessive over-excitation gain easily lead to increasing of output current .Users should keep the balance during operation.

In the applications where the inertia is very low, the over excitation gain is set to 0, while in the applications where there is brake resistor ,the over excitation gain is set to 0 as well.

P3.11	VF oscillation suppression gain	0~100	-	☆
-------	---------------------------------	-------	---	---

When the motor has no oscillation, please select this gain to 0. Only when the motor has obvious oscillation and Yes not run normally can the gain be properly increased. The bigger the gain is, the better oscillation suppression result will be.

The gain shall be set as small as possible under the condition that the oscillation is suppressed effectively so as to avoid high influences on the V/F operation.

Accurate motor rated current and no-load current parameters are required during using oscillation suppression function, or VF oscillation suppression effect will not be excellent.

P3.13 VF separation voltage so		Digital setup(P3.14)	0	0	٨
	VF separation voltage source	Al1	1	0	X

		AI2	2		
		Al3(Potentiometer)	3		
		PULSE pulse setup(DI5)	4		
		MS command	5		
		Simple PLC	6		
		PID	7		
		Communication setup	8		
		100% corresponding to the rated motor vol A5.02、A5.02)	ltage (P	1.02、A4	.02、
P3.14	VF separation voltage digital setup	0V~rated motor voltage		0V	☆

VF separation is generally applied to induction heating control, inverter power supply control and torque motor control etc.

In VF separation control mode, output voltage can be set through function code P3.14, analog value, MS command , PLC, PID or communication setup.

When P3.13 is nonnumeric setup, each 100% of the setting corresponds to rated moter voltage. When output setting percentage is negative, it's absolute value is the valid setting value.

0: Digital setup(P3.14)

Voltage is directly set through P3.14.

- 1: Al1
- 2: Al2
- 3: AI3(Potentiometer)

Voltage is set through analog input terminal.

4: PULSE pulse setup(DI5) voltage set through terminal pulse.

Pulse setup signal specification: voltage range 9V~30V, frequency range 0kHz~100kHz.

5: MS command voltage source is MS command.

Corresponding relationship between set signal and set voltage is determined through P4 group and PC group.

6: Simple PLC

When voltage source is simple PLC, output voltage is set through PC group parameters.

7: PID

Output voltage through PID closed loop.For specifications please refer to PA group for PID detailed description.

8: Communication setup

Communication setup refers to voltage that set by position machine through communication mode. When the above voltage source selection is 1~8, 0~100% corresponds to output voltage 0V~motor rated voltage.

P3.15	VF separation voltage rise time	0.0s~1000.0s	0.0s	\$	
P3.16	VF separation voltage decline time	0.0s~1000.0s	0.0s	☆	
P3.15 refers to the time that needed for output voltage varying from 0V to motor rated voltage.As shown in fig.5-5.					

Ou	Output voltage V Rated motor voltage tput voltage target value		e fall t je fall	ime	
P3.17	Stop mode selection for VF separation voltage	Frquency and voltage decline to 0 independently Frquency declining after voltage decline to 0	0	0	Å
P3.18	Current limit level	50~200%	1	50%	*
P3.19 Current limit selection		Disable		1	
		Enable		1	*
P3.20	Current limit gain	0~100		20	☆
P3.21	Compensation factor of Speed mutiplying current limit	50~200%		50%	*
P3.22	voltage limit	650.0~800.0v		770.0	*
P3 23	voltage limit coloction	Disable		1	_
1 0.20	voltage innit selection	Enable		1	*
P3.24	Frquency gain for voltage limit	0~100		30	☆
P3.25	voltage gain for voltage limit	0~100		30	☆
P3.26	Frquency rise threshold during voltage limit	0-50hz		5	*

5-6 Input terminal: P4.00-P4.40

SY9000 series inverter has 6 multifunctional digital input terminals (DI1 to DI6), of which DI5 can be used as high-speed pulse input terminal, and SY9000 series inverter also has 2 analog input terminals. If system needs more input/output terminal, it can be equipped with multi-function input/output expansion card and 1 analog input terminal(AI3x).

Multi-function input/output expansion card has 4 multi-function digit input terminal(DI7~DI10).

Code	D	escription/Display		Setting Range	Factory Setting	Chang Limite		
P4.00	DI1ter	minal function selection	0~;	59	1	*		
P4.01	DI2 ter	DI2 terminal function selection		59	4	*		
P4.02	DI3 ter	minal function selection	0~:	59	9	*		
P4.03	DI4 ter	DI4 terminal function selection		59	12	*		
P4.04	DI5 ter	minal function selection	0~:	59	13	*		
P4.05	DI6 ter	minal function selection	0~:	59	2	*		
P4.06	DI7 ter	minal function selection	0~:	59	12	*		
P4.07	DI8 ter	minal function selection	0~:	59	13	*		
P4.08	DI9 ter	minal function selection	0~:	59	14	*		
P4.09	DI10 te	erminal function selection	0~:	59	15	*		
Т	hese para	ese parameters are used to set o		multi-function input terminals, as shown in the	table belo	w:		
	Setting	Function		Specification explanation				
	0	No- function Forward command (FWE Reverse command (REV		Set useless terminals to "no function", in order to prev misoperation.				
	1			The forward run and reverse run of the inverter are controlled via the external terminals.				
	2							
	3	Three line running cont	rol	Set inverter running mode as three line control mode.For details please refer to function code P4.11(Terminal command mode).				
	4	FWD JOG command(FJOG)		FJOG refers to jog forward running, RJOG refers to jog reverse running. For jog running frequency, jog acc./dec. time please refer to P8.00、P8.01、P8.02 for details. When command source is set as "Digital Setup", the				
	5	REV JOG command(RJOG)						
	6	Up command						
	7	Down command		through the external terminal.	Implemen	lea		
	8 Free stop			When this terminal command is valid, meaning that the inverter locks the output, the load will free stop according to the mechanical inertia.this way is the same withP6.10				
	9	9 Fault reset(RESET)		When this terminal command is valid, invertu- be reset. It has the same function with RESE keyboard.This function can realize remote far	er's fault o T key on ult reset.	can the		
	10	Operation suspended		Inverter decelerates to stop, but all operatio are memorized. E.g. PLC parameter, sw parameter, PID parameter. When this te disappeared, inverter restored to running stat	on parame ing freque erminal s cus as befe	eters ency ignal ore.		
	11	External default norma open input	ally	When the inverter detects that the signal or report "15=Err15" fault, and handle the fault the fault protection action mode.(Please refer details).	ccurs , it according r to P9.47	will g to for		

	12	Multi-stage speed terminal1			
	13	Multi-stage speed terminal2	The setting of 16-segment speeds can be realized by the		
	14	Multi-stage speed terminal3	combinations of the terminal status when the frequency source is "MS Speed". Refer to schedule 1 for details.		
ĺ	15	Multi-stage speed terminal4			
	16	Acc./dec.time selection terminal 1	It can realize 4 kinds of acc./dec. selection mode by 4		
	17	Acc./dec.time selection terminal 2	combination status of this 2 terminals.For details please refer to schedule2.		
	18	Frequency source switching	It is used to switch to choose different frequency sources. It realizes switching between 2 kinds of frequency sources according to the setup of P0.07.		
	19	UP/DOWN setup reset(terminal and keyboard)	When the frequency source is given as "Digital Setup" and the terminal command is valid, it can clear the frequency values changed through keyboard or terminals UP/DOWN and restore the reference frequency to the setup value of "Preset Frequency" (P0.08).		
	20	Running command switching terminal	When command source is set to terminal control (P0.02=1), the terminal could realize switching between terminal control and keyboard control. When command source is set to communication control(P0.02=2), the terminal could realize switching between communication control and keyboard control.		
	21	Acc./dec forbidden	When this terminal command is valid, it can maintain the current frequency output while stopping.		
	22	PID pause	PID temporary invalid, the inverter maintains the current frequency output and no longer taking PID adjustment of frequency source.		
	23	PLC status reset	When this terminal command is valid, it clears the memorized PLC running phase and running time, and restores to the initial status of PLC running.		
	24	Swing frequency pause	When this terminal command is valid, the inverter maintains the frequency output of the swing frequency center, and the swing frequency pauses.		
	25	Counter input	It is used as input terminal of the counting pulse.		
	26	Counter reset	When this terminal command is valid, it clears the counting value of the counter to zero.		
	27	Length counting input	It is used as pulse input terminal of the length counting.		
	28	Length counting reset	When this terminal is valid, it clears the length counting to zero.		
	29	Torque control forbidden	It prohibits inverter torque control. Inverter enters in speed control mode.		
	30	PULSE frequency input(Only valid for DI5)	DI5 is used as pulse input terminal.		
	31	Reserved	Reserved		
	32	Immediate DC braking	When this terminal is valid, inverter directly switch to dc braking state.		

	33	External default normally closed input	When the inverter detects that the signal occurs , it will report "Errots" fault and stop rupping
ľ	34	Frequency modification	If the function is valid, inverter is not respond to frequency
		enable	change until the function turns to be invalid.
	35	PID direction reversed	PID and PA.03 set values are set in oppoisite directions when the terminal is valid.
	36	External stop terminal1	It could make inverter stop when in keyboard control. Equivalent to function of STOP key on the keyboard.
	37	Control command switching terminal 2	It is used to switch control mode between terminal and communication.
	38	PID integration suspension	When it is valid, PID integration regulation function pauses, while PID proportional regulation and differential regulation function are still valid.
	39	Frequency source X and preset frequency switching	When it is valid, frequency source X is replaced by the preset frequency P0.08.
	40	Frequency source Y and preset frequency switching	When it is valid, frequency source Y is replaced by the preset frequency P0.08.
Ī	41	Motor selection terminal1	It can realize 4 groups of motor parameters switching by 4
	42	Motor selection terminal2	combination status of this 2 terminals.For details please refer to schedule3.
	43	PID parameter switching	PA.18=1, the parameter is invalid, PID parameter takes use of PA.05~PA.07. On the contrary, PA.15~PA.17 are taken for the use.
ſ	44	User-defined fault 1	When user-defined fault 1&2 are valid, inverter alarm fault
ľ	45	User-defined fault 2	number 27= Err27 & 28= Err28 respectively. Inverter will
	46	Speed control/ torque control switching	It enables control mode to switch between inverter torque control and speed control. Inverter running in the A0.00 defined mode when the terminal is invalid, and will switch to another mode when it is valid
	47	Emergency stop	Inverter stops at the fastest speed when the terminal is valid. Current is set to the current upper limit during this stop process. This function is used for inverter fast stop , which can meet the stop need in system emergency.
	48	External stop terminal 2	This terminal can be used to stop the inverter in any circumstances (panel control ,terminal control and communication control). Deceleration time is fixed to deceleration time 4.
	49	Deceleration DC braking	If it is valid, inverter first decelerates to stop DC braking start frequency and then switches to DC braking state.
	50	Running time reset	Inverter running time of this time is cleared if the terminal is valid. It operates with the use of P8.42 and P8.53.
	51	Two wire/three wire mode switcher	Two wire/hree wire mode switcher
	52	Reverse freqency forbidden	If it is valid, the inverter can not output reverse frequency
	53-59	Reserved	Reserved
S	chedule 1	MS command function des	cription

4 MS command terminals, which can be combined into 16 states. For 16 corresponding values, please							
refer	to schedule	1 as below:					1
	K4	К3	K2	K1	Command setup	Corresponding parameter	
	OFF	OFF	OFF	OFF	MS command 0	PC.00	
	OFF	OFF	OFF	ON	MS command 1	PC.01	
	OFF	OFF	ON	OFF	MS command 2	PC.02	
	OFF	OFF	ON	ON	MS command 3	PC.03	
	OFF	ON	OFF	OFF	MS command 4	PC.04	
	OFF	ON	OFF	ON	MS command 5	PC.05	
	OFF	ON	ON	OFF	MS command 6	PC.06	
	OFF	ON	ON	ON	MS command 7	PC.07	
	ON	OFF	OFF	OFF	MS command 8	PC.08	
	ON	OFF	OFF	ON	MS command 9	PC.09	
	ON	OFF	ON	OFF	MS command 10	PC.10	
	ON	OFF	ON	ON	MS command 11	PC.11	
	ON	ON	OFF	OFF	MS command 12	PC.12	
	ON	ON	OFF	ON	MS command 13	PC.13	
	ON	ON	ON	OFF	MS command 14	PC.14	
	ON	ON	ON	ON	MS command 15	PC.15	

When frequency source is set to multi-stage speed mode, 100.0% of function code PC.00~PC.15 are corresponding to maximum frequency P0.10. To meet the need, MS command can be used not only for multi-stage speed function, but also PID setup source or VF separation voltage source.

Terminal2	Terminal1	Acc./dec. selection	Corresponding parameter			
OFF	OFF	Acc./dec. time 1	P0.17、P0.18			
OFF	ON	Acc./dec. time 2	P8.03、P8.04			
ON	OFF	Acc./dec. time 3	P8.05、P8.06			
ON	ON	Acc./dec. time 4	P8.07、P8.08			

Schedule 2	Acceleration /	deceleration terminal	selection description:	

Schedule 3 Motor terminal selection description.

т	Terminal2	Terminal1	Acc./dec. selection	Corresponding parameter		
	OFF	OFF	Motor 1	P1、P2 group		
	OFF	ON	Motor 2	A2 group		
	ON	OFF	Motor 3	A3 group		
	ON	ON	Motor 4	A4 group		
10	DI filter	time	0.000s~1.000s		0.010s	Γ

lf th the para	ne digital input terminal malfunct ameter value to enhance the in	tion because it is vuln terference immunity. I	erable to interference However, this operatio	, users n mav	could incl cause rec	rease duced
sensitivi	ty of the DI terminal.	,	<i>,</i> ,	,		
		1bit	Terminal input comr mode	nand		
		Two-line mode 1		0		
P4.11	Terminal command mode	Two-line mode 2		1	0	*
		Three-line mode1		2		
		Three-line mode2		3		

0 bit:

This parameter defines 6 different modes of controlling the forward and reverse rotations of the inverter via the external terminal.

NOTE:: In order to explain, The following arbitrary selection DI1~DI10 multifunctional input terminal DI1、DI2、DI3 three terminals as external terminals, That is, by setting the value of P4.00~P4.02 to select DI1、DI2、DI3 three terminal functions. Detailed function definition is P4.00~P4.09 setting range

0: Two-line mode 1:

This mode is the most commanly used forward/reverse rotation control mode. The forward/reverse rotation of the motor is decided by the DI1, DI2 terminal commands. The descriptions on the terminal running command are as shown as below:

Terminal	Set value	Description
DI1	1	Forward(FWD)
DI2	2	Reverse(REV)

Among them ,DI1、DI2 are DI1~DI10 muti-fuction input terminal, level valid. 0 invalid, 1 valid

K1	K2	Command
0	0	Stop
0	1	Reverse(REV)
1	0	Forward(FWD)
1	1	Stop

Fig. 5-6 Two-line control mode 1

1: Two-line mode 2:

In this operation mode,DI1 terminal function is to enable operation,while DI2 terminal function is to determine running direction. The descriptions on the terminal running command are as shown as below :

Terminal	Set value	Description
DI1	1	Forward(FWD)
DI2	2	Reverse(REV)

Among them , DI1、DI2 are DI1~DI10 multi-fuction input terminal, level valid 0 invalid, 1 valid

K1	K2	Command
0	0	Stop
0	1 Stop	
1	0	Forward(FWD)
1	1	Reverse(REV)

Fig. 5-7 Two-line control mode 2

2: Three-line mode1

In this operation mode, DI3terminal is the enable terminal, running direction controlled by DI1terminal . DI2terminal. The descriptions on the terminal running command are as shown as below:

Terminal	Set value	Description
DI1	1	Forward(FWD)
DI2	2	Reverse(REV)
DI3	3	Three-line running control

When in the need of running, users should first connect DI3 terminal. Forward and reverse running is realized through the rising edge of Di1 or DI2.

When in the need of stop, user should disconnect DI3 terminal to meet the need. Among them, DI1、DI2、DI3 are multi-function input terminal of DI1~DI10. DI1,DI2 are of pulse valid, while DI3 level valid.

0 invalid. 1 valid. X arbitrarily

SB1	SB2	SB3	Command	
0	Х	Х	Stop	
1	1	0	Forward(FWD)	
1	0	1	Reverse(REV)	
1	1	0->1	Reverse(REV)	
1	0->1	1	Forward(FWD)	

Fig. 5-8 Three-line control mode 1

Among them:

SB1: Stop button

SB2: Forward rotation button

SB3: Reverse rotation button

3: Three-line mode2

In this operation mode, DI3 terminal is the enable terminal, Direction by the state of the DI2 to decide,while DI1 terminal function is to determine running direction. The descriptions on the terminal running command

are as shown as below:

Terminal	Set value	Description
DI1	1	Forward(FWD)
DI2	2	Reverse(REV)
DI3	3	Three-line running control

When in the need of running, users should first connect DI3 terminal. DI1 pulse rising edge gives running command signal, while DI2 status gives running direction signal.

When in the need of stop, user should disconnect DIn terminal to meet the need. Among them, DI1, DI2, DI3 are multi-function input terminals of DI1~DI10. DI1 is of pulse valid, while DI2, DI3is of level valid.

0 invalid. 1 valid. X arbitrarily

Command	К	SB2	SB1
Stop	Х	х	0
Forward(FWD)	0	1	1
Reverse(REV)	1	1	1

Fig. 5-10 Relationship between analog input and setup value

The parameters mentioned above define the relationship between analog input voltage and the analog input setup value.

When analog input voltage exceeds the setup "maximum input" limit, analog voltage is calculated as "maximum input". Similarly, when analog input is smaller than the setup "minimum input", analog voltage is calculated as minimum input or 0.0% according to the setting of P4.34.

Al used as current input terminal : 1mA current equals to 0.5V voltage.

Al input filtering time is used to set Al1 software filtering time. When field anlog quantity is vulnerable, please increase the filtering time so that anlog quantity tends to be stable. But excessive filtering time will lead to slow response time to anlog detection. User should balance it according to practical application cases.

In various application cases, the nominal value corresponding to 100% of analog reference will be different. Refer to specific application description for the specific value.

P4.18	AI curve 2 minimum input	0.00V~P4.20	0.00V	☆
P4.19	AI curve 2 minimum input corresponding setup	-100.00%~100.0%	0.0%	☆
P4.20	AI curve 2 maximum input	P4.18~10.00V	10.00V	☆
P4.21	AI curve 2 maximum input corresponding setup	-100.00%~100.0%	100.0%	☆
P4.22	AI2 filter time	0.00s~10.00s	0.10s	\$
For	function and usage of curve 2, p	please refer to description of curve 1.		
P4.23	AI curve 3 minimum input	-10.00V~P4.25	-10V	\$
P4.24	AI curve 3 minimum input	-100.00%~100.0%	0.0%	☆

Figure 5.10 shows typical setup cases.

	corresponding setup			
P4.25	AI curve3 maximum input	P4.23~10.00V	8.60V	☆
P4.26	AI curve 3 maximum input corresponding setup	-100.00%~100.0%	100.0%	☆
P4.27	Al3filter time	0.00s~10.00s	0.10s	☆
For	function and usage of curve 3, p	please refer to description of curve 1.		
P4.28	PULSE minimum input	0.00kHz~P4.30	0.00kHz	$\stackrel{\wedge}{\simeq}$
P4.29	PULSE minimum input corresponding setup	-100.00%~100.0%	0.0%	4
P4.30	PULSE maximum input	P4.28~50.00kHz	50.00kHz	$\stackrel{\wedge}{\simeq}$
P4.31	PULSE maximum input corresponding setup	-100.00%~100.0%	100.0%	☆
P4.32	PULSE filter time	0.00s~10.00s	0.10s	$\stackrel{\sim}{\simeq}$

This group of parameters are used to set relationship between DI5 pulse frequency and it's corresponding settings.

Pulse frequency can be only input to the inverter through DI5 channel. This function group's applications are similar to curve 1, please refer to the description of curve 1.

		1bit	AI1 curve selection			
		Curve	e1(2 points, see P4.13~P4.16)	1		
		Curve	e2(2 points, see P4.18~P4.21)	2		
		Curve	e3(2 points, see P4.23~P4.26)	3		
		Curve	e4(4 points, see A6.00~A6.07)	4		
		Curve	e5(4 points, see A6.08~A6.15)	5		
		10bit	AI2 curve selection			
		Curve	e1(2 points, see P4.13~P4.16)	1		
		Curve	e2(2 points, see P4.18~P4.21)	2		
P4.33	AI curve selection	Curve	e3(2 points, see P4.23~P4.26)	3	321	¥
		Curve	e4(4 points, see A6.00~A6.07)	4		
		Curve	e5(4 points, see A6.00~A6.07)	5		
		100bit	AI3 curve selection	-		
		Curve	e1(2 points, see P4.13~P4.16)	1		
		Curve	e2(2 points, see P4.18~P4.21)	2		
		Curve	e3(2 points, see P4.23~P4.26)	3		
		Curve	e4(4 points, see A6.00~A6.07)	4		
		Curve	e5(4 points, see A6.00~A6.07)	5		

The 1bit, 10bit, 10bit of the function code are used to choose the set curve of analog input Al1, Al2, Al3 respectively.

3 analog input can choose any curve of the 5 types.

Curve 1, curve 2, curve 3 are 2 points curve that set through P4 group function codes, while curve 4, curve 5 are 4 points curve that set through A8 group function codes.

SY9000 standard unit offers 3-channel analog input terminals. Multi-function I/O expansion card is needed in the use of Al3x.

		1bit	Al1 below minimum input selection	setup		
		Minim	num input setup	0		
		0.0%)	1		
		10bit	Al2 below minimum input setup sel	ection		
P4.34	AI below minimum input setup selection	Minim	num input setup	0	000	$\overset{\wedge}{\sim}$
		0.0%)	1		
		100bit	Al3 below minimum input set selec	tion		
		Minim	num input setup	0		
		0.0%)	1		

This function code is used to dertermine analog quantity corresponding setup when analog input voltage below the setup of minimum input.

The 1bit, 10bit, 100bit of the function code are corresponding to the analog input AI1、AI2、AI3 respectively. If the bit is set to 0 and AI is below the minimum setup, the analog input setup is the curve "minimum input corresponding setup"(P4.14、P4.19、P4.24). If the bit is set to 0 and AI is below the minimum setup, the analog quantity corresponding setup is 0.0%.

			0		
P4.35	DI1 delay time	0.0s~	3600.0s	0.0s	*
P4.36	DI2 delay time	0.0s~	3600.0s	0.0s	*
P4.37	DI3 delay time	0.0s~	3600.0s	0.0s	*
On	ly DI1, DI2, DI3 are able to set e	quipme	nt delay time.		
The	ey are used to set delay time to i	0.0s~3600.0s able to set equipment delay time. elay time to inverter DI terminal state change.			
		1bit	DI1 terminal valid state setup		

		TDIL	DI1 terminal valid state setup			
		High I	evel valid	0		
		Low le	evel valid	1		
		10bit	DI2 terminal valid state setup			
P4.38	DI terminal effective mode selection 1	High I	evel valid	0	00000	*
		Low le	evel valid	1		
		100bit	DI3 terminal valid state setup			
		High I	evel valid	0		
		Low l	evel valid	1		

		DI4 terminal valid state setup		-	
		High level valid		-	
		Low level valid	1		
		1000 Obit DI5 terminal valid state setup		-	
		High level valid	0		
		Low level valid	1		
		1bit DI6 terminal valid state setup			
	High level valid	0			
	Low level valid	1			
	10bit DI7 terminal valid state setup				
	High level valid				
		Low level valid			
		100bit DI8 terminal valid state setup			
D4 20	DI terminal effective mode	High level valid	0	00000	
P4.39	selection 2	Low level valid		00000	★
		1000 bit DI9 terminal valid state setup			
		High level valid	0		
		Low level valid	1		
		1000 Obit DI10 terminal valid state setup			
		High level valid	0		
		Low level valid	1		
lt is Hig	used to set digital input termina h level valid: Connection betwe	effective mode. en COM and corresponding DI is valid,dis	sconnectio	n invalid.	

5-7 Output terminal: P5.00-P5.22

SY9000 series inverter provides two multifunctional analog terminal output selections,two multifunctional relay output terminal, oneDO terminal (can be used as high speed pulse output terminal as well as open collector switching output). If the above output terminals can not meet the field application, users should choose optional multi-function input/output expansion card.

Output terminals of multi-function input/output expansion card contain 1 multi-function analog output terminal(DO2), 1 multi-function relay output terminal (relay 2), 1 multi-function digital output terminal(DO2).

Codo	Description/		Sotting Pango		Factory	Change
Code	Keyboard Display		Setting Range		Setting	Limite
P5 00	Y terminal output mode	Pulse	output(Y1P)	0	0	~~
F 3.00	selection	Switc	h output(Y1R)	1	0	м
Y1 or open Wh descript	is programmable multiplex term collector switching output termir en P5.00 is set to 0, maximum o ion.	inal, wh nal (Y1F output fr	ich can be used as high speed pulse R). equency can reach 10kHz , please re	e output	terminal	(Y1P) elated
P5.01	Y1R selection (open collector output terminal)	0-41			0	☆
P5.02	Relay output selection (TA1.TB1.TC1)	0-41			2	☆
P5.03	Relay output selection (TA2.TB2.TC2)	0-41			2	☆
P5.04	DO1 output selection(open collector output terminal)	0-41			1	☆
P5.05	Expansion card DO2 output selection	0-41			1	☆
The TA2.TB2 Fur	a above 5 function codes are 2.TC2 are control board and exp action selections are as follows:	e used ansion	to select 5 digital output functic card relay respectively.	n. TA1	.TB1.TC1	and
Set valu	e Function		Description			
0	No output		The output terminals have no funct	ion		
1	Inverter in operation		When the inverter is running, ON si	gnal is	output.	
2	Output fault(Stop fault)		When inverter fault happens and s ON signal is output	stops di	ue to the	fault ,
3	Frequency level detection output	FDT1	Refer to P8.19 and P8.20 function of	codes fo	or details	6
4	Frequency arrival		Refer to P8.21 function codes for details			
5	Zero speed operation(stop v output)	without	When inverter is in running status and output 0Hz , signal is output. When inverter is in stop status, OFF signal is output.			, ON
6	Motor overload pre-alarm	Motor overload pre-alarm		Judgment will be made according to the preala parameter value before the motor electronic therm protection is enabled. If it exceeds the pre-ala parameter value, ON signal will be output. Refer to P9. to P9.02 function codes for the descriptions of mo- overload		
7	Inverter overload pre-alarm		When it is found that the inverter is overloaded, ON signal will be output before the overload protection occurs.			
8	Setup counting value arrive	d	When the counting value reaches outputs ON signal.	the va	lue of PB	.08, it
9	Designated counting value	arrived	When the counting value reaches the value of PB.09, it outputs ON signal.Refers to PB group for details.			

10	Length arrived	When the actual length exceeds the setup value in PB.05, it outputs ON signal.
11	PLC circulation end	When the simple PLC running finishes one circulation, it outputs a pulse signal with width of 250ms.
12	Total running time arrived	When the accumulated running time of the inverter exceeds the setup time (P8.17), it outputs ON signal.
13	Frequency limit	When set frequency exceeds upper limit frequency or lower limit frequency, and inverter output frequency exceeds upper limit frequency or lower limit frequency, it outputs ON signal.
14	Torque limit	In speed control mode, if output torque reaches the torque limit, inverter will be in stall protection status and output ON signal.
15	RUN ready	When the inverter has no fault and the bus voltage works normally and the inverter is ready for running, it outputs ON signal. Upon normal startup, it closes the output.
16	Al1>Al2	When the voltage value of analog input Al1 is bigger than that of analog input Al2, it output ON signal.
17	Frequency upper limit arrived	When the running frequency of the inverter reaches the frequency upper limit, it outputs ON signal.
18	Frequency lower limit arrived (stop without output)	When the running frequency of the inverter reaches the frequency lower limit, it outputs ON signal.And output OFF signal in stop status.
19	Undervoltage state output	When inverter is in undervoltage status, it outpus ON signal.
20	Communication setup	Please refer to communication protocol.
21	Reserved	Reserved
22	Reserved	Reserved
23	Zero speed operation 2(Stop with output)	When inverter output 0Hz , ON signal is output. When inverter is in stop status, ON signal is output.
24	Total power-on time arrival	When accumulated power-on time(P7.13) exceeds P8.16 set value, it outputs ON signal.
25	Inspection level of FDT2 frequency	Please refer to function code P8.28、P8.29 for details.
26	Frequency 1 arrival output	Please refer to function code P8.30、P8.31 for details.
27	Frequency 2 arrival output	Please refer to function code P8.32、P8.33 for details.
28	Current 1 arrival output	Please refer to function code P8.38、P8.39 for details.
29	Current 2 arrival output	Please refer to function code P8.40、P8.41 for details.
30	Timing arrival output	When inverter running time reaches the set timming (P8.42 valid), it outputs ON signal.
31	Al1 excessive input	When analog input value Al1 is bigger than P8.46 (Al1 input protection upper limit) or smaller than P8.45(Al1 input protection lower limit), it outpus ON signal.
32	Load off	Inverter in load off status, it outpus ON signal.
33	Reverse running	Inverter in reverse running mode, it outputs ON signal.
34	Zero current state	Please refer to function code P8.28 P8.29 for details.

35	Module temperature arrival		When module radiator temperature(P7.07) reaches the set value of P8.47, it outputs ON signal.			
36	Software excessive current		Please refer to function code P8.36、P8.37 for details.			
37	Frequency lower limit arrivative with output)	l(stop	When running frequency reaches frequency lower limit, it outputs ON signal.When in stop status ,it outputs ON signal too.			
38	Alarm output		When inverter fault with processing more running, it outputs alarm signal.	de of cor	ntinue	
39	Motor over temperature alar	m	When motor temperature reaches set val outputs ON signal.(temperature can be U0.34)	ue of P9.8 viewed th	58 , it rough	
40	The running time arrival		When the running time exceeds the set va outputs ON signal.	lue of P8.	53 , it	
41	Alarm output		When inverter fault with processing mo running(uninclude under voltage fault), it signal.	de of cor outputs	ntinue alarm	
P5.06	Y1P output function selection(pulse output terminal)	0-16		0	\$	
P5.07	AO1 output function selection	0-16		0	\$	
P5.08	AO2 output function selection	0-16		1	☆	
could var AO1 The	y from 0.01kHz to 100.00kHz. , AO2 output ranges from 0V to corresponding value range is sl	10V, o hown in	r 0mA to 20mA. hthe table below:			
Setup value	Function		Range			
0	Running frequency		0~maximumoutputfrequency			
1	Setupfrequency		0~maximumoutputfrequency			
2	Outputcurrent		0~200%ofthe rated current oftheinverter			
3	Outputtorque		0~200%ofthe rated torque oftheinverter			
4	Outputpower		0~200% of the rated powerof the inverter			
5	Output voltage		0~120% of the rated voltage of the inverter			
6	PULSEpulse input		0.01kHz~100.00kHz			
7	Al1		0V~10V			
8	Al2		0V~10V(Or 0~20mA)			
9	AI3		0V~10V			
10	Length		0~Maximum length			
11	Countingvalue		0~Maximum counting value			
12			0.0%~100.0%			
	Communication setup		0.0%~100.0%			

www.nicsanat.com 021-87700210 NIC SRNIAT

	14	Output current		0.0A~1000.0A			
16Output torqueActual value, proportion to motor torqueP5.09Y1P maximum output frequency 0.01 kHz~100.00kHz 50.00 kHz $$1^{\circ}$ Where the multifunctional terminal output function selects Y1P pulse output, it can set the maximum frequency $0.00\% \times 100.0\% \times 100.0\%$ $$1.00\%$ P5.10AO1 zero offset $-100.0\% \times 100.0\%$ 0.0% $$1.00\%$ P5.11AO1 gain $-10.0\% \times 100.0\%$ 1.00% $$1.00\%$ P5.12Expansion card AO2zero offset $-10.0\% \times 100.0\%$ $$0.00\%$ $$1.00\%$ P5.13Expansion card AO2 gain $-10.0\% \times 10.00\%$ $$1.00\%$ $$1.00\%$	15	Output voltage		0.0V~1000.0V			
P5.09 Y1P maximum output frequency 0.01kHz~100.00kHz 50.00kHz ☆ W→ the multifunctional terminal output function selects Y1P pulse output, it can set the maximum frequency 100.0%~+100.0% 0.0% ☆ P5.10 AO1 zero offset -100.0%~+100.0% 1.00 ☆ P5.11 AO1 gain -100.0%~+100.0% 0.0% ☆ P5.12 Expansion card AO2zero offset -100.0%~+100.0% 1.00 ☆ P5.13 Expansion card AO2zero -100.0%~+100.0% 1.00 ☆	16	Output torque		Actual value, proportion to motor torque			
P5.09Y1P maximum output frequency0.01kHz~100.00kHz50.00kHz\$WWWWWWWFrequencyValue of output pulse.VVNXP5.10AO1 zero offset-100.00~+100.00%0.00%\$\$P5.11AO1 gain-10.00~+10.001.00\$\$P5.12Expansion card AO2zero offset-100.0%~+100.0%0.00%\$\$P5.13Expansion card AO2 gain-10.00~+10.001.00\$							
Where multifunctional terminal output function selects Y1P pulse output, it can set the maximum frequencies. P5.10 AO1 zero offset -100.0%~+100.0% 0.0% \$	P5.09	Y1P maximum output frequency	0.01	kHz~100.00kHz	50.00kHz	☆	
P5.10 AO1 zero offset -100.0%~+100.0% 0.0% ☆ P5.11 AO1 gain -10.00~+10.00 1.00 ☆ P5.12 Expansion card AO2zero offset -100.0%~+100.0% 0.00% ☆ P5.13 Expansion card AO2 gain -10.00~+10.00 1.00 ☆	Wh	When the multifunctional terminal output function selects Y1P pulse output, it can set the maximum frequency value of output pulse.					
P5.11 AO1 gain -10.00~+10.00 1.00 ☆ P5.12 Expansion card AO2zero offset -100.0%~+100.0% 0.00% ☆ P5.13 Expansion card AO2 gain -10.00~+10.00 1.00 ☆	P5.10	AO1 zero offset	-100	0.0%~+100.0%	0.0%	☆	
P5.12 Expansion card AO2zero offset -100.0%~+100.0% 0.00% \$\pm\] P5.13 Expansion card AO2 gain -10.00~+10.00 1.00 \$\pm\]	P5.11	AO1 gain	-10.	00~+10.00	1.00	☆	
P5.13 Expansion card AO2 gain -10.00~+10.00 1.00 ☆	P5.12	Expansion card AO2zero offset	-100	0.0%~+100.0%	0.00%	☆	
	P5.13	Expansion card AO2 gain	-10.	00~+10.00	1.00	☆	

Function codes above are generally used to modify the zero drift of the analog output and also be used to define required AO output curves.

If b represents zero offset, k represents gain, Y represents actual output, and X represents standard output, the actual output is calculated as follows: Y=kX+b

AO1, AO2 zero offset coefficient 100% corresponds to 10V (20mA).

For example, if the analog output is the running frequency, and it is expected to output 8V (16mA) when the frequency is 0, and output 3V (6mA) at the maximum frequency, the standard output 0V to 10V shall be modified to 8V to 3V output. As per the above formula, AO zero offset coefficient shall be set to "80%", while A0 gain shall be set to "-0.50".

P5.17	Y1R output delay time	0.0s~3600.0s	0.0s	☆
P5.18	RELAY1 output delay time	0.0s~3600.0s	0.0s	☆
P5.19	RELAY2 output delay time	0.0s~3600.0s	0.0s	☆
P5.20	DO1 output delay time	0.0s~3600.0s	0.0s	☆
P5.21	DO2 output delay time	0.0s~3600.0s	0.0s	☆

Set output terminal Y1R, relay 1, relay 2, DO1 and DO2 delay time that begins from status changing to real output changing.

	DO output terminal valid state selection	1bit	Y1R valid state selection			
		Positive logic		0		
		Negative logic		1		
		10bit	RELAY1 terminal valid state setup			
P5.22		Positi	ve logic	0	00000	☆
		Nega	tive logic	1		
		100bit	RELAY2 terminal valid state setup]	
		Positi	ve logic	0		

Nega	tive logic	1	
1000 bit	DO1 terminal valid state setup		
Positi	ve logic	0	
Nega	tive logic	1	
10000 bit	DO2 terminal valid state setup		
Positi	ve logic	0	
Nega	tive logic	1	

Define output terminal Y1R $_{\rm N}$ Relay 1 $_{\rm N}$ Relay 2 $_{\rm N}$ DO1 and DO2 output logic.

0: Positive logic

Digital output terminals and the corresponding public end connected as effective state, disconnect for invalid state.

1: Negative logic

Digital output terminals and the corresponding public end connected as invalid state, disconnect for effective state.

5-8 Start/stop control: P6.00-P6.15

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limite
		Direct startup	0		
P6.00	Start mode	Revolving speed tracking startup	1	0	☆
		Pre-excitation startup (AC asynchronous motor)	2		
		Svc quick start	3		

0: Direct startup:

When the DC brake time is zero, it starts at the startup frequency.

When the DC brake time is non-zero value, it can perform DC brake before start. It is suitable for the applications where small inertia may cause reverse rotation at the time of startup.

1: Revolving speed tracking startup:

The inverter firstly judges the revolving speed and direction of the motor and then starts at the frequency corresponding to the tracked rotation velocity of the motor, and performs smooth startup of the motor in rotation without impact. It is suitable for the applications where large inertia is restarted due to transient power shutDOWN. In order to ensure the performance of the rotation velocity tracking startup, motor parameters (Group P1) should be set correctly.

2: Asynchronous pre-excitation startup

It is only valid for asynchronous motor , and is used to establish magnetic field before motor operation. For pre-excitation current, pre-excitation time please refer to function code P6.05 and P6.06.

If pre-excitation time is set to 0, the pre-excitation process will be cancelled ,and start with start frequency. If pre-excitation time is not set to 0, inverter first pre-excitation then starup. In this way, motor dynamic response performance is promoted.

3. Svc quick start

This mode only used in svc control of asynchronous motor. It can reduce the start time.

P6.01	Revolving speed tracking mode	Start from stop frequency	0	0	*
		Start from zero speed	1		
		Start from maximum frequency	2		

In order to complete the rotation speed tracking process in the shortest period, it can select the mode of inverter tracking the rotation velocity of motor:

0: Track downward from the frequency at the time of stop, which is generally selected at first.

1: Track upward from zero frequency, which is used when the inverter is restarted upon long period of power shutDOWN.

2: Track downward from the maximum frequency, which is generally used for power generating load.

P6.02	Revolving speed tracking	1~100	20	☆
	speeu		i i	

In the mode of revolving speed tracking startup, it is used to select the speed of rotation tracking. The higher the parameter value is, the faster the tracking velocity is, but too higher value may cause unreliable tracking.

P6.03	Start frequency	0.00Hz~10.00Hz	0.00Hz	☆
P6.04	Start frequency holding time	0.0s~100.0s	0.0s	*

To ensure the torque at the time of startup, proper startup frequency shall be set. In addition, in order to set up magnetic flux when waiting for the startup of the motor, the startup frequency shall remain for a certain period of time before accelerating to the setup frequency.

Start frequency P6.03 is not affected by the lower frequency limit. If the frequency reference value (frequency source) is lower than the startup frequency, the inverter cannot start and will be in standby status.

In positive&negative switching process, startup frequency retention time Yes not work.Startup frequency retention time is not included in the acceleration time,but included in the simple PLC running time.

Example 1:

P0.03=0 means the frequency source is digital reference.

P0.08=2.00Hz means the digital setup frequency is 2.00Hz.

P6.03=5.00Hz means the startup frequency is 5.00Hz.

P6.04=2.0s means that the startup frequency retention time is 2.0s.

In this case, the inverter will be in the standby status and its output frequency is 0Hz.

Example 2:

P0.03=0 means the frequency source is digital reference.

P0.08=10.00Hz means the digital setup frequency is 10.00Hz.

P6.03=5.00Hz means the startup frequency is 5.00Hz.

P6.04=2.0s means that the startup frequency retention time is 2.0s.

In this case, the inverter accelerates to 5.00 Hz and remains for 2 seconds, and then accelerates to the setup frequency 10Hz.

P6.05	Start dc braking current /pre-excitation current	0%~100%	0%	*
P6.06	Start dc braking time /pre- excitation time	0.0s~100.0s	0.0s	*

Pre-excitation is used to establish asynchronous motor magnetic field before startup, which would improve response speed.

Start dc current braking is only valid when it is direct startup. Inverter first carries out dc braking according to the setup of start dc current braking , and then carries out operation after start dc braking

time.

If dc braking time is set to 0, inverter directly start without dc braking. The bigger the dc braking current is , the greater the braking force is.

If start mode is asynchrounous motor pre-excitation start, inverter first establish magnetic field through pre-excitation current setup, then start to run after pre-excitation time. If set pre-excitation time to 0, inverter would directly start without pre-excitation process./

Start dc braking current/pre-excitation current is the relative percentage of rated current.

P6.07	Acceleration/ deceleration	Straight acc. /dec.	0	0	
	mode	S curve acc. /dec. mode A	1	0	×

It is used to select the frequency change mode during the inverter start and stop process.

0: Straight acceleration/ deceleration

The output frequency increases or decreases along the straight line. SY9000 series inverter provides 4 types of acceleration/deceleration time.lt can select acceleration/ deceleration time via the multifunctional digital input terminals.

1: S-curve acceleration/ deceleration mode A

The output frequency increases or decreases along the straight line. S curve is generally used in the applications where start and stop processes are relatively gentle, such as elevator and conveyor belt. The acceleration/ deceleration time is consistent with the straight acceleration/ deceleration time. Function codes of P6.08 and P6.09 can be respectively defined the time proportion of starting-segment and finishing-segment for S-curve acceleration/ deceleration.

P6.08	Initial-segment time proportion of S-curve	0.0%~(100.0%.P6.09)	30.0%	*
P6.09	Finishing-segment time proportion of S-curve	0.0%~(100.0%.P6.08)	30.0%	*

Function code of P6.08 and P6.09 can be respectively defined the time proportion between the Scurve initial-segment and finishing-segment for S-curve acceleration/ deceleration A. They are required to meet the standard of P6.08+P6.09≤100.0%.

t1 in the Fig.5-11 is the parameters defined by P6.08, in this period of time which the changing slope of output frequency is becoming larger and larger. t2 is defined by parameter P6.09, in this period of time which the changing slope of output frequency change to zero. The changing slope of output frequency is fixing within the time of t1 and t2.

P6.10	Stop mode	Speed-Down to stop	0	0	☆
		Free stop	1	0	

0 : Deceleration to stop

When the stop command is valid, the inverter will decelerate to stop according to the setup deceleration time.

1: Free stop

When the stop command is valid, the inverter will terminate the output immediately and the load will coast to stop according to the mechanical inertia.

P6.11	DC braking initial frequency at stop	0.00Hz~maximum frequency	0.00Hz	☆
P6.12	DC braking waiting time at stop	0.0s~36.0s	0.0s	47
P6.13	DC braking current at stop	0%~100%	0%	☆
P6.14	DC braking time at stop	0.0s~100.0s	0.0s	☆

DC brake initial frequency at stop: During the process of decelerating to stop, when the running frequency at stop reaches this frequency, it will start the process of DC brake.

DC brake waiting time at stop: Prior to the beginning of DC brake at stop, the inverter will terminate the output, and then start DC brake after this delay time. It is used to prevent over current fault due to DC brake which starts at the time of higher velocity.

DC brake current at stop: The DC brake quantity added shall be set according to the percentage setting of the rated current of the inverter. The higher the brake current is, more powerful the brake effect is.

DC brake time at stop: It refers to the continuous DC brake time. If this DC brake time is set to 0, it indicates that there is no DC brake process, and the inverter will stop according to the setting process of decelerating to stop.

The process of DC brake at stop is as shown in Figure below.

5-9 Keyboard and display: P7.00-P7.14

Code	Description/		Factory	Change
	Keyboard Display	Setting Range	Setting	Limit

				1.000	
		MF/REV key invalid	0		
P7.01	MF/REV key function selection	Switching between operation panel com- mand channel&the remote command channel (terminal command channel or serial port command channel)	1	0	*
		Switching between FWD&REV rotation	2		
		Forward jog command	3		
		Reverse jog command	4		

It is used to set the functions of multifunctional MF/REV key.

0: Invalid function

1: Operation panel command channel and remote command channel

It can perform switching between the current command source and keyboard control(local operation). The function key is invalid when current command source is keyboard control.

2: Switching between forward and reverse rotation

Switching the rotary direction of the motor via the MF/REV key on the keyboard is only enabled when the command source is "operation panel command".

3: Forward jog

It can perform forward jog (FJOG) operation via the MF/REV key on the keyboard.

4: Reverse jog

It can perform reverse jog (RJOG) operation via the MF/REV key on the keyboard.

P7.02	STOP/RESET function	The stop function valid only in the l The stop function	n of STOP/RES key is keyboard control mode. n of STOP/RES key is	0	1	☆
		valid in any contr	ol mode.			
P7.03	LED running display parameter1	0000~FFFF			1F	☆
15 14 13 12 11 10 9 8 D0 output status Al1(V) Al2(V) Al3(V) Count value Length value Load speed display PID setting If the above parameters need to be displayed during positions to 1 and then convert this binary number into definition of the set of the			6 5 4 3 2 1	0 Ru 	unning frequent stiting frequence is voltage(V) utput voltage(utput current(A utput power(k) utput torque(% utput torque(% input status() r correspo	ncy 1(Hz) ;; (Hz) /) () () /) /) nding
P7.04	LED running display parameter 2	0000~FFFF			0	\$

	digits	One decimal place	1				
		Two decimal places	2				
		Three decimal places	3				
Decimal point position: It is used to set the number of decimal places of the load speed.							
For	For example, if the Load speed display coefficient P7.06 is 2.000, load speed display decimal digits is						
2(Two	decimal places), when inverte	r running frequency is 40.00Hz,the loa	ad spe	ed will	be :		
40.00*2	.000=80.00(2 decimal digit displ	ay)					
lf th	ne inverter is in stopped state, th	en load speed displays as corresponding set	freque	ncy speed	.Take		
set freq	uency of 50.00Hz as an exampl	e,the stop state load speed is: 50.00*2.00	0=100.0	00(Two de	cimal		
places)	-						
P7.13	Accumulative power-on time	0h~65535h		-	•		
lt d	It displays accumulative power-on time since leaving the factory.						
Wh	When it reaches the set power-on time (P8.17), multi-function digital output (24) ON signal.						
P7.14	Accumulative power	0~65535		-	•		

It displays the inverter accumulative power consumption.

5-10 Auxiliary function: P8.00-P8.53

consumption

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit			
P8.00	Jog running frequency	0.00Hz~maximum frequency	2.00Hz	☆			
P8.01	Jog acceleration time	0.0s~6500.0s	20.0s	숬			
P8.02	Jog deceleration time	0.0s~6500.0s	20.0s	*			
lt de The stop mo	It defines the reference frequency and acc. / dec. time of the inverter at the time of jogging. The jog process is started and stopped according to direct startup mode(P6.00=0)and decelerate to stop mode(P6.10=0).						
P8.03	Acceleration time 2	0.0s~6500.0s	10.0s	☆			
P8.04	Deceleration time 2	0.0s~6500.0s	10.0s	*			
P8.05	Acceleration time 3	0.0s~6500.0s	10.0s	\$			
P8.06	Deceleration time 3	0.0s~6500.0s	10.0s	☆			
P8.07	Acceleration time 4	0.0s~6500.0s	10.0s	☆			
P8.08	Deceleration time 4	0.0s~6500.0s	10.0s	\$			
SY9000 offers 4 groups of speed-up/speed-down time,P0.17/P0.18 and 3 groups above. P8.03 to P8.08 parameters have the same definition with P0.17 and P0.18.You can switch to choose the 4 groups through different combination of DI multi-function digital input terminal.For specific using method please refer to function code P4.01~P4.05 for details							
P8.09	Hopping frequency 1	0.00Hz~maximum frequency	0.00Hz	☆			
P8.10	Hopping frequency 2	0.00Hz~maximum frequency	0.00Hz	☆			
P8.11	Hopping frequency amplitude	0.00Hz~maximum frequency	0.00Hz	☆			

P8.15	Droop control	0.00Hz~10.00Hz		0.00Hz	$\overset{\wedge}{\Join}$
lt is Dro	used for load distribution when op control refers to inverter out	multiple motors drive the same load. put frequency decreasing with added load.	In this v	way, moto	r with
heavy lo load uni	oad output frequency decrease n formity .	nore, which could decrease the motor load to	o realize	e multiple i	motor
Thi	s parameter is the output frequer	ncy declining value with rated output load.			
P8.16	Accumulative power-on time arrival setup	0h~65000h		0h	☆
Wh digitalD	en the accumulative power on O would output ON signal.	time (P7.13) reaches the P8.16 set value,	inverte	er multi-fur	nction
E.g Virt	ual terminal DI1 function user	-defined fault1. A1 00=44			
Virt	ual terminal DI1 valid state: fror	n virtual DO1: A1.05=0000;			
Virt	ual terminal DO1 function: pov	ver-on time arrived : A1.11=24;			
Set	cumulative power-on time to 10	0 hours: P8.16=100.			
Wh	en accumulative power-on time	reaches 100 hours, inverter outputs fault nun	nber 26	= E.ArA.	
P8.17	Accumulative running time arrival setup	0h~65000h		0h	$\stackrel{\wedge}{\sim}$
Wh terminal	en the accumulated running f DO outputs the ON signal of run	time(P7.09)reaches this set running tir ning time arrival.	ne, the	e digital c	output
		Invalid	0		
P8.18	Start protection selection	Valid	1	0	\$
Thi	s parameter is used to improve t	he safety protection coefficient.			
lf it	is set to 1, it has two functions:				
1.lf	running command is valid upor	n power on (E.g. Closed-state before term	inal run	ning com	mand
power o	n), inverter will not respond to the	he running command. Users should first car	ncel run	ning comn	nand,
after rur	ning command coming into valid	d again, the inverter then responds.		4 - 4	
Z.II	d Running command is valid up	n be eliminated after cancelling the running of	sponu	to the ru	ining
Thi	s can prevent the dangers ca	used by the automatic running of the mo	otor unc	ler unexp	ected
conditio	n.		dire dire	ion anosp	
P8.19	Frequency detection value(FDT1)	0.00Hz~maximum frequency		50.00Hz	☆
P8.20	Frequency detection hysteresis value(FDT1)	0.0%~100.0%(FDT1level)		5.0%	☆

output ON signal.On the contrary,ON signal is canceled if running frequency is less than a certain value of the detection value.

It is used to set the detection value of the output frequency and the hysteresis value upon release of the output action.P8.20 is the hysteresis frequency percentage relativing to P8.19 frequency detection value.

P8.21	Frequency arrival detection amplitude	0.00~100%maximum frequency	0.0%	☆				
Wh	When inverter running frequency is in certain target frequency ,multi-function terminalDO outputs ON							
signal.								
D 0								

P8.21 is used to set frequency arrival detection amplitude, percentage relativing to the maximum frequency. Frequency arrival schematic diagram is shown in Fig5-17.

When inverter output frequency is within the positive & negative detection range of ranYm frequency arrival detection value , multi-funtion terminalDO output ON signal.

P8.34	Zero-current detection level	0.0%~300.0%(Motor rated current)	5.0%	$\stackrel{\wedge}{\simeq}$	
P8.35	Zero-current detection delay time	0.00s~600.00s	0.10s	☆	

When inverter output current is less than or equals to zero-current detection level, and the lasting time exceeds zero-current detection delay time,inverter multi-function terminal DO output DO signal. Fig.5-21 is schematic diagram of zero-current detection.

multi-funtion terminal DO output ON signal.

SY9000 offers two groups of current arrival range detection parameters ,as shown in fig. 5-23.

	Output current							
Ra	Random current arrival detection signal or relay OFF	ON ON OFF OFF	current current	arrival ranç arrival ranç	je			
	Fig.5-23RanYi	m current arrival detection schematic diagrar	n					
D0 12	Timing from the selection	Invalid	0	0	-^-			
F0.42	Timing function selection	Valid	1	0	13			
1		P8.44 setup	0					
P8.43 Running time timing selection	Al1	1	0	~~				
	AI2	2		~				
	3							
Ana	log input range 100% correspor	nds to P8.44.						
P8.44	Timing running time	0.0Min~6500.0Min		0.0Min	☆			
This Wh setup , r Eac U0.20.1	s parameter group is used to tim en P8.42 is valid, inverter starts nulti-function terminalDO output th time inverter startup from 0 st iming of the operation time is se	e inverter running time. timing. Inverter would automatically stop af ON signal. art the timing, timing surplus running time co at through P8.43, P8.44, unit minute.	ter read	ching the t	iming ⁻ ough			
P8.45	Al1 input voltage protection value lower limit	0.00V~P8.46		3.10V	☆			
P8.46	AI1 input voltage protection value upper limit	P8.45~10.00V		6.80V	☆			
Wh function range.	en analog input Al1 is greater tha DO output ON signal of "Al1 inpu	an the set of P8.46 or less than that of P8.47 ut overrun" , which indicating if Al1 input volta	, invert age is v	er multi- vithin the s	etup			
P8.47	Module temperature arrival	0.00℃~100℃		75 ℃	☆			
Inve radiator	erter multi-function terminal DC temperature arrived the set valu) outputs "module temperature arrival" ON e of P8.47.	signa	when in	verter			
D0 40	Cooling for an trail	Cooling fan runs at motor operation	0	0				
P8.48	Cooling fan control	Cooling fan runs after power-on	1		TX			
lt is P8.	It is used to select cooling fan action mode. P8.48=0: Cooling fan operates when inverter in running status or radiator temperature over 40 °C in							

inverter stop status.the fan does not operater when inverter in stopping status and adiator temperature below $40\,^\circ\!\mathrm{C}$

P8.	P8.48=1: Cooling fan is always running after power-on.						
P8.49	Wakeup frequency	quency Sleep frequency(P8.51) ~maximum frequency (P0.10)		\$			
P8.50	Wakeup delay time	0.0s~6500.0s	0.0s	24			
P8.51	Sleep frequency	0.00Hz~wake-up frequency(P8.49)	0.00Hz	☆			
P8.52	Sleep delay time	0.0s~6500.0s	0.0s	$\stackrel{\wedge}{\simeq}$			

This group of function codes are used to realize sleep and wake up function.

During operation: when set frequency is less than or equals to sleep frequency(P8.51), inverter would step into sleep state and stop after sleep delay time(P8.52).

If inverter is in sleep state and current running command is valid, when set frequency is no less than P8.49 wake-up frequency, inverter will start to run after P8.50 wake-up delay time.

Generally, please set wake-up frequency no less than sleep frequency. Sleep function and wake-up function are valid when both wake-up frequency and sleep frequency are set to 0.00 Hz.

When enabling sleep function(frequency source : PID) , PID calculation selection in sleep state is influenced by function code PA.28(PA.28=1).

P8.53	The running time arrival	0.0Min~6500.0Min	0.0Min	$\stackrel{\wedge}{\simeq}$
When the running time reached the P8.53 set value, inverter multi-function DO output "Then running time arrival" ON signal.				
P8.54	Out power correction coefficient	0.00~200.00%	100.0%	☆

5-11 Overload and protection: P9.00-P9.73

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
P9.00	Motoroverload protection selection	Invalid Valid	0 1	1	\$
P9.01	Motor overload protection gain	0.20~10.00		1.00	\$

P9.00=0: Without motor overload protection function. It is recommended to install a thermal relay between the motor and the inverter.

P9.00=1: The inverter has overload protection function for the motor according to motor overload protection inverse time limit curve.

Motor overload protection inverse time limit curve: 220%×(P9.01)× motor rated current, it will report motor overload fault after it lasts for one minute. When the operating current of the motor reaches the current of 150%×(P9.01)times the rated current of the motor, it will report motor overload after it lasts 60 minutes.

Users can set value of P9.01 according to the motor actual overload ability. If the parameter is set too big, it may cause danger of motor overheating damage without inverter fault report.

P9.02	Motor overload pre-alarm coefficient	50%~100%	80%	☆
-------	---	----------	-----	---

This function is used before motor overload fault by giving pre-alarm signal through multi-function terminalDO.This pre-alarm coefficient is used to determine the warning timing before motor overload protection. The higher the value, the shorter the warning timing will be.

When the inverter output current is accumulated more than the product of inverse time limit curve with P9.02,multi-function terminalDO output "Motor overload pre-alarm"ON signal.

P9.03	Over-voltage stall gain	0(no over-voltage stall)~100	30	\$7
P9.04	Over-voltage stall protection voltage	650~800v	770	Σ4

Over voltagestall: When the output voltage of the inverter reaches setup of over voltage stall protection voltage (P9.04), if the inverter is running with acceleration speed, it will stop acceleration. When the inverter is running with constant speed, it will reduce the output frequency. When the inverter is running with deceleration speed, it will stop deceleration and the operating frequency will not recover normally till the current is less than the current stall protection current (P9.04).

Over voltage stall protectionvoltage: It selects the protection point for over current stall function. When the value is exceeded, the inverter starts to execute the over voltage stall protection function. This value is relative to the percentage of rated voltage of the motor.

Overvoltage stall gain: It adjusts the inverter's capacity in suppressing the voltage stall. The bigger the value is, the stronger the capacity is. For the load with small inertia, the value should be small. Otherwise, the dynamic response of the system would be slow. For the load with large inertia, the value should be large. Otherwise, the suppressing result will be poor, and over voltage fault may be caused.

When the voltage stall gain is set to 0, the inverter starts to execute the over voltage stall protection function.

D0.07	Ground short circuit protection	Invalid		0	1	☆
upon power-on		Valid		1		
lt d the inve	etermines whether the motor ha rter UVW end will output voltage	s ground	short circuit fault upon power-on.	lf this fu	unction is	valid,
P9.08	Braking unit applied voltage	650-800	lv		760v	\$
Whe	n the dc bus voltage is higher th	an P9.08	3, the internal braking of inverter ur	nit works	s.	
P9.09	Fault auto reset times	0~20			0	\$
When the inverter selects fault auto reset, it is used to set the times of auto reset. If this va exceeded, the inverter will perform fault protection.					If this val	ue is
P0 10	Fault auto reset FAULT DO	No action		0		-^-
selection		Action		1	U	×
lf ir during fa	overter has been set of fault aut ault auto reset time.	o reset fu	nction , P9.10 is used to set if FAI	ULT DC) actions o	or not
P9.11	Fault auto reset interval	0.1s~10	0.0s		1.0s	☆
The	waiting time of the inverter from	the fault	alarm to auto reset.			
		1bit	Input phase lack protection sele	ction		
		Forbidd	en	0		
P9.12	Input phase lack protection	Allowed		1	11	☆
	3616611011	10bit Contactor attracting protection				
		Forbidden		0		

			Allowed 1						
1bit:	It is used to	used to choose whether to protect input phase loss.							
10bit:	10bit: Contactor attracting protection								
	SY9000 series inverter above 132kW (type G) has input phase fault protection function.For the								
invert	er below 13	2kW (type P), the input	t phas	se fault protection function is invalid at a	iny setu	ip.			
P9.13	Output	phase lack protection	Inv	alid	0	1	$\stackrel{\wedge}{\simeq}$		
	selectio	'n	val	id	1				
It	t is used to c	choose whether to prote	ect oi	utput open-phase.					
P9.14	The firs	t fault type	0~9	99		-	•		
P9.15	The sec	cond fault type	0~9	99		-	•		
P9.16	The late	est fault type	0~9	99		-	•		
It	t records the	a latest 3 fault types for	the i	nverter: 0 means no fault and 1 to 99	corres	pond to re	fer to		
Chap	ter 6 for the	details.							
Т	able of fault	type :							
	No.	Fault display		Fault type					
	0	Reserved		No fault					
	1	1=Err01		Reserved					
	2	2= Err02		Acceleration over current					
	3	3= Err03		Deceleration over current					
	4	4=Err04		Constant speed over current					
	5	5=Err05		Acceleration over voltage					
	6	6= Err06		Deceleration over voltage					
	7	7=Err07		Constant speed over voltage					
	8	8=Err08		Control power supply fault					
	9	9=Err09		Undervoltage fault					
	10	10=Err10		Inverter overload					
	11	11= Err11		Motor overload					
	12	12= Err12		Input phase lack					
	13	13= Err13		Output phase lack					
	14	14= Err14		Module overheating					
	15	15= Err15		External equipment fault					
	16	16= Err16		Communication fault					
	17	17=Err17		Contactor fault					
	18 18= Err18			Current inspection fault					
	19 19= Err19			Motor tuning fault					
	20 20= Err20			Encoder /PG card fault					
	21	21= Err21		EEPROM read & write fault					
	22	22= Err22		Inverter hardware fault					
	23	23= Err23		Short circuit to ground fault					
	24	Reserved		Reserved					

	25	Reserved	Reserved		
	26	26= Err26	Total running time arrival fault		
	27	27= Err27	User-defined fault 1		
	28	28=Err28	User-defined fault 2		
	29	29=Err29	Total power-on time arrival fault		
	30	30= Err30	Load off fault		
	31	31= Err31	PID feedback loss during operation fault		
	40	40= Er0R4	Each wave current limiting fault		
	41	41=Err41	Motor switching fault		
	42	42= Err42	Excessive speed deviation fault		
	43	43= Err43	Motor overspeed fault		
	45	45=Err45	Motor overtemperature fault		
	51	51= Err51	Initial position fault		
P9 17	Third for	ult fraguanay	The latest fault frequency	•	
DO 19	THILLIA			-	
P9.18	I hird fa	ult current	I he latest fault current	•	
P9.19	Third fa	ult bus voltage	The latest fault bus voltage	•	
P9.20 Third fault input terminal		ult input terminal	The latest fault digital input terminal status, order as below:	•	
P9.21	.21 Third fault output terminal		The latest fault digital output terminal status, order as below : BIT4 BIT3 BIT2 BIT1 BIT0 DO2 DO1 REL2 REL1 FMP When output terminal status is ON, it's corresponding binary digit is 1. OFF corresponds to 0. All status are converted to decimal display.	•	
P9.22	Third fa	ult inverter state	Reserved	•	
P9.23	Third fa	ult power-on time	The latest fault power-on time	•	
P9.24	Third fa	ult running time	The latest fault running time	•	
P9.27	Second	fault frequency	he latest fault frequency		
P9.28	Second	fault current	The latest fault current	•	
P9.29	Second	fault bus voltage	The latest fault bus voltage	•	
P9.30	Second	fault input terminal	The latest fault digital input terminal status, order as	•	

		below : BIT9 BIT8 BIT7 BIT6 BIT5 BIT4 BIT3 BIT2 BIT1 BIT0 DI0 DI9 DI8 DI7 DI6 DI5 DI4 DI3 DI2 DI1 When input terminal status is ON, it's corresponding binary digit is 1. OFF corresponds to 0. All DI status are converted to decimal display.				
P9.31	Second fault output terminal	The latest fault digital input terminal status, order as below : BIT4 BIT3 BIT2 BIT1 BIT0 DO2 DO1 REL2 REL1 FMP When output terminal status is ON, it's corresponding binary digit is 1. OFF corresponds to 0. AllDO status are converted to decimal display.	•			
P9.32	Second fault inverter state	Reserved	•			
P9.33	Second fault power-on time	The latest fault power-on time	•			
P9.34	Second fault running time	The latest fault running time	•			
P9.37	First fault frequency	The latest fault frequency				
P9.38	First fault current	The latest fault current				
P9.39	First fault bus voltage	The latest fault bus voltage	•			
P9.40	First fault input terminal	The latest fault digital input terminal status, order as below : $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	•			
P9.41	First fault output terminal	The latest fault digital input terminal status, order as below : BIT4 BIT3 BIT2 BIT1 BIT0 DO2 DO1 REL2 REL1 FMP When output terminal status is ON, it's corresponding binary digit is 1. OFF corresponds to 0. AllDO status are converted to decimal display.	•			
P9.42	First fault inverter state	Reserved	•			
P9.43	First fault power-on time	The latest fault power-on time	•			

P9.44	First fault running time	The latest fault running time			
		1bit Motor overload(Fault No.11= Err11			
		Free stop	0		
		Stop according to stop mode	1		
		Keep on running	2		
		10bit Input phase lack(Fault No 12=Err12	2)		
		Free stop	0		
		Stop according to stop mode	1		
	Fault protection action	100 bit Input phase lack(Fault No 13=Err1	3)		
P9.47	selection 1	Free stop	0	00000	☆
		Stop according to stop mode	1		
		1000 bit External fault(Fault No.15=Err15)			
		Free stop	0		
	S 10 F	Stop according to stop mode	1		
		10000 Abnormal communication(Fault bit No.16=Err16)			
		Free stop	0		
		Stop according to stop mode	1		
		1bit Encoder fault (Fault No.20=Err20)			
		Free stop	0		
		Switch to VF, stop according to stop mode			
		Switch to VF, keep on running	2		
D0 40	Fault protection action	Abnormal communication(Fault 10bit No.21=Err21)		00000	
F 9.40	selection 2	Free stop	0	00000	и
		Stop according to stop mode	1		
		100bit Reserved			
		1000 Motor overheating(Fault No.45= Er bit (Same with P9.47 1 bit)	r45)		
		10000 Runing time arrival(Fault No.26= Err	26)		
		bit (Same with P9.47 1 bit)			
		1bit (Same with P9.47 1 bit)	ı∠ <i>1</i>)		\$
P9.49	Fault protection action selection 3	10bit User-defined fault 2(Fault No.28= Er	r28)	00000	
		100bit (Same with P9.47 1 bit)	Err29)		

		1000 bit	Load off(Fault No.30= Err30)			
		Free	Free stop			
		Stop	Stop according to stop mode			
		Decele	erate to 7% of motor rated frequency.			
		Autom	atically recover to the set frequency if	2		
		10000 bit	PID feedback lost during operation No.31= Err31) (Same with P9.47 1	(Fault bit)		
		1bit	Excessive speed deviation(Fault N Err42) (Same with P9.47 1 bit)	o.42=		
		10bit	Motor supervelocity(Fault I Err43)(Same with P9.47 1 bit)	No.43=		
P9.50	Fault protection action selection 4	100bit	Initial position fault(Fault No.51= (Same with P9.47 1 bit)	Err51)	00000	☆
		1000 bit	Reserved			
		10000 bit	Reserved			
If it is set to "free stop", inverter displays E.****, and stop directly.						
lf it	is set to "stop according to sto	op mod	e", inverter displays A.****, and stop	o accor	ding to th	e set
stop mo	ode. Inverter displays E.**** afte	er stopp	ed.			
It it	is set to "keep on running", inv	erter di	splays A.**** and continues running.	Runnir	ng frequer	ncy is
set thro	ugii P9.54.	Oper	ation with the current running			
		freque	ency	0		
		Operation with the set frequency		1		
P9.54	Continued to run when fault	Operation with the upper limit frequency		2	0	\$
		Operation with the lower limit frequency 3		3		
		Operation with the abnormal backup frequency		4		
P9.55	Abnormal backup frequency	60.0%	6~100.0%		100.0%	\$
Wh	en fault occuring during inverte	er opera	ation , and the fault processing mod	le set t	o continui	ng to
run, inv	erter would display A** and run	with the	P9.54 set frequency.	of D0 5	5 is parca	ntage
of the m	aximum frequency.	40 451	ionnal baokap noquonoy, oot valao	0110.0		inago
		No te	mperature sensor	0		
P9.56	Motor temperature sensor	PT100 1		0	公	
		PT10	00	2		
P9.57	Motor overheating protection threshold	0°C~2	200°C		110℃	☆
P9.58	Motor overheating pre-alarm threshold	0℃~2	200°C		90 ℃	☆

Temperature signal of motor temperature sensor should be connected to multi-function I/O expansion card(optional). Analog input signal AI3 can be used as motor temperature sensor input. Motor temperature sensor signal is connected to AI3,PGND end.

Al3 analog input end of SY9000 supports PT100&PT1000 motor temperature sensors. Correct sensor type should be set during operation. Motor temperature value is displayed in U0.34.

When motor temperature exceeding the motor overheating protection threshold (P9.57), inverter would give fault alarm and processing according to the selected protection action mode.

When motor temperature exceeding the motor overheating pre-alarm threshold(P9.58), inverter multifunction digitalDO would output motor overheating pre-alarm ON signal.

		Invalid	0		
P9.59	Transient stop selection	Deceleration	1	0	☆
		Deceleration to stop	2		
P9.60	Transient stop action pause protection voltage	80.0%~100.0%		90.0%	47
P9.61	Transient stop voltage recovery judgment time	0.00s~100.00s		0.50s	$\stackrel{\wedge}{\sim}$
P9.62	Transient stop action judgment voltage	60.0%~100.0%(Standard bus voltage)		80.0%	47

Fig.5-24 Transient stop action schematic diagram

The function defines when instant outage or voltage suddenly drops, inverter compensating dc bus voltage decrease by load feedback enery through decreasing output revolving speed, which maintaining inverter running.

P9.59=1: When instant outage or voltage suddenly drops, inverter decelerates. Inverter normally accelerates to the set running frequency until bus voltage came to normal. Bus voltage has restored to normal is based on normal bus voltage duration time. If the time exceeds P9.61 set value, bus voltage is normal.

P9.59=2:	When instant	outage or	voltage	suddenly drops	, inverter	decelerates ⁻	to stop.

P9.63	Load-off protection selection	Invalid	0	0	.A.,	
		Valid	1	0	м	
P9.64	Load-off detection level	0.0%~100.0%(Motor rated current)		10.0%	$\stackrel{\scriptstyle \land}{\sim}$	
P9.65	Load-off detection time	0.0s~60.0s		1.0s	\$	
When the protection function is valid and inverter output current is less than load-off detection level						
P9.64(duration time $>$ P9.65), inverter output frequency automatically decreased to 7% of the rated						

frequency. In the load-off protection period, if the load restored, the inverter automatically restore to the set running frequency.				
P9.67	Over speed detection value	0.0%~50.0%(Maximum frequency)	20.0%	\$
P9.68	Over speed detection time	0.0s~60.0s	1.0s	☆
This function is only valid in speed sensor vector control. Inverter fault alarm when motor actual revolving speed exceeds the set frequency(excess value > P9.67, duration time > P9.68). Fault No. 43=Err43.				
P9.69	Excessive speed deviation detection value	0.0%~50.0%(Maximum frequency)	20.0%	*
P9.70	Excessive speed deviation detection time	0.0s~60.0s	5.0s	겄
This function is only valid in speed sensor vector control. Inverter fault alarms when deviation detected between motor actual revolving speed and the set frequency(deviation > P9.69, duration time > P9.70). Fault No. 42=Err42. P9 70=0 0s. Excessive speed deviation fault detection is canceled				
P9.71	Power dip ride-through gain kp	0-100	40	\$
P9.72	Power dip ride-through intergral coeff icient ki	0-100	30	\$
P9.73	Deceration time of Power dip ride-through	0-300.0s	20.0s	24

5-12 PID function group: PA.00-PA.28

PID control is a common method used in process control. Through the proportional, integration and differential calculation on the difference between feedback signal and target signal of the controlled parameter, PID control adjusts the output frequency of the inverter and forms negative feedback system, making the controlled parameter stabilized on the target parameter. PID control is applied several process controls such as flow control, pressure control and temperature control.The schematic diagram for control is as shown in Fig. 5-25.

		Al1	1		
		Al2	2		
		Al3(Potentiometer)	3		
		PULSE(DI5)	4		
		Communication	5		
		MS command	6		
PA.01	PID reference value	0.0%~100.0%		50.0%	\$
It is	used to select target parameter	reference channel of process PID.		1	
Set	target value of process PID is a	relative value, set range is 0.0%~100.0%. F	PID feed	lback valu	e is a
relative	value as well,PID play the role o	f making the two relative value the same.			
		Al1	0		
		AI2	1		
		AI3(Potentiometer)	2		
		AI1-AI2	3		
PA.02	PID feedback source	PULSE(DI5)	4	0	☆
		Communication	5		
		AI1+AI2	6		
		MAX(AI1 , AI2)	7		
		MIN(AI1 , AI2)	8		
It is	used to select the feedback cha	annel of PID			
Fee	edback value of process PID is a	relative value, set range is 0.0%~100.0%.			
PA.03	PID action direction	Positive action	0	0	☆
		Negative action	1		
Pos the outp case.	sitive action: If the feedback si but frequency of the inverter to n	gnal is smaller than the PID reference signal nake PID reach balance. The winding tensio	l, it is re n PID c	equired to ontrol is s	boost uch a
Negative action: If the feedback signal is smaller than the PID reference signal, it is required to decrease the output frequency of the inverter to make PID reach balance. The unwinding tension PID control is such a case.					
Thi	s function is influenced by function	on 35,please pay attention during operation.		I	
PA.04	PID reference feedback range	0~65535		1000	☆
PID reference feedback range is a dimensionless unit which is used to display U0.15 PID setup and U0.16 PID feedback. PID reference feedback related to the value 100.0%, corresponding to a given feedback range PA.04.If PA 40 is set to 2000 PID is set to 100.0% PID given display U0.15 is 2000					
PA.05	Proportional gain K _{p1}	0.0~100.0		20.0	☆
PA.06	Integration time Ti ₁	0.01s~10.00s		2.00s	☆
PA.07	Differential time Td ₁	0.00~10.000		0.000s	\$
Pro	Proportional gain K _{e1} : the parameter determines the adjustable strength of PID regulator. The larger				

P is, the greater the adjustable strength will be.When the parameter is set to 100.0, it means that when the deviation between PID feedback value and reference value is 100.0%, the range for the PID regulator to regulate the output frequency commands is the maximum frequency (integration effect and differential effect are omitted).

Integration time $Ti_{1:}$ determines the strength of PID integration regulation. The shorter the integration time , the greater adjustable strength will be.Integration time means that when the deviation between PID feedback value and reference value is 100%, the adjustment by the integration regulator (proportional effect and differential effect are omitted) after continuous adjustment in this period reaches the maximum frequency.

Differential time Td₁: determines the degree of adjustment that PID regulator performs on the derivation between PID feedback value and reference value.Differential time means that if the feedback value changes100% within this time, the adjustment by the differential regulator (proportional effect and differential effect are omitted) will reach the maximum frequency.The longer differential time is, the higher the degree of adjustment will be.

PA.08	PID cutoff frequency of reverse rotation	0.00~maximum frequency	2.00Hz	☆	
In s	ome cases, only when the frequ	ency of the PID output is negative (i.e., frequency in	version)	could	
PID put	the reference and feedback to	the same state. High inversion frequency is not a	lowed in a	some	
certain cases, PA.08 is used to determine reverse frequency upper limit.					
PA.09	PA.09 PID deviation limit 0.0%~100.0%		0.0%	☆	
It is	used to set the maximum allow	vable deviation between the system feedback value	and refer	ence	
value. V	Vhen the deviation between the	PID feedback and reference is within this range,	the PID :	stops	
adjustm	ent. The deviation limit is calc	ulated according to the percentage of the PID se	tup sourc	e (or	
feedbac	k source).When deviation bet	ween reference value and the feedback value	is small,o	utput	
frequen	cy is stability constant.It's especi	ally effective for some closed loop control occasions	i.		
PA.10	PID differential amplitude limit	0. 00%~100.00%	0.10%	☆	
In PID regulation, the role of differential is relatively sensitive that system oscillation may be easily caused. Therefore, range of PID differential regulation has been limited to a small range. PA.10 is used to set PID differential output range.					
PA.11	PID reference change duration	0.00s~650.00s	0.00s	☆	
PID reference changes according to this parameter value, which corresponds to the time taken for the PID reference to change from 0% to 100%. When PID reference changed,PID given value linear changes in accordance with given time,which can reduce system adverse effect caused by given mutation.					
PA.12	PID feedback filter time	0.00s~60.00s	0.00s	☆	
PA.13	PID output filter time	0.00s~60.00s	0.00s	$\overset{\wedge}{\bowtie}$	
PA.12 is used for filtering of PID feedback. The filtering helps to reduce the influence of the feedback interference, but brings response performance of process closed-loop system. PA.13 is used for filtering of PID output frequency. The filtering helps to reduce the mutations of the output frequency, but brings response performance of process closed-loop system.					
PA.14	Reserved	-	-	-	
PA.15	Proportional gain K _{p2}	0.0~100.0	20.0	$\stackrel{\wedge}{\simeq}$	

Fig.5-26 PID parameter switching schematic diagram

In some applications, one group of PID parameters can not meet the needs of the whole operation process. Different parameters are used for different situations.

This group of function codes is used to switch 2 groups of PID parameters. Regulator parameters PA.15~PA.17 and parameter PA.05~PA.07 have the same setting method.

Two groups of PID parameters can be switched through multi-function digital DI terminal as well as PID deviation auto switching.

PA.18=1: Set multi-function terminal to 43(PID parameter switching terminal). Choose parameter group 1(PA.05~PA.07) when terminal invalid, while valid please choose parameter group 2(PA.15~PA.17).

PA.18=2: When deviation absolute value between reference and feedback is less than PA.19 set value, PID parameters select parameter group 1. When deviation absolute value between reference and feedback is greater than PA.20 set value, PID parameters select group 2. When deviation absolute value between reference and feedback is within the range of switching deviation 1 & 2, PID parameters select linear interpolation value of the 2 PID parameter groups.As shown in 5-26.

PA.21	PID initial value	0.0%~100.0%	0.0%	$\stackrel{\wedge}{\bowtie}$
PA.22	PID initial value retention time	0.00s~650.00s	0.00s	☆

Inverter fixed startup value is PID initial value(PA.21) .PID starts closed-loop regulation after PID initial value retention time(PA.22).

Thi	This function is used to judge if PID feedback has been lost.				
When PID feedback value is less than PA.26 set value, and lasted for more than PA.27 set value,					
inverter fault alarm. Fault No. 31= Err31.					
PA.28	PID stop operation	Stop without operation	0		
		Stop with operation	1	0	73
It is used to select if PID keeping operation under PID stop status. Generally PA 28=0 in stop status					

5-13 Fixed length and counting: Pb.05-Pb.09

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
Pb.05	Setup length	0m~65535m	1000m	$\stackrel{\wedge}{\simeq}$
Pb.06	Actual length	0m~65535m	0m	☆
Pb.07	Pulse number per meter	0.1~6553.5	100.0	☆

The three parameters such as setup length, actual length and number of pulses per meter are mainly used for fixed-length control.

Length information needs to be collected through multi-function digit input terminal, you can get Pb.06 actual length by division of terminal sampling pulse number and Pb.06. When actual length is longer than reference length Pb.05, multi-function digit terminalDO output "length arrival" ON signal.

During the process of fixed-length control,length reset operation(by multi-function terminal DI)is permitted(choose DI function selection as 28),for specifications please refer to P4.00~P4.09.

Set corresponded input terminal function to "length counting input" (function 27). When pulse frequency is high, only DI5 port can be used.

Pb.08	Counting value setup	1~65535	1000	☆
Pb.09	Designated counting value	1~65535	1000	\$

Counting value should be collected through multi-function digital input terminal. Corresponding input terminal should be set to the function of "counter input" (function 25) in application. DI5 terminal should be used when pulse frequency is high.

When counting value reaches Pb.08 set value, multi-function digitDO output "setup counting value arrival" ON signal, then stop counting.

When counting value reaches Pb.09 set value, multi-function digitDO output "designatedcounting value arrival"ON signal, then continues to count until reaching "setup counting value".

Specified counting value should not be greater than setup counting value Pb.08.

Fig.5-28 Setup counting value&designated counting value schematic diagram

5-14 MS speed function&simple PLC function: PC.00-PC.51

MS speed command of SY9000 has more abundant function than the usual MS speed function. It could not only realize MS speed function, but also can be used as VF saparation voltage source and PID reference source. Therefore, dimension of MS speed command is a relative value.

Simple PLC function is different from SY9000 user programmable function. Simple PLC can only achieve simple combination of MS speed command, while user programmable function has more abundant and practical uses. For specifications please refer to A7 group.

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
PC.00	MS command 0	-100.0%~100.0%	0.0%	☆
PC.01	MS command 1	-100.0%~100.0%	0.0%	☆
PC.02	MS command 2	-100.0%~100.0%	0.0%	☆
PC.03	MS command 3	-100.0%~100.0%	0.0%	☆
PC.04	MS command 4	-100.0%~100.0%	0.0%	☆
PC.05	MS command 5	-100.0%~100.0%	0.0%	☆
PC.06	MS command 6	-100.0%~100.0%	0.0%	$\stackrel{\wedge}{\simeq}$
PC.07	MS command 7	-100.0%~100.0%	0.0%	☆
PC.08	MS command 8	-100.0%~100.0%	0.0%	☆
PC.09	MS command 9	-100.0%~100.0%	0.0%	☆
PC.10	MS command 10	-100.0%~100.0%	0.0%	☆
PC.11	MS command11	-100.0%~100.0%	0.0%	☆
PC.12	MS command 12	-100.0%~100.0%	0.0%	☆
PC.13	MS command 13	-100.0%~100.0%	0.0%	☆
PC.14	MS command 14	-100.0%~100.0%	0.0%	☆
PC.15	MS command 15	-100.0%~100.0%	0.0%	☆

MS speed command can be used on three occasions: frequency source, VF saparation voltage source, process PID set source.

Dimension of MS speed command is a relative value ranging from -100.0% to 100.0%. When used as command source, it's the percentage of maximum frequency. When used as VF saparation voltage source, it's the percentage of motor rated voltage. When used as PID set source, dimension conversion is not needed during the process.

MS command should be selected according to the different states of multi-function digit DI terminals. For details please refer to P4 group.

PC.16	PLC running mode	Single running stop	0	0	☆
		Single running end remaining final value	1	0	

PL Nevt tin	C stop memory refers to the reco	ord of PLC running stage and running frequency of the memory stage. If 10bit is set to 0, PLC process we	the time b	efore.
power-o	n.	memory stage. In tubicits set to 0, 1 LO process wo	ulu lestalt	ироп
PC.18	PLC 0segment running time	0.0s(h) ~ 6553.5s(h)	0.0s(h)	☆
PC.19	PLC 0segment acc./dec. time	0~3	0	☆
PC.20	PLC 1segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	\$
PC.21	PLC 1segment acc./dec. time	0~3	0	\$
PC.22	PLC 2segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.23	PLC 2segment acc./dec. time	0~3	0	\$
PC.24	PLC 3segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	\$
PC.25	PLC 3segment acc./dec. time	0~3	0	☆
PC.26	PLC 4segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.27	PLC 4segment acc./dec. time	0~3	0	\$
PC.28	PLC 5 segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.29	PLC 5segment acc./dec. time	0~3	0	☆
PC.30	PLC 6segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.31	PLC 6segment acc./dec. time	0~3	0	☆
PC.32	PLC 7segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	\$
PC.33	PLC 7segment acc./dec. time	0~3	0	☆
PC.34	PLC 8segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.35	PLC 8segment acc./dec. time	0~3	0	☆
PC.36	PLC 9segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.37	PLC 9segment acc./dec. time	0~3	0	☆
PC.38	PLC 10segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.39	PLC 10segment acc./dec.time	0~3	0	☆
PC.40	PLC 11segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.41	PLC 11segment acc./dec. time	0~3	0	☆
PC.42	PLC 12segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	\$
PC.43	PLC 12segment acc./dec. time	0~3	0	☆
PC.44	PLC 13segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	☆
PC.45	PLC 13segment acc./dec. time	0~3	0	☆
PC.46	PLC 14segment running time	0.0s(h)~6553.5s(h)	0.0s(h)	\$
PC.47	PLC 14segment acc./dec. time	0~3	0	☆

PC.48	PLC 15segment running time	0.0s(h)~6553.5s(h)		0.0s(h)	☆
PC.49	49 PLC 15segment acc./dec. time 0~3		0	\$	
DO 50	Durania a tina a sa it	S(second)	0	_	
PC.50	Running time unit	H(hour)	1	0	X
	MS command 0 reference	Function code PC.00 reference	0	0	
		AI1	1		
		AI2	2		÷
PC 51		AI3(Potentiometer)	3		
1 0.01	mode	PULSE	4		~
		PID	5		
		Preset frequency(P0.08) reference, UP/DOWN can be modified	6		

It is used to select the reference channel of MS speed 0.

Besides choosing PC.00, MS command 0 has many other options, which is convenient for switching between MS command and other set modes.

Both MS command and simple PLC used as frequency source can easily realize switching between the two frequency sources.

5-15 Communication function group: Pd.00-Pd.06

Please refer to	«SY9000	communication	protocol »
-----------------	---------	---------------	------------

Code	Description/	Setting Range			Factory	Change
0000	Keyboard Display	Setting Kange			Setting	Limit
		1bit	MODBUS			
		300B	PS	0		
		600B	PS	1		
		1200	BPS	2		
		2400	BPS	3		
		4800	BPS	4		
		9600	3PS	5		
Pd.00	Baud rate	19200)BPS	6	6005	☆
		38400)BPS	7		
		57600	OBPS	8		
		11520	00BPS	9	6005	
		10bit	Profibus-DP			
		11520	00BPS	0		
		20830	DOBPS	1]	
		25600	DOBPS	2		

		512000BPS		3		
		100 bit	Reserved			
		1000 bit	Reserved	-		
		Witho	out calibration (8-N-2)	0		
5101	Pd.01 Data format	Even	parity calibration(8-E-1)	1		
Pa.01		Unev	en parity calibration(8-O-1)	2	0	¥
		8-N-1		3		
Pd.02	Local address	1-247, 0 is broadcast address			1	☆
Pd.03	Response delay	0ms-20ms			2	☆
Pd.04	Excessive communication time	0.0(invalid), 0.1s-60.0s		0.0	☆	
		1bit	MODBUS			
		Non-	standard MODBUS protocal	0		
		Stand	dard MODBUS protocal	1		
Pd 05	Data transformat selection	10 bit	Profibus-DP		31	~
1 0.00		PPO	1 format	0	0.	~
		PPO:	2 format	1		
		PPO:	3 format	2		
		PPO:	5 format	3		
D.LOC	Communication read	0.01	A	0	_	
Pd.06	current resolution	0.1A		1	0	☆

5-16 User customization function code: PE.00-PE.29

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
PE.00	User function code 0	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.01	*
PE.01	User function code 1	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.02	숬
PE.02	User function code 2	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.03	숬
PE.03	User function code 3	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.07	숬
PE.04	User function code 4	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.08	☆
PE.05	User function code 5	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.17	*
PE.06	User function code 6	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.18	☆

PE.07	User function code 7	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P3.00	☆
PE.08	User function code 8	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P3.01	☆
PE.09	User function code 9	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P4.00	☆
PE.10	User function code 10	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P4.01	☆
PE.11	User function code 11	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P4.02	☆
PE.12	User function code 12	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P5.04	☆
PE.13	User function code 13	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P5.07	☆
PE.14	User function code 14	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P6.00	☆
PE.15	User function code 15	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P6.10	☆
PE.16	User function code 16	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.17	User function code 17	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.18	User function code 18	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.19	User function code 19	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	\$
PE.20	User function code 20	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.21	User function code 21	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.22	User function code 22	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.23	User function code 23	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	\$
PE.24	User function code 24	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	\$
PE.25	User function code 25	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.26	User function code 26	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	\$
PE.27	User function code 27	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	\$
PE.28	User function code 28	P0.00~PP.xx,A0.00~Ax.xx,U0.xx	P0.00	☆
PE.29	User function code 29	P0.00~PP:xx,A0.00~Ax.xx,U0.xx	P0.00	☆

This function group is the user customization function code.

Users can put the required parameters (among all SY9000 function codes) to the PE group as the user customization function group.

PE group can offer 30 user customization function codes at most.When PE displays P0.00, it means user function code is null.

In user customization function mode, display of the function codes is defined through PE.00~PE.31. Sequence is consistent with the PE function codes, skip P0.00.

5-17 Function code management: PP.00-PP.04

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
PP.00	User password	0~65535	0	\$

The password set function is used to prohibit the unauthorized person from viewing and modifying the parameters.

When the parameter is set to any non-zero number, the password protection function is enabled. If no password is needed, change the parameter value to 00000.

After the user password is set and takes effect, when entering the password setting state, if the user password is incorrect, you cannot view and modify the parameter. You can only view the operation display parameters and stop displaying parameters.

Please keep your password in mind. If you set the password mistakenly orforget the password, please contact the manufacturer.

		No function	0		
PP.01		Restore to factory default value,motor parameter not included	1		
		Clear memory	2	0	
	Parameter initialization	Restore factory parameters, Including motor parameters	3	U	*
		Backup user current parameter	4		
		Restore user backup parameter	501		

0: No function.

1: Restore to factory default value, motor parameter not included

The inverter restores all the parameters excluding the following parameters of the factory default values:

Motor parameters, P0.22, fault record information, P7.09, P7.13, P7.14.

2: Clear memory

The inverter clears the fault records , P7.09, P7.13 and P7.14 to zero.

3: Restore factory parameters, Including motor parameters

PP.01=3. The inverter restores all the parameters excluding the following parameters of the factory default values

4: Backup user current parameter

It is the backup of user current setting parameters, which is convenient for the user to restore the disordered parameters .

501: Restore user backup parameter

It is used to restore the backup of user parameters, that is, restore the backup parameters which is set through PP.01=501.

PP.02 Pa		1bit	U group display selection			
		No display		0		
		Displa	ау	1	11	*
	Parameter display attribute	10bit	A group display selection			
		No di	splay	0		
		Displa	ау	1		
PP.03	Personalized parameter display selection	1bit	Custom parameter display selectio	n		
		No di	splay	0	00	73

Displa	ау	1
10bit	User change parameter display sel	ection
No display		0
Display		1

The establishment of parameter display selectionis basically convenient for the users viewing the different arrangement forms of function parameters according to the actual needs. Three display methods are offered as below:

Name	Discription		
Function parameter mode	Sequence display inverter function parameters, respectively P0~PF、A0~AF、U0~UF.		
User customization parameter mode	User customization display of specified function parameters(32 at most). The display parameters is determined through PE group.		
User change parameter mode	Parameters which are different from factory default.		

When existing display for PP.03, user could switch into different display mode through QUICK key. Function parameter display mode as default.

Parameter display mode	Display
Function parameter mode- FunC	-Fun[
User customization parameter mode-USEt	-USEr
User change parameter mode-UC	-UC

Display codes as below:

SY9000 series offers two groups of personalized parameter display mode: user customization function mode, user change parameter mode.

In user customization parameter mode, sign u is added to the user customization function code as default.

In user change parameter mode, sign c is added to the user customization function code as default. E.g: P1.00 is displayed as cP1.00.

PP.04	Function codes modification	Can be modified	0	0	☆
	attribute	Can not be modified	1		
Thi	This function is used to prevent misoperation of the function parameters.				
PP.04=0: All the function codes can be modified.					
PP.	PP.04=1: All the function codes can only be viewed, but not modified.				

5-18 Torque control group: A0.00-A0.08

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit	
A0.00 Speed/ torque contro selection	Speed/ torque control mode	Speed control	0			
	selection	Torque control	1	0	*	
A0.00 is used to select inverter control mode: speed control or torque control.						

Multi-function digit DI terminal of SY9000 is equipped with two functions relating torque control: Torque control banned(Function29), speed control/torque control switching (function 46). The two terminals should be matched with A0.00 to realize switching between speed control and torque control.

A0.00 set the control mode when speed/torque control switching terminal invalid. If the speed/torque control switching terminal is valid, control mode is equivalent to the inversion of A0.00 value.

When function 29 is valid, speed control mode is fixed for the inverter .

	Digital setup(A0.03)	0			
		Al1	1		
Torque setup		AI2	2		
	Torque setup source selection	Al3(Potentiometer)	3		
A0.01	in torque control mode	PULSE	4	0	*
		Commuication setup	5		
		MIN(AI1,AI2)	6		
		MAX(AI1,AI2)	7		
A0.03	Torque digital setup in torque control mode	-200.0%~200.0%		150%	☆

A0.01 is used to select torque set source. There are totally 8 kinds of torque set mode.

Torque set is a relative value, which 100% corresponding to inverter rated torque. Set range: 200.0%~200.0%.Maximum torque is 2 times that of inverter rated torque

When the torque is set by selection $1\sim7$, 100% of communication ,analog input, pulse input corresponding to A0.03.

A0.05	Torque control forward maximum frequency	0.00Hz~Maximum frequency(P0.10)	50.00Hz	☆
A0.06	Torque control reverse maximum frequency	0.00Hz~Maximum frequency(P0.10)	50.00Hz	Å

A0.05, A0.06 are used to set forward or reverse maximum running frequency in torque control mode.

In inverter toque control mode, if load torque is less than motor output toque, the motor revolving speed would speed up. In case of galloping or other accidents of mechanical system , motor maximum revolving speed must be limited.

A0.07	Torque control acc. time	0.00s~65000s	0.00s	$\stackrel{\wedge}{\sim}$
A0.08	Torque control dec. time	0.00s~65000s	0.00s	\$

In torque control mode , rate of speed change of motor and load is decided by the difference between motor output toque and load torque. Therefore, motor speed may change fast, causing noise or excessive mechanical stress problems. By setting the torque control acc./dec. time, can make the motor speed changes smoothly.

A0.07 and A0.08 should be set to 0.00s in situations where torque rapid response is needed.

E.g. Two motors drive the same load, to make sure of load uniform distribution , one is set as host inverter(speed control mode) and another is the slave one(torque control mode). Actual output torque of the host inverter is the torque command of the slave, and slave torque is required to quickly follow the host torque, then torque control acc./dec. time is set to 0.00s for the slave inverter.

5-19 VirtualIO: A1.00-A1.21

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
A1.00	Virtual VDI1 function selection	0~59	0	*
A1.01	Virtual VDI2 function selection	0~59	0	*
A1.02	Virtual VDI3 function selection	0~59	0	*
A1.03	Virtual VDI4 function selection	0~59	0	*
A1.04	Virtual VDI5 function selection	0~59	0	*
Fur	nctions of virtual VDI1~VDI5 are	e equal to DI terminals on control board. VDI1~VD	I5 can be	used
as mutu		1bit Virtual VDI1	+.03 .	
		State of virtual VYx decides whether 0		
		Function code A1.06 decide whether 1 VDI is effective		
		10bit Virtual VDI2	-	
	Virtual VD1 terminal valid state set mode	State of virtual VYx decides whether 0 VDI is effective		
		Function code A1.06 decides whether VDI is effective		
		100 Virtual VDI3 bit		
A1.05		State of virtual VDOx decides whether 0 VDI is effective	00000	*
		Function code A1.06 decides whether VDI is effective		
		1000 bit Virtual VDI4		
		State of virtual VDOx decides whether 0 VDI is effective		
		Function code A1.06 decides whether VDI is effective	-	
		10000 bit Virtual VDI5		
		State of virtual VDOx decides whether 0 VDI is effective		
		Function code A1.06 decides whether 1 VDI is effective		
		1bit Virtual VDI1		
A1.06	Virtual VD1 terminal state	Invalid 0	00000	*

Valid	1	1	
10bit	Virtual VDI2		
Inval	lid	0	
Valid	1	1	
100bit	t Virtual VDI3		
Inval	lid	0	
Valid	1	1	
1000 bit	Virtual VDI4		
Inval	lid	0	
Valid	1	1	
10000 bit	Virtual VDI5		
Inval	lid	0	
Valid	1	1	

State of virtual VDI terminal can be set through 2 setting methods, which is different from common digit input terminals, and select through A1.05.

When choosing the corresponding VDO state as the decision of VDI state , valid state of VDI is depending on VDO output as valid or not. VDIx only binding VDOx($x : 1\sim 5$).

Binary bits of function code A1.06 decide vitual input terminal states respectively.

The following example illustrates the method of using virtual VDI.

E.G-S2: When choosing VDO state deciding VDI state, to complete "Al1 input exceeding limit, inverter fault alarm and stop":

Set VDI1 to " user-defined fault 1"(A1.00=44);

Set VDO1 (A1.05=xxx0) to decide VDI1 terminal valid state;

Set VDO1 output function to "AI1 excessive input" (A1.11=31);

When AI1 exceeding the upper / lower limit , VDO1 output ON signal, VDI1 input terminal state is valid, VDI1 receives " user-defined fault 1", and inverter fault alarm and stop , fault No. 27= E.USt1.

E.G-2: When choosing function code A1.06 deciding VDI state, to complete " Auto into running state after power-on ":

Set VDI1 to "Forward command FWD"(A1.00=1);

Set function code (A1.05=xxx1) to decide VDI1 terminal valid state;

Set VDI1 termianl to valid state(A1.06=xxx1);

Set command source to "Terminal control" (P0.02=1);

Set startup protection selection to invalid state.(P8.18=0);

After inverter power-on and the initialization, VDI1 is detected as valid, the terminal corresponding to forward running, which is equivalent to inverter receiving a forward running command, and then start forward running.

A1.07	Al1 as DI function selection	0~59	0	*
-------	------------------------------	------	---	---

A1.08	Al2 as DI function selection	0~59			0	*
A1.09	AI3 as DI function selection	0~59			0	*
		1bit	AI1			
		High	level valid	0		
	Al as DI valid mode selection	Low I	evel valid	1		
		100bit	AI2]	
44.40		High	level valid	0	000	
A1.10		Low I	evel valid	1	000	*
		1000				
		bit	AI3(Potentiometer)			
		High	level valid	0		
		Low I	evel valid	1		

Al is used as DI for this function group. Al input voltage is greater than 7V, corresponding Al terminal state is high level. Al input voltage is less than 3V, corresponding Al terminal state is low level. 3V~7V for hysteresis loop.

Whether AI (as DI) high level valid or low level valid is determined through function code A1.10. For AI(as DI) function settings, they are same with common DI settings, for details please refer to P4 group.

Fig. 5-31 takes AI input voltage as an example, explains the relationship between AI input voltage and corresponding DI state:

		See P5 group for physics DO output selection	1~40		
		Short circuit with physics DIx internals	0		
A1.13	Virtual VDO3 output function	See P5 group for physics DO output selection	1~40	0	47
		Short circuit with physics DIx internals	0		
A1.14	Virtual VDO4 output function	See P5 group for physics DO output selection	1~40	0	\$
		Short circuit with physics DIx internals	0		
A1.15	Virtual VDO5 output function	See P5 group for physics DO output selection	1~40	0	☆
A1.16	VDO1 output delay time	0.0s~3600.0s		0.0s	☆
A1.17	VDO2 output delay time	0.0s~3600.0s		0.0s	☆
A1.18	VDO3 output delay time	0.0s~3600.0s		0.0s	☆
A1.19	VDO4 output delay time	0.0s~3600.0s		0.0s	\$
A1.20	VDO5 output delay time	0.0s~3600.0s		0.0s	☆
A1.21	VDO output terminal valid state selection	Nit VD01 Positive logic Image: Ima	0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0	00000	\$
		Negative logic	1		
Virl coopera	ual digit output function , which ate with virtual digit input VDIx,	is similar with control board DO output fund to realize some simple logic control.	ction ,	can be us	ed to

When virtual VDOx output function selecting 0, VDO1~VDO5 output states is determined by input states of DI1~DI5 on the keyboard.VDOx and DIx one-to-one corresponding.

When virtual VDOx output function selecting non-zero digits, VDOx function setting and use method are same with P5 group DO output relevant parameters, for details please refer to P5 group.

Similarly, VDOx output valid state can choose positive or negative logic, and set through A1.21.

For VDOx use reference , please refer to applications for VDIx use .

5-20 The second motor control: A2.00-A2.65

SY9000 can switch operation between 4 motors. The 4 motors could set motor nameplate parameters, tune motor parameters, use V/F control or vector control, set encoder relating parameters and set V/F control or vector control relating parameters respectively.

Groups of A2, A3, A4 are corresponding to motor2, motor3, motor4 respectively. And the layout of the 3 groups of function codes are completely consistent .

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
		General asynchronous motor	0		
A2.00	Motor type selection	Variable frequency asynchronous motor	1	0	*
		Permanent magnet synchronous motor	2		
A2.01	Rated power	0.1kW~1000.0kW		-	*
A2.02	Rated voltage	1V~2000V		-	*
A2.03	Rated current	0.01A~655.35A(Inverter power <=55kW) 0.1A~6553.5A(Inverter power >55kW)		-	*
A2.04	Rated frequency	0.01Hz~maximum frequency		-	*
A2.05	Rated revolving speed	1rpm~65535rpm	-	*	
A2.06	Asynchronous motor stator resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)	-	*	
A2.07	Asynchronous motor rotor resistance	0.001Ω~65.535Ω(Inverter power <=55kW) 0.0001Ω~6.5535Ω(Inverter power >55kW)	-	*	
A2.08	Asynchronous motor leakage inductance	0.01mH~655.35mH(Inverter power <=55k\ 0.001mH~65.535mH(Inverter power >55k\	0.01mH~655.35mH(Inverter power <=55kW) 0.001mH~65.535mH(Inverter power >55kW)		
A2.09	Asynchronous motor mutual inductance	0.1mH~6553.5mH(Inverter power <=55kW 0.01mH~655.35mH(Inverter power >55kW))	-	*
A2.10	Asynchronous motor no load current	0.01A~A2.03(Inverter power <=55kW) 0.1A~A2.03(Inverter power >55kW)		-	*
A2.27	Encoder pulses number	1~65535		2500	*
		ABZ incremental encoder	0		
40.00	Encoder type	UVW incremental encoder	1		
A2.28	Encoder type	Rotary transformer	2	U	×
		Sine/cosine encoder	3		

For details please refer to relating parameters of motor1.

		UVW encoder	4		
		Local PG	0		
A2.29	Speed feedback PG selection	Expansion PG	1	0	*
		PULSE pulse input(DI5)	2		
	ABZ incremental encoder AB	Forward	0		
A2.30	phase	Reserve	1	0	*
A2.31	Encoder installation angle	0.0°~359.9°	0	0	*
		Forward	0		
A2.32	UVW phase sequence	Reverse	1	0	*
A2.33	UVW encoder offset angle	0.0°~359.9°		0.00	*
A2.34	Rotary transformer pole pairs	1~65535		1	*
	DC draws ad increastion time	No action	0.0s		
A2.36	PG aropped inspection time	0.1s~10.0s	0.1s	0.0s	*
		No operation	0	0	
	Tuning selection	Asynchronous static tuning	1		
A2.37		Asynchronous complete tuning	2		*
		Synchronous static tuning	11		
		Synchronous complete tuning	12		
A2.38	Speed loop proportional gain 1	1~100		30	샀
A2.39	Speed loop integration time1	0.01s~10.00s		0.50s	\$
A2.40	Switching frequency1	0.00~A2.43		5.00Hz	☆
A2.41	Speed loop proportional gain 2	0~100		20	$\overset{\wedge}{\sim}$
A2.42	Speed loop integration time 2	0.01s~10.00s		1.00s	*
A2.43	Switching frequency 2	A2.40~maximum output frequency		10.00Hz	☆
A2.44	Vector control slip gain	50%~200%		150%	\$
A2.45	Speed-loop filtering time	0.000s~0.100s		0.000s	\$
		A2.48 setup	0		
		Al1	1		
		Al2	2		
AD 47	Torque upper limit source in	Al3(Potentiometer)	3		-
AZ.47	speed control mode	PULSE setup	4	U	¥
		Communication setup	5	-	
		MIN(AI1,AI2)	6		
		MAX(AI1,AI2)	7		

A2.48	Torque upper limit digital setup in speed control mode	0.0%~200.0%		150.0%	\$
A2.51	Excitation regulation proportional gain	0~60000		2000	24
A2.52	Excitation regulation integration gain	0~60000		1300	\$
A2.53	Torque requlation proportional gain	0~60000		2000	☆
A2.54	Torque regulation integration gain	0~60000		1300	\$
		1bit Integration separation			
A2.55	Speed loop integration	Invalid	0	0	\$
		Valid			
		Speed sensorless vector control(SVC)	0		
A2.61	Motor2 control mode	Speed sensor vector control(FVC)	1	0	*
		V/F control 2			
		Same with the first motor	0		
		Acceleration time1	1		\$
A2.62	Motor 2 acc./dec. time	Acceleration time 2	2	0	
		Acceleration time 3	3		
		Acceleration time 4	4		
40.00	Mater O tarrie has at	Auto torque hoist	0.0%		^
A2.03	wow 2 lorque boost	0.1%~30.0%		-	公
A2.65	Motor 2 oscillation suppression gain	0~100		-	☆

5-21 Control optimization: A5.00-A5.11

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
A5.00	DPWM switching frequency upper limit	0.00Hz~15.00Hz	8.00Hz	☆

A5.00 is only valid for VF control mode. In asynchronous motor VF running mode, square wave dertermines the continuous modulation mode. Wave value <A5.00: 7-stage continuous modulation mode. Wave value >A5.00: 5-stage continuous modulation mode.

In 7-stage continuous modulation mode, inverter switch loss is relatively big, but current ripple is small. In 5-stage continuous modulation mode, inverter switch loss is relatively small, but current ripple is big. High frequency may lead to motor operation instability, generally there is no need of modification.

For VF operation instability please refer to P3.11. For inverter loss and temperature rise please refer to P0.15.

				1.000			
	DW/A modulation mode	Asynchronous modulation	0	0			
A5.01	PWM modulation mode	Synchronous modulation	1	0	Ŵ		
This parameter is only valid for VF control mode. Asynchronous modulation refers to carrier frequency that linear changes with output frequency, and ensure that the ratio of them (carrier ratio) remains the same. Generally high output frequency is benefit for output voltage quality. Generally, synchronous modulation is not needed at low frequencies (below 100Hz), because the ratio of carrier frequency and output frequency is relatively high, asynchronous modulation advantage is more obvious. When running frequency is greater than 85Hz, synchronous modulation is valid. And fixed as							
	Dead-zone compensation	No compensation	0				
A5.02	mode selection	Compensation mode 1	1	1	☆		
Gen has spe mode.	nerally speaking , A5.02 needs cial requirements or motor app	not to be modified. Only when the output vo ears abnormal phenomenon would users sv	oltage v witch th	waveform e compen	quality sation		
45.00		Random PWM invalid	0				
A5.03	Random PWM depth	PWM carrier frequency random depth	1~10	0	☆		
Set heterog indicate	Set the random PWM, monotonous and harsh electromagnetic noise can be changed to the heterogeneous and soft, the external electromagnetic interference can be effectively reduced. 0 indicates that the PWM is invalid. Different random PWM depth represents different regulation effect.						
45.04	Den i den med line itie en el de	Invalid	0				
A5.04	Rapid current-limiting enable	Valid	1	1	¥		
Ena make th If th fault, w Er0R4 ,	Enable the rapid current-limiting function so as to minimize inverter overcurrent protection fault and make the inverter work normally. If the inverter long time continuous staying in rapid current-limiting state, it may occur overheating fault, which is not allowed during operation. Fault alarm of long time rapid current-limiting is 40=						
A5.05	Voltage over modulation coefficient	100~110%		105	*		
A5.06	Under-voltage point setup	210-420		350	☆		
A5.	06 is used to set value of inver	ter under-voltage fault 9= Err09.					
A5.08	Low speed carrier frquency	0.0-8.0khz		0.0	☆		
A5.09	Overvoltage point setup	200.0V~2500.0V		810.0V	*		
A5.	09 is overvoltage point set thro	ugh software, which is not related to hardw	are ove	ervoltage p	ooint.		
A5.11	Dc injection braking threshold at low speed	0.00~5.00hz		0.30hz	\$		

5-22 Al curve setup: A6.00-A6.29

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
A6.00	AI curve 4 minimum input	-10.00V~A6.02	0.00V	☆
A6.01	AI curve 4 minimum input corresponding setup	-100.0%~100.0%	0.0%	☆
A6.02	AI curve 4inflection point 1 input	A6.00~A6.04	3.00V	\$
A6.03	AI curve 4 inflection point 1 input corresponding setup	-100.0%~100.0%	30.0%	☆
A6.04	AI curve 4 inflection point 2 input	A6.02~A6.06	6.00V	☆
A6.05	AI curve 4 inflection point 2 input corresponding setup	-100.0%~100.0%	60.0%	\$
A6.06	AI curve 4 maximum input	A6.06~10.00V	10.00V	☆
A6.07	AI curve 4 maximum input corresponding setup	-100.0%~100.0%	100.0%	☆
A6.08	Al curve 4 minimum input	-10.00V~A6.10	-10.00V	☆
A6.09	AI curve 5 minimum input corresponding setup	-100.0%~100.0%	-100.0%	\$
A6.10	AI curve 5 inflection point 1 input	A6.08~A6.12	-3.00V	☆
A6.11	AI curve 5 inflection point 1 input corresponding setup	-100.0%~100.0%	-30.0%	☆
A6.12	AI curve 5 inflection point 2 input	A6.10~A6.14	3.00V	☆
A6.13	AI curve 5 inflection point 2 input corresponding setup	-100.0%~100.0%	30.0%	☆
A6.14	AI curve 5 maximum input	A6.12~10.00V	10.00V	것
A6.15	AI curve 5 maximum input corresponding setup	-100.0%~100.0%	100.0%	\$
Fur lines, w	nction of curve 4 and curve 5 a hile curve 4 and curve 5 are 4-p	are similar with curve 1~curve 3's. Curve 1~curve point curves which could realize more flexible corre	e 3 are str esponden	raight ce.

Fig.5-31 Curve4 and curve 5 schematic diagram

Notice: When setting curve 4 and curve 5, minimum input voltage, inflection point 1 voltage, inflection point 2 voltage and maximum voltage must be increased in turn.

A6.24	Al1 set hopping point	-100.0%~100.0%	0.0%	☆
A6.25	Al1 set hopping amplitude	0.0%~100.0%	0.5%	☆
A6.26	AI2 set hopping point	-100.0%~100.0%	0.0%	\$
A6.27	Al2 set hopping amplitude	0.0%~100.0%	0.5%	☆
A6.28	AI3 set hopping point	-100.0%~100.0%	0.0%	☆
A6.29	AI3 set hopping amplitude	0.0%~100.0%	0.5%	\$

Analog input AI1~AI3 of SY9000 are all provided with hopping function for set value.

Hopping frequency refers to fixing of analog corresponding setup to the value of hopping point when analog correspondending setting varies within jump point upper/lower limit.

E.g:

Voltage of analog input AI1 is in 5.00V fluctuation, which range is 4.90V~5.10V. Minimum input 0.00V corresponding to 0.0%, while maximum input 10.00V corresponding to 100.%. The corresponding setting of AI1 fluctuates between 49.0%~51.0%.

Set A5.16 to 50.0% and A5.17 to 1.0%, after hopping function processing, Al1 is fixed as 50.0%. In this way, Al1 is converted into a stable input, and fluctuation is eliminated.

5-23 User programmable card parameters: A7.00-A7.09

Code	Description/ Keyboard Display	Setting Range		Factory Setting	Change Limit
A7.00 User	User programmable function	Invalid	0	0	*
	selection	Valid	1		
A7.01	Control board output terminal control mode selection	Inverter control	0	-	
		User programmable card control	1		*

		1bit	Y1P(Y1 as pulse output)			
		10bit	Relay(T/A1-T/B1-T/C1)			
		100 bit	DO1			
		1000 bit	Y1R(Y1 as switch output)			
		10000 bit	AO1			
A7.02	Programmable card expansion Al3x function configuration	See suppl	<i>《User programmable control card 》</i> ementary description) for	-	*
A7.03	Y1P output	0.0%	-100.0%		0.0%	$\stackrel{\wedge}{\bowtie}$
A7.04	AO1 output	0.0%	-100.0%		0.0%	$\stackrel{\sim}{\sim}$
		1bit	Y1R			
A7.05	Switch output	10bit	Relay 1		000	\$
	·	100 bit	DO			
A7.06	Programmable card frequency setup	0.0%-100.0%			0.0%	☆
A7.07	Programmable card torque setup	-200.0%-200.0%			0.0%	Å
		No command		0		
		Forwa	ard command	1		
		Reverse command		2		
47.09	Programmable card	Forwa	ard jog	3	0	_A_
A7.00	command setup	Reve	rse jog	4	0	ы
		Free	stop	5		
		Decelerate to stop		6]	
		Fault	reset	7		
A7 00	Programmable card fault	No fa	ult	0	0	~-
A7.09	setup	Fault	code	80-89	U	~

5.24 Point to point communication: A8.00-8.11

Code	Description/ Keyboard Display		Setting Range		Factory Setting	Change Limit
	Master slave control	Invalid		0		
A8.00	function selection	Valid		1	0	**
A8.01	Master slave selection	Master		0	0	\$
		slave		1		
A8.02	Master slave information	0 bit	Do not follow the Master	0	011	☆

r - r		r	1			-
	exchange		command			
			follow the Master command	1		
		10 bit	Do notsend fault information	0		
			send fault information	1		
		100 bit	Do notwarning when slave			
			off line	0		
			warning when slave off line	1		
		Master sla	ave control frame	0		
A8.03	Message frame selection	Droop con	trol frame	1	0	☆
A8.04	Receive data zero offsettorque	-100.00%~100.00%			0.00	*
A8.05	Receive data gaintorque	-10.00~1	-10.00~100.0		1.00	*
A8.06	Communication interrupt detection time	0.0s~10.0	0.0s~10.0s		1.0s	☆
A8.07	Communication Master data transmission cycle	0.001s~1	0.000s		0.001	\$
A8.08	Receive data zero offsetfrequency	-100.00%~100.00%		0.00	*	
A8.09	Receive data gainfrequency	-10.00~100.00		1.00	*	
A8.10	Reverse				-	
A8.11	view	0.20Hz~1	10.00Hz		0.5	*

5-25 Extended function group: A9.00-A9.09

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
A9.00	Reverse		0	•
A9.01	Reverse	0~65535	0	\$
A9.02	Reverse	0~65535	0	☆
A9.03	Reverse	0~65535	0	☆
A9.04	Reverse	0~65535	0	☆
A9.05	Reverse	0~65535	0	☆
A9.06	Reverse	0~65535	0	☆

A9.07	Reverse	0~65535	0	☆
A9.08	Reverse	0~65535	0	☆
A9.09	Reverse	0~65535	0	☆

5-26 AIAO correction: AC.00-AC.19

Code	Description/ Keyboard Display	Setting Range	Factory Setting	Change Limit
AC.00	Al1measured voltage 1	0.500V~4.000V	Factory calibration	☆
AC.01	Al1 display voltage 1	0.500V~4.000V	Factory calibration	☆
AC.02	Al1 measured voltage 2	6.000V~9.999V	Factory calibration	☆
AC.03	Al1 display voltage 2	6.000V~9.999V	Factory calibration	☆
AC.04	Al2 measured voltage 1	0.500V~4.000V	Factory calibration	☆
AC.05	Al2 display voltage 1	0.500V~4.000V	Factory calibration	☆
AC.06	Al2 measured voltage 2	6.000V~9.999V	Factory calibration	☆
AC.07	Al2 display voltage 2	6.000V~9.999V	Factory calibration	☆
AC.08	Al3 measured voltage 1	-9.999V~10.000V	Factory calibration	☆
AC.09	Al3 display voltage 1	-9.999V~10.000V	Factory calibration	☆
AC.10	Al3 measured voltage 2	-9.999V~10.000V	Factory calibration	☆
AC.11	AI3 display voltage 2	-9.999V~10.000V	Factory calibration	☆

This group of function codes are used for calibration of analog input AI , which could eliminate AI input bias and gain influence. Generally , there is no need of calibration in application, for it has been calibrated in factory. When restoring the factory value, the parameter would be restored to the default value of factory calibration.

Measured voltage refers to the actual voltage that has been measured through measuring instrument such as multimeter. Display voltage refers to the display value that has been sampled by the inverter. See U0 group (U0.21, U0.22, U0.23) display.

During calibration, put the multimeter measurement value and the U0 value respectively into the function codes above, inverter would automatically calibrate the AI zero off and gain.

AC.12	A01 target voltage 1	0.500V~4.000V	Factory calibration	☆
AC.13	A01 measured voltage 1	0.500V~4.000V	Factory calibration	\$
AC.14	A01 target voltage 2	6.000V~9.999V	Factory calibration	☆
AC.15	A01 measured voltage 2	6.000V~9.999V	Factory	$\stackrel{\wedge}{\simeq}$

			calibration	
AC.16	A02 target voltage 1	0.500V~4.000V	Factory calibration	☆
AC.17	A02 measured voltage 1	0.500V~4.000V	Factory calibration	☆
AC.18	A02 target voltage 2	6.000V~9.999V	Factory calibration	☆
AC.19	A02 measured voltage 2	6.000V~9.999V	Factory	☆

This group of function codes are used for calibration of analog output AO. Generally, there is no need of calibration in application, for it has been calibrated in factory. When restoring the factory value, the parameter would be auto restored to the default value of factory calibration.

Target voltage refers to inverter theoretical output voltage, while measured voltage refers to the actual voltage that has been measured through measuring instrument such as multimeter.

Section VI. Fault Diagnosis & Solutions

SY9000 is able to make full use of the device performance, while implementing effective protection. You may encounter following fault tips during operation, please control the following table analysis the possible causes, and rule out the fault.

If you encounter equipment damage or problems cannot be solved, please contact our 24hour technical service hotline.

6-1 Fault alarm and solutions

SY9000 series can not only make full use of equipment performance but also implement effective protection. SY9000 series has 51 alarming information and protection function.Once fault occurs, protection function acts,output stops, inverter fault relay contact starts,and fault code is been displayed on the display panel. Before consulting the service department, the user can perform self-check according to the prompts of this chapter, analyze the fault cause and find out t solution. If the fault is caused by the reasons as described in the dotted frame, please consult the agents or our company directly.

Among the 51 items of warning information:

Fault no.22= Err22 refers to hardware over-current or over-voltage signal.In most cases hardware over-voltage fault led to fault no.22= Err22 alarming.

Fault name	Inverter unit protection
Panel display	Fault No.1= Err01
Fault investigation	1. Inverter output loop short circuit
	3. Module overheating
	4、Inverter internal wiring loose
	5、Main control board anomalies
	6、Drive board anomalies
	7、Inverter module anomalies
	1、Eliminate external faults
Fault countermeasures	2、Add reactor or output filter
	3、Check air duct, fan and eliminate existing problems.
	4、Insert all connecting wires
	5、For technical support

Fault name	Acceleration over current
Panel display	Fault No.2= Err02
Fault investigation	1、Acceleration time too short
	2、Improper manual torque boost or V/F curve
	3、Low voltage
	4、Inverter output loop grouded or short circuit
	5、Vector control mode without parameter identification
	6、Start the rotating motor
	7、Sudden load add in acceleration process
	8、Small type selection of inverter.

	1、Increase acceleration time
	2、Adjust manual torque boost or V/F curve
	3、Adjust voltage to normal range
Fault	4、Eliminate external faults
countermeasures	5、Parameter identification
	6、Select speed tracking start or restart after motor stop
	7、Cancel sudden added load
	8、Choose inverter of greater power level

Fault name	Deceleration over current
Panel display	Fault No.3= Err03
Fault investigation	 Inverter output loop grouded or short circuit Vector control mode without parameter identification Deceleration time too short Low voltage Sudden load add in deceleration process
	6. No braking unit and brake resistence installed
	1 Eliminate external faults 2 Parameter identification
Fault	3、Increase deceleration time
countermeasures	4、Adjust voltage to normal range
	5、Cancel sudden added load
	6、Install braking unit and brake resistence

Fault name	Constant speed over current
Panel display	Fault No.4= Err04
Fault investigation	1、Inverter output loop grouded or short circuit
	2、Vector control mode without parameter identification
	3、Low voltage
	4、Sudden load add in deceleration process
	5、Small type selection of inverter
Fault countermeasures	1、Eliminate external faults
	2、Parameter identification
	3、Adjust voltage to normal range
	4、Cancel sudden added load
	5、Choose inverter of greater power level

Fault name	Acceleration over voltage
Panel display	Fault No.5= Err05
Fault investigation	1、No braking unit and brake resistence installed
	2、High input voltage
	3、External force drive motor operation during acceleration process
	4、Acceleration time too short
Fault	1、Install braking unit and brake resistence
countermeasures	2、Adjust voltage to normal range

3、Cancel external force or install brake resistence
4、Increase acceleration time

Fault name	Deceleration over voltage
Panel display	Fault No.6= Err06
Fault investigation	1、High input voltage
	2、External force drive motor operation during deceleration process
	3、Deceleration time too short
	4、No braking unit and brake resistence installed
	1、Adjust voltage to normal range
Fault	2、Cancel external force or install brake resistence
countermeasures	3、Increase deceleration time
	4、Install braking unit and brake resistence

Fault name	Constant speed over voltage
Panel display	Fault No.7= Err07
Fault investigation	 External force drive motor operation High input voltage
Fault	1、Cancel external force or install brake resistence
countermeasures	2、Adjust voltage to normal range

Fault name	Control power supply fault
Panel display	Fault No.8= Err08
Fault investigation	1、Input voltage is not within the specified range
Fault	1、Adjust voltage to normal range
countermeasures	

Fault name	Undervoltage fault
Panel display	Fault No.9= Err09
Fault investigation	1、Instantaneous power-off
	2、Input voltage is not within the specified range
	3、Bus voltage anomalies
	4、Rectifier and buffer resistance anomalies
	5、Drive board anomalies
	6、Control board anomalies
Fault countermeasures	1、Reset fault
	2、Adjust voltage to normal range
	3、For technical support

Fault name	Inverter overload
Panel display	Fault No.10= Err10
Fault investigation	1、Small type selection of inverter.
	2、Overload or motor stall
Fault	1、Choose inverter of greater power level

countermeasures	2、Reduce the load and check the motor and mechanical condition
-----------------	--

Fault name	Motor overload
Panel display	Fault No.11= Err11
Fault investigation	1、Small type selection of inverter
	2、Improper setup of P9.01
	3、Overload or motor stall
Fault	1、Choose inverter of greater power level
	2、Set P9.01 correctly
countermeasures	3、Reduce the load and check the motor and mechanical condition

Fault name	Input phase lack
Panel display	Fault No.12= Err12
Fault investigation	1、Drive board anomalies
	2、Lightning protection board (BESP) anomalies
	3、Control board anomalies
	4、3-phase input power-supply anomalies
Fault countermeasures	1、Replace driver, power- supply board or contactor
	2、For technical support
	3、Eliminate external loop faults

Fault name	Output phase lack
Panel display	Fault No.13= Err13
Fault investigation	 Wiring between motor and inverter anomalies Inverter unbalanced 3-phase output Drive board anomalies Module anomalies
Fault countermeasures	 Eliminate external loop faults Check 3-phase winding and eliminate faults For technical support

Fault name	Module overheating
Panel display	Fault No.14= Err14
Fault investigation	1、Air duct block
	2、Fan damage
	3、High ambient temperature
	4、Module thermistor damage
	5、Inverter module damage
Fault countermeasures	1、Clean air dust
	2、Replace the fan
	3、Reduce ambient temperature
	4、Replace thermistor
	5、Replace inverter module

Fault name	External equipment fault
Panel display	Fault No.15= Err15
Fault investigation	1、Input external fault signal through DI
	2、Input external fault signal through IO
Fault	1、Reset operation
countermeasures	

Fault name	Communication fault
Panel display	Fault No.16= Err16
Fault investigation	1、Abnornal communication cable
	2、Wrongly set communication expansion card P0.28
	3、Wrongly set communication parameter PD group
	4、Position machine operation anomalies
	1、Check the communication cable
Fault	2、Set communication expansion card type correctly
countermeasures	3、Set communication parameter correctly
	4、Check position machine cable

Fault name	Contactor fault
Panel display	Fault No.17= Err17
Fault investigation	 Input phase lack Drive board , contactor anomalies
Fault	1、Eliminate external loop faults
countermeasures	2、Replace driver, power- supply board or contactor

Fault name	Current inspection fault
Panel display	Fault No.18= Err18
Fault investigation	 Drive board anomalies Hall devices anomalies
Fault	1、Replace drive board
countermeasures	2、Replace hall devices

Fault name	Motor tuning fault
Panel display	Fault No.19= Err19
Fault investigation	 Parameter identification process overtime Wrongly set motor parameters
Fault	1、Check wire between inverter and motor
countermeasures	2. Set motor parameters correctly according to the nameplate

Fault name	Encoder /PG card fault
Panel display	Fault No.20= Err20
Fault investigation	1、Encoder anomalies
	2、PG card anomalies
	3、Encoder type mismatch

	4、Encoder connections fault
	1、Replace encoder
Fault	2、Replace PG card
countermeasures	3、Set motor encoder type correctly
	4、Eliminate circuit faults

Fault name	EEPROM read & write fault
Panel display	Fault No.21= Err21
Fault investigation	1、EEPROM chip damage
Fault countermeasures	1、Replace main control board

Fault name	Inverter hardware fault
Panel display	Fault No.22= Err22
Fault investigation	1、Presence of overvoltage 2、Presence of overcurrent
Fault	1、Treat according to overvoltage fault
countermeasures	2、Treat according to overcurrent fault

Fault name	Short circuit to ground fault
Panel display	Fault No.23= Err23
Fault investigation	1、Motor short circuit to ground
Fault countermeasures	1、Replace cable or motor

Fault name	Total running time arrival fault
Panel display	Fault No.26= Err26
Fault investigation	1、Total running time arrive the set value
Fault countermeasures	1、Clear record information using parameter initialization function

Fault name	User-defined fault 1
Panel display	Fault No.27= Err27
Fault investigation	 Input user-defined fault 1 signal through multi-function terminal DI Input user-defined fault 1 signal through virtual IO function
Fault countermeasures	1、Reset operation

Fault name	User-defined fault 2
Panel display	Fault No.28= Err28
Fault investigation	 Input user-defined fault 2 signal through multi-function terminal DI Input user-defined fault 2 signal through virtual IO function
Fault countermeasures	1、Reset operation

Fault name	Total power-on time arrival fault
Panel display	Fault No.29= Err29
Fault investigation	1、Total power-on time arrive the set value
Fault	1、Clear record information using parameter initialization function

Fault name	Load off fault
Panel display	Fault No.30= Err30
Fault investigation	1、Inverter running current less than P9.64
Fault	1、Confirm whether load off or P9.64, P9.65parameter settings is
countermeasures	inaccordance with the actual operating condition

Fault name	PID feedback loss during operation fault
Panel display	Fault No.31= Err31
Fault investigation	1、PID feedback less than PA.26 set value
Fault countermeasures	1、Check PID feedback signal or set PA.26 to a proper value

Fault name	Each wave current limiting fault
Panel display	Fault No.40= Er0R4
Fault investigation	 Excessive load or motor stall Small type selection of inverter.
Fault	1、Reduce the load and check the motor and mechanical condition
countermeasures	2、Choose inverter of greater power level

Fault name	Motor switching fault
Panel display	Fault No.41= Err41
Fault investigation	1、Change current motor selection during inverter operation
Fault countermeasures	1、Switch the motor after inverter stopped.

Fault name	Excessive speed deviation fautl
Panel display	Fault No.42= Err42
Fault investigation	1、Improper set inspection parameters P9.69、P9.60
	2、Wrongly set encoder parameters
	3、No parameter identification
Fault countermeasures	1、Set inspection parameters properly according to actual situation
	2、Set motor encoder parameters correctly
	3、Motor parameter identification

Fault name	Motor overspeed fault
Panel display	Fault No.43= Err43
Fault investigation	1、No parameter identification

	 Wrongly set encoder parameters Improper set inspection parameters P9.69、P9.60
Fault	1、Motor parameter identification
	2、Set motor encoder parameters correctly
oounion ou ou oo	 Set inspection parameters properly according to actual situation

Fault name	Motor overtemperature fault
Panel display	Fault No.45= Err45
	1、Temperature sensor wiring loose
Fault investigation	2、Motor overtemperature
Fault	1、Check sensor wiring and eliminate fault
countermeasures	2、Reduced carrier frequency or take other cooling measures for the motor

6-2 Common fault and solutions

During the inverter using process, the following faults may occur. Please conduct simple fault analysis by referring to the methods below:

No.	Fault Phenomenon	Possible Cause	Solution
1	No display or error codes occur upon power-on	Abnormal input power supply, switch power supply fault of driven board, rectifier bridge damage, inverter buffer resistance damage, control board/keyboard fault, control board/driven board/keyboard disconnection	Check inputpower supply, bus voltage, re-plug 26 core cable, consult the manufacturer
2	Display"510" upon power-or	Poor contact between driven board and control board, device damage on control board, motor or motor cable short circuited, hall fault, grid undervoltage	Re-plug 26 core cable, consult the manufacturer
3	"Error 23=Err23" alarming upon power on	The motor or the output line is short circuited to the earth , the inverter is damaged.	Measure the insulationof the motor and output line with magneto-ohmmeter, consult themanufacturer.
4	The inverter displays normally upon power-on, but "510" is displayed upon running and stops immediately	The fan is either damaged or blocked, peripheral control terminal shortcircuited	Replace the fan,exclude external short-circuit fault
5	Frequent fault report ERR14=Err14(module overheating)	The carrier frequency is set too high, the fan is damaged or the air duct is blocked, inverter internal components damaged	Replace the fan,clean air duct, reduce carrier frequency(P0.15) ,consult manufacturer.
6	Motor no rotating after inverter power-on	Motor or motor cable, wrongly set inverter parameters(motor parameter), poor contact between driven board and control board, driven board fault	Replace the motor orremove the mechanical fault, check and reset the parameters, confirm connection between inverter and motor
7	DI terminal invalid	Wrongly set inverter parameters, wrong external signal, SP and +24V jumper loosening, control board fault	Check and reset the P4relevant parameters,reconnect cables, reconfirm PLC and +24V jumper, consultthe manufacturer.

8	Closed loop vector control,	Encoder fault; PG card fault; drive	Replace encoder&reconfirm
	motor speed cannot	board fault; encoder wrong	connections; replace PG card;
	ascend	connection or poor contact	consultmanufacturer.
9	The inverter frequently	Motor wrongly set	Reset motor parameters or motor
	reports over current fault &	parameters,improper acc./dec. time,	tuning, set proper
	over voltage fault	load fluctuation	acc./dec.time,consultmanufacturer.

Caution:

- After power off and within 5 minutes of charging indicator light(! CHARGE)out, pleaseDO not touch any spare parts inside the machine. The operator must use instrument to confirm capacitor discharge is comleted, then could implement machine operation, or there may be electric shock risk!
- PleaseDO not touch the printed circuit board and IGBT etc internal device without electrostatic prevention measures. Or it could lead to the damage of components.

Section VII. Inspection & Maintenance

7-1 Inspection and Maintenance

Under normal working conditions, in addition to daily inspection, the frequency converter should be subject to regular inspection (for example inspection for overhaul or as specified but at an interval of at most six months). Please refer to the following table in order to prevent faults.

Daily	Regular	Check item	Check details	Method	Criterion
\checkmark		LED display	If any abnormal display	Visual check	As per use state
\checkmark	\checkmark	Fan	If any abnormal noise or vibration	Visual and audible check	No anomalies
\checkmark		Surrounding conditions	Temperature, humidity, dust content, harmful gas, etc.	Visual\audible\sensory check	As per 2-1 item
V		Input output voltage	If any abnormal input, output voltage	Measure R, S, T and U, V, W terminals	As per standard specifications
	V	Main circuit	Fasteners whether loose, if any signs showing overheat, discharging, or too high dust content, or the air piping is blocked	Check visually, tighten the fastenings, and clean the related parts	No anomalies
	\checkmark	Electrolytic capacitor	If any abnormal appearance	Check visually	No anomalies
	\checkmark	Current-conducting leads or blocks	Loose or not	Check visually	No anomalies
	\checkmark	Terminals	If the screws or bolts loose	Tighten the loose screws or bolts	No anomalies

" $\sqrt{}$ " means need daily check or regularly check.

For inspection,DO not disassemble or shake the parts without reason, or pull off the plugin-parts at ranYm. Otherwise, the unit will not operate normally, or can not enter the mode of fault display, or causes faults of components or even parts of the main switch components IGBT module is damaged.

When needing measurement, the user should note that much different results will be gained possibly if the measuring is performed with different instruments. It is recommended that the input voltage be measured with pointer-type voltmeter, output voltage with rectification voltmeter, input and output current with tong-test ammeter, and power with electrically-driven wattmeter.

7-2 Regular replacement of the device

In order to ensure the operation reliability of the frequency converter, in addition to regular maintenance and inspection, all the parts suffering long-term mechanical wear should be replaced at a regular interval, which includes all cooling fans and the filtering capacitors of main circuits for energy buffer and interchange and PCBs. For continuous use under normal conditions, these parts can be replaced according to the following table and the operating environment, loads and the current state of frequency converter.

Part name	Standard replacement years
Cooling fan	1~3 years
Filtering capacitor	4~5 years
PCB (printed circuit board)	5~8 years

7-3 Storage

The following actions must be taken if the frequency converter is not put into use immediately after delivery to the user and need to keep well for the time being or stored for a long time:

- Stored in a dry and adequately-ventilated place without dust and metal powder at the temperature specified in the specifications.
- If the frequency converter is not put into use after one year, a charge test should be made, so as to resume the performance of the filtering capacitor of main circuit in it. For charging, a voltage regulator should be used to slowly increase the input voltage of the frequency converter until it reaches the rating, and the charge should last more than 1~2 hours. This test should be made at least once a year.
- % Don't perform breakdown test at random, for this test will cause shorter life of the frequency converter. The insulation test must be performed after the insulation resistance is measured with a 500-volt mega ohm and this value must not be less than 4M Ω .

7-4 Measuring and Judgment

- If the current is measured with the general instrument, imbalance will exists for the current at the input terminal. Generally, differing by not more than 10% is normal. If it differs by 30%, inform the factory to replace the rectification bridge, or check if the error of three-phase input voltage is above 5V.
- If the three-phase output voltage is measured with a general multi-meter, the read data is not accurate due to the interference of carrier frequency and only for reference.

7-5 Safety Precaution

- X Only specially trained persons are allowed to disassembly, replace the drive components.
- ※ Before the inspection and maintenance, inverter must be confirmed at least 5 minutes after

power off or charged(CHARGE) light is off,otherwise there is risk of electric shock.

* Avoid metal parts leaving in the drive, or it may result in equipment damage.

Appendix I RS485 Communication Protocol

I-1 RS485 card

RS485 card is inside in SY9000 series inverter as RS485 communication card. It contains the following resources:

Table 2Jumper description

Jumper number	Description
J1	SP1 connection mode selection
J2	RS485 Termination resistor selection

I-2 Communication protocol

I-2-1 Protocol content

The serial communication protocol defines the information content and format of the use of the transmission in serial communication. Including: the host polling (or broadcast) format, host encoding methods.Concent including: require action of the function code, data transmission and error checking and so on. Slave machine's response is the same structure, including: action confirmation, return data and error checking. Slave error occurred when receiving information, or can not do what the host request action, it will organize a fault messageas the response back to the host computer.

Application mode:

The inverter accessing with " single main multi-slave" PC/PLC control network which equipped with RS232/RS485 bus.

Bus structure:

(1)Interface mode

RS232/RS485 hardware interface

(2)Transmission mode

Asynchronous serial, half-duplex transmission. At the same time host and slave computer can only permit one to send data while the other can only receive data. Data in the process of serial asynchronous communication is in the message format and sent one frame by one frame.

(3)Topological mode

In single-master system, the setup range of slave address is 1 to 247. Zero refers to broadcast communication address. The address of slave must is exclusive in the network. That is one condition of one slave machine.

I-3 Protocol Description

SY9000 series inverter communication protocol is an asynchronous serial master-slave Modbus communication protocol, only one device in the network (master) to establish protocol (known as the "query / command"). Other device (slave) can only provide data response to the host query / command, or make the appropriate action according to the host query / command. Host refers to a personal computer (PC), industrial control equipment, or programmable logic controller (PLC), etc. The slave indicates SY9000 inverter. Host can not only communicate separately with the slave, but also broadcast

messages to the lower machine. For separate access to the host query / command, the slave should return a message (called the response), and for broadcast information issued by host machine , feedback needs not to be responded to the host.

Communication data structure SY9000 series inverter Modbus protocol communication data format is as follows: using RTU mode, messages are sent at least at interval of 3.5 bytes times pause. In a variety of bytes in the network baud rate of time, this could be most easily achieved (see below T1-T2-T3-T4 shown). The transmission of a do main is the device address.

Transmission characters are hexadecimal 0...9, A...F. Network equipment continue to detect the network bus, including a pause interval of time. When the first field (the address field) is received, each device decodes it to determine whether sent to their own. At least 3.5 bytes times pause after the last transmitted character, a calibration of the end of the message. A new message may start after this pause.

The entire message frame must be used as a continuous stream. If the pause time frame prior to the completion of more than 1.5 byte times, the receiving device will refresh the incomplete message and assumes thatthe nextbytewill be the address field of a newmessage. Similarly, if a new message starts in less than 3.5 bytes times following the previous message, the receiving device will consider it a continuation of the previous message. This will set anerror, as the value in the final CRC field will not be valid for the combined messages. A typical message frame is shown below.

START	3.5-character time	
Slave address ADDR	Communication address: 1~247	
Command code CMD	03: Read slaveparameters; 06: Writeslaveparameters	
DATA(N-1)		
DATA(N-2)		
	number,function code parameter address,function code parameter	
DATA0		
CRC CHK loworder	Detection volue - CPC volue	
CRC CHK highorder	Detection value: CRC value.	
END	Atleast 3.5-character time	

RTU frame format:

CMD(command instructions) and DATA(material words description)

Commandcode: 03H, readsNwords(Thereare12characterscanberead atmost). For example: the inverter start address F0.02 of the slave machine address 01 continuously reads two consecutive values.

Host command

ADR	01H
CMD	03H
Start address highorder	F0H
Start address loworder	02H
Register number highorder	00H
Register number loworder	02H

CRC	CHK	low	order	

CRC CHK high order

CRC CHK values to be calculated

Slave response

PD.05=0:

ADR	01H	
CMD	03H	
Byte number high order	00H	
Byte number low order	04H	
Data P002H high order	00H	
Data P002H low order	00H	
Data P003H high order	01H	
CRC CHK low order	CRC CHK values to be calculated	
CRC CHK high order		

PD.05=1:

ADR	01H	
CMD	03H	
Byte number	04H	
Data F002H high order	00H	
Data F002H low order	00H	
Data F003H high order	00H	
Data F003H low order	01H	
CRC CHK low order	CPC CLIK values to be calculated	
CRC CHK high order	CRC CHK values to be calculated	

Command code: 06H write a word

For example: Write 5000(1388H) into F00AH which slave address is 02H.

Master command information

ADR	02H
CMD	06H
Data address high order	F0H
Data address low order	0AH
Data content high order	13H
Data content low order	88H
CRC CHK low order	
CRC CHK high order	CKC CHK values to be calculated

Slave response

ADR	02H
CMD	06H
Data address high order	F0H
Data address low order	0AH
Data content high order	13H
Data content low order	88H
CRC CHK low order	
CRC CHK high order	CRC CHK values to be calculated

I-4 Cyclical Redundancy Check:

Cyclical Redundancy Check—CRC mode: CRC(Cyclical Redundancy Check) is in RTU frame format, message contains an error-checking field that is based on a CRC method. The CRC field checks the contents of the entire message. The CRC field is two bytes, containing a 16-bit binary value. The CRC value is calculated by the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, an error results. The CRC is started by 0xFFFF. Then a process begins of applying successive 8-bit bytes of the message to the current contents of the register. Only the eight bits of data in each character are used for generating the CRC. Start and stop bits, and the parity bit, DO not apply to the CRC.

During generation of the CRC, each eight-bit character is exclusive XOR with the register contents. Then the result is shifted in the direction of the least significant bit (LSB), with a ZERO filled into the most significant bit (MSB) position. The LSB extracted and examined. If the LSB was 1, the register then exclusive XOR with a preset, fixed value. If the LSB was 0, no exclusive XOR takes place. This process is repeated until 8 shifts have been performed. After the last (8) shift, the next eight-bit byte is exclusive XOR with the register's current value, and the process repeats for 8 more shifts as described above. The final contents of the register, after all the bytes of the message have been applied, is the CRC value.

When CRC appended to the message, the low byte is appended first, and then the high byte.

CRC calculation program:

```
unsigned int cal_crc16 (unsigned char *data, unsigned int length)
```

```
{
    unsigned int i,crc_result=0xffff;
    while(length--)
    {
        crc_result^=*data++;
        for(i=0;i<8;i++)
        {
            if(crc_result&0x01)
            crc_result=(crc_result>>1)^0xa001;
        else
            crc_result=crc_result>>1;
        }
        }
        crc_result=((crc_result>>8);
        return(crc_result);
        }
    }
```


I-5 Communication parameter address

The chapter is about communication contents, it's used to control the inverter operation, the status of the inverter and related parameter setup. Read and write functioncode parameters (Some function codesare not able to be changed, only for the manufacturer use.). The mark rules of function code parameters address:

The group number and mark of function codesare parameter address for indication rules. High byte: F0~FF(P group), A0~AF(A group), 70~F(U group)Low byte: 00~FF

For example: P3.12, the address indicates F30C

Caution:

Group PF: Parameters could not be read or be modified.

Group U: Parameters could be read but not be modified.

Some parameters can not be changed during operation, some parameters regardless of the kind of state the inverter in, the parameters can not be changed. Change the function code parameters, pay attention to the scope of the parameters, units, and relative instructions.

Besides, if EEPROM is frequently stored, it will reduce the service life of EEPROM. In some communication mode, function code neeTZ't to be stored as long as changing the RAM value.

Group P: to achieve this function, change high order F of the function code address into 0. Group A: to achieve this function, change high order A of the function code address to be 4. Corresponding function code address are indicated below:

High byte: 00~0F(P group), 40~4F(A group)Low byte: 00~FF

For example:

Function code P3.12 can not be stored into EEPROM, address indicates to be 030C,function code A0-05 can not be stored in EEPROM, address indicates to be 4005; This address can only act writing RAM, it can not act reading, when act reading, it is invalid address. For all parameters, command code 07H can be used to achieve this function.

Stop/	running	parameter:

Parameter addr.	Parameter description
1000	* Communication setup value(-10000~10000)(Decimal)
1001	Running frequency
1002	Bus voltage
1003	Output voltage
1004	Output current
1005	Output power
1006	Output torque
1007	Running speed
1008	DI input status
1009	DO output status
100A	Al1voltage
100B	Al2 voltage

100C	AI3 voltage
100D	Counting value input
100E	Length value input
100F	Load speed
1010	PID setup
1011	PID feedback
1012	PLC process
1013	PULSE input pulse frequency, unit 0.01kHz
1014	Feedback speed, unit 0.1Hz
1015	Rest running time
1016	Al1 voltage before correction
1017	Al2 voltage before correction
1018	Al3 voltage before correction
1019	Line speed
101A	Current power on time
101B	Current running time
101C	PULSE input pulse frequency, unit 1Hz
101D	Communication setup value
101E	Actual feedback speed
101F	Main frequency X display
1020	Auxiliary frequency Y display

Caution:

The communication setup value is percentage of the relative value, 10000 corresponds to 100.00%, -10000 corresponds -100.00%.For data of dimensional frequency,the percentage value is the percentage of the maximum frequency.For data of dimensional torque, the percentage is P2.10, A2.48, A3.48, A4.48 (Torque upper digital setup, corresponding to the first, second, third, fourth motor).

Command word address	Command function
2000	0001: Forward operation
	0002: Reverse operation
	0003: Forward jog
	0004: Reverse jog
	0005: Free stop
	0006: Speed-Down stop
	0007: Fault reset

Control command input to the inverter (write-only)

Read inverter status: (read-only)

Status word address	Status word function
3000	0001: Forward operation
	0002: Reverse operation
	0003: Stop

Parameters lock password check: (if the return is the 8888H, it indicates the password checksum pass)

Password address	Contents of input password
1F00	****

Digital output terminal control: (write-only)

Command address	Command content
	BIT0: DO1 Output control
2001	BIT1: DO2 Output control
	BIT2 RELAY1 Output control
	BIT3: RELAY2 Output control
	BIT4: Y1R Output control
	BIT5: VY1
	BIT6: VY2
	BIT7: VY3
	BIT8: VY4
	BIT9: VY5

Analog output AO1 control: (write-only)

Command address	Command content
2002	0~7FFF indicates 0%~100%

Analog output AO2control: (write-only)

Command address	Command content
2003	0~7FFFindicates 0%~100%

(PULSE)output control : (write-only)

Command address	Command content
2004	0~7FFFindicates 0%~100%

Inverter fault description:

Inverter fault address	Inverter fault information
8000	0000: No fault
	0001: Reserved
	0002: Speed-up over current
	0003: Speed-down over current

0004: Constant speed over current
0005: Speed-up over voltage
0006: Speed-DOWN over voltage
0007: Constant speed over voltage
0008: Buffer resistance overload fault
0009: Under-voltage fault
000A: Inverter overload
000B: Motor overload
000C: Input phase lost
000D: Output phase lost
000E: Module overheating
000F: External fault
0010: Communication fault
0011: Contactor fault
0012: Current detection fault
0013: Motor tuning fault
0014: Encoder/PG card fault
0015: Parameter read and write fault
0016: Inverter hardware fault
0017: Motor earthing short-circuit fault
0018: Reserved
0019: Reserved
001A: Running time arrive fault
001B: User defined fault 1
001C: User defined fault 2
001D: Power on time arrive fault
001E: Load off
001F: PID feedback lost during operation
0028: Fast current limit timeout fault
0029: Motor shifting fault during operation
002A: Excessive speed deviation
002B: Motor over speed
002D: Motor over-temperature
005A: Encoder line number setup fault
005B: Encoder not connected
005C: Initial position error
005E: Speed feedback fault

Communication fault information describing data (fault code):

Communication fault address	Fault function description		
	0000: No fault 0002: Command code error	0001: Password error 0003: CRC check error	
8001	0004: Invalid address 0006: Parameter change invalid	0005: Invalid parameter 0007: The system is locked	
	0008: Operating EEPROM		

Pd group communication parameters description

	Baud rate	Factory default value	6005
Pd.00	Setup range	1 bit: MODUBS bat 0: 300BPS 2: 1200BPS 4: 4800BPS 6: 19200BPS 8: 57600BPS	ud rate 1: 600BPS 3: 2400BPS 5: 9600BPS 7: 38400BPS 9: 115200BPS

This parameter is used to set the data transfer rate between the host computer and the inverter. Caution : The baud rate of the position machine and the inverter must be consistent. Or, communication is impossible. The higher the baud rate is, the faster the communication is.

	Data format	Factory default value	0
Pd.01	Setup range	 0: No check: data 1: Even parity check 2: Odd parity check 3: No check: data 	format <8,N,2> k: data format <8,E,1> : data format <8,O,1> format <8-N-1>

The data format of the position machine and the inverter setup must be consistent, Otherwise communication is impossible.

Pd.02	Local address	Factory default value	1
	Setup range	1~247, 0 is broadca	ast address.

When the local address is set to 0, that is the broadcast address, achieve position machine's broadcast function. The local address is unique (except for the broadcast address), which is the basis for the position machine and the inverter point to point communication.

	Response delay	Factory default value	2ms
Pd.03	Setup range	0~20ms	

Response delay: It refers to the interval time from the inverter finishes receiving data to sending data to the position machine. If the response delay is less than the system processing time, then the response based on the time delay of the system processing time. If the response delay is more than the system processing time, after the system process the data, it should be delayed to wait until the response delay time is up, then sending data to host machine.

Pd.04	Communication Overtime	Factory default value	0.0 s
	Setup range	0.0 s (Invalid) 0.1~60.0s	

When the function set to 0.0s, the communication overtime parameter is invalid.

When the function code is set to valid value, if the interval time between one communication with the next communication exceeded the communications overtime, the system will report communication fault error (fault serial 16= E.CoF1). Under normal circumstances, it will be set to invalid value. If the system of continuous communication, setting parameters, you can monitor the communication status.

Pd.05	Communication protocol selection	Factory default value	0
	Setup range	0: Non standard Mo 1: Standard Modbu	odbus protocol s protocol

Pd.05=1: Select Standard Modbus protocol.

Pd.05=0: Reading command, the slave returns the number of bytes which has one more byte than the standard Modbus protocol, for specific please refer to the protocol, the part of the "5 communication data structure".

Pd.06	Communication read the current resolution	Factory default value	0
	Setup range	0: 0.01A 1: 0.1A	

To determine when the communication reads the output current, what the output current value unit is.

Appendix II Parameter Settings List

Parameters factory default values are shown as below:

Code	Description/Display	Factory setting	Set value 1 Set value 2	Page
U0	Monitor function group: U0.00-U0.61			40
U0.00	Running frequency	0.01Hz		40
U0.01	Set frequency	0.01Hz		40
U0.02	DC bus voltage	0.1V		40
U0.03	The output voltage	1V		40
U0.04	Motor output current	0.01A		40
U0.05	The output power	0.1kW		41
U0.06	Output torque	0.1%		41
U0.07	DI input status	1		41
U0.08	Y output status	1		41
U0.09	Al1 voltage	0.01V		41
U0.10	Al2 voltage	0.01V		41
U0.11	Al3 voltage	0.01V		41
U0.12	Count value	1		42
U0.13	Length value	1		42
U0.14	Load speed display	1		42
U0.15	PID set point	1		42
U0.16	PIDfeedback	1		42
U0.17	PLC stage	1		42
U0.18	PULSE pulse input frequency	0.01kHz		42
U0.19	Speed feedback	0.1Hz		42
U0.20	Surplus running time	0.1Min		42
U0.21	Al1 voltage before correction	0.001V		42
U0.22	Al2 voltage before correction	0.001V		42
U0.23	AI3 voltage before correction	0.001V		42
U0.24	Linear velocity	1m/Min		42
U0.25	Current power on time	1Min		42
U0.26	Current running time	0.1Min		42
U0.27	PULSE pulse input frequency	1Hz		42
U0.28	Communication set value	0.01%		42
U0.29	Encoder feedback speed	0.01Hz		43

U0.30	Main frequency X display	0.01Hz	43
U0.31	Auxiliary frequency Y display	0.01Hz	43
U0.32	View arbitrary memory address	1	43
U0.33	Synchronous motor rotor position	0.0°	43
U0.34	Motor temperature	1°C	43
U0.35	Target torque	0.1%	43
U0.36	Rotary variable position	1	43
U0.37	Power factor angle	0.1	43
U0.38	ABZ position	0.0	43
U0.39	VF target voltage separation	1V	43
U0.40	VF output voltage separation	1V	43
U0.41	DI input status intuitive display	-	43
U0.42	DO output status intuitive display	-	44
U0.43	DI function status intuitive display1	1	44
U0.44	DI function status intuitive display2	1	44
U0.45	Fault information	0	44
U0.46	Reserved	-	44
U0.47	Reserved	-	44
U0.48	Reserved	-	44
U0.58	Z signal counter	-	44
U0.59	Set frequency	0.01%	44
U0.60	Running frequency	0.01%	44
U0.61	Inverter status	1	44
U0.62	Current fault code	1	44
U0.63	Point to point communication	0.01%	44
U0.64	number of Slave	1	44
U0.65	Torque limit	0.01%	44
P0	Basic function group: P0.00-P0.28		45
P0.00	GP type display	-	45
P0.01	Motor 1 control mode	0	45
P0.02	Command source selection	0	45
P0.03	Main frequency source X selection	4	46
P0.04	Auxiliary frequencysource Y selection	0	47
P0.05	Auxiliary frequency source Y range selection	0	48
P0.06	Auxiliary frequency source Y range	100%	48

P0.07	Frequency source stacking selection	00		48
P0.08	Preset frequency	50.00Hz		49
P0.09	Running direction	0		49
P0.10	Maximum frequency	50.00Hz		49
P0.11	Frequency source upper limit	0		49
P0.12	Frequency upper limit	50.00Hz		49
P0.13	Frequency upper limit offset	0.00Hz		49
P0.14	Frequency lower limit	0.00Hz		50
P0.15	Carrier frequency	-		50
P0.16	Carrier frequency adjusting with temperature	0		50
P0.17	Acceleration time 1	-		50
P0.18	Deceleration time 1	-		50
P0.19	Acc./ dec. time unit	1		51
P0.21	Auxiliary frequency source offset frequency	0.00Hz		51
P0.22	Frequency command resolution	2		51
P0.23	Digital setup frequency memory selection upon stop	0		51
P0.24	Motor selection	0		52
P0.25	Acceleration / deceleration reference frequency	0		52
P0.26	Frequency UP/DOWNreference upon running	0		52
P0.27	Command source& frequency source binding	000		52
P0.28	Communication expansion card	0		53
P1	Parameters for motor 1: P1.00-P0.37			54
P1.00	Motor type selection	0		54
P1.01	Rated power	-		54
P1.02	Rated voltage	-		54
P1.03	Rated current	-		54
P1.04	Rated frequency	-		54
P1.05	Rated revolving speed	-		54
P1.06	Asynchronous motor stator resistance	-		54
P1.07	Asynchronous motor rotor resistance	-		54
P1.08	Asynchronous motor leakage inductance	-		54
P1.09	Asynchronous motor mutual inductance	-		54
P1.10	Asynchronous motor no load current	-		54
P1.27	Encoder pulses number	2500		55
P1.28	Encoder type	0		55

P1.30	ABZ incremental encoder AB phase	0		55
P1.34	Rotary transformer pole pairs	1		55
P1.36	PG dropped inspection time	0.0s		56
P1.37	Tuning selection	0		56
P2	Vector control function group: P2.00-P2.22			57
P2.00	Speed loop proportional gain 1	30		57
P2.01	Speed loop integration time1	0.50s		57
P2.02	Switching frequency1	5.00Hz		57
P2.03	Speed loop proportional gain 2	20		57
P2.04	Speed loop integration time 2	1.00s		57
P2.05	Switching frequency 2	10.00Hz		57
P2.06	Vector control slip gain	100%		57
P2.07	Speed-loop filter time	28		58
P2.08	Vector control over-excitation gain	64		58
P2.09	Torque upper limit source in speed control mode	0		58
P2.10	Torque upper limit digital setup in speed control mode	150.0%		58
P2.13	Excitation regulation proportional gain	2000		58
P2.14	Excitation regulation integration gain	1300		58
P2.15	Torque regulation proportional gain	2000		58
P2.16	Torque regulation integration gain	1300		58
P2.17	Speed loop integration attribute	0		59
P2.21	Max torque coefficient of field weakening area	100%		59
P2.22	Regenerative power limit selection	0%		59
P2.23	Regenerative power limit			59
P3	V/F control group: P3.00-P3.15			59
P3.00	V/F curve setup	0		59
P3.01	Torque boost value	-		60
P3.02	Torque boost cut-off frequency	50.00Hz		60
P3.03	Multi-point V/F frequency point F1	0.00Hz		61
P3.04	Multi-point V/F voltage point V1	0.0%		61
P3.05	Multi-point V/F frequency point F2	0.00Hz		61
P3.06	Multi-point V/F voltage point V2	0.0%		61
P3.07	Multi-point V/F frequency point F3	0.00Hz		61

P3 08	Multi-point V/E voltage point V3	0.0%		61
P3.00		0.0%		61
P3 10	VE over-excitation gain	6/		62
P3 11	VF oscillation suppression gain			62
P3 13	VE separation voltage source	0		62
P3 14	VE separation voltage digital setup	0V		62
P3.15	VF separation voltage rise time	0.0s		63
P3.16	VF separation voltage decline time	0.0s		63
P3.17	Stop mode selection for VF separation voltage	0		63
P3.18	Current limit level	150		63
P3.19	Current limit selection	1		63
P3.20	Current limit gain	20		63
P3.21	Compensation factor of Speed mutiplying current limit	50		63
P3.22	voltage limit	770.0		63
P3.23	voltage limit selection	1		63
P3.24	Frquency gain for voltage limit	30		63
P3.25	voltage gain for voltage limit	30		63
P3.26	Frquency rise threshold during voltage limit	5		63
P4	Input Terminal: P4.00-P4.39			63
P4.00	DI1terminal function selection	1		64
P4.01	DI2 terminal function selection	4		64
P4.02	DI3 terminal function selection	9		64
P4.03			1	
	DI4 terminal function selection	12		64
P4.04	DI4 terminal function selection DI5 terminal function selection	12 0		64 64
P4.04 P4.05	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection	12 0 0		64 64 64
P4.04 P4.05 P4.06	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection DI7 terminal function selection	12 0 0 0		64 64 64 64
P4.04 P4.05 P4.06 P4.07	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection DI7 terminal function selection DI8 terminal function selection	12 0 0 0 0		64 64 64 64 64
P4.04 P4.05 P4.06 P4.07 P4.08	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection DI7 terminal function selection DI8 terminal function selection DI9 terminal function selection	12 0 0 0 0 0 0		64 64 64 64 64 64
P4.04 P4.05 P4.06 P4.07 P4.08 P4.09	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection DI7 terminal function selection DI8 terminal function selection DI9 terminal function selection DI9 terminal function selection DI9 terminal function selection	12 0 0 0 0 0 0		64 64 64 64 64 64 64
P4.04 P4.05 P4.06 P4.07 P4.08 P4.09 P4.10	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection DI7 terminal function selection DI8 terminal function selection DI9 terminal function selection DI10 terminal function selection DI10 terminal function selection DI10 terminal function selection DI10 terminal function selection	12 0 0 0 0 0 0 0 0 0 0 0		64 64 64 64 64 64 64 67
P4.04 P4.05 P4.06 P4.07 P4.08 P4.09 P4.10 P4.11	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection DI7 terminal function selection DI8 terminal function selection DI9 terminal function selection DI10 terminal function selection DI9 terminal function selection DI10 terminal function selection DI10 terminal function selection DI110 terminal function selection DI filter time Terminal command mode	12 0 0 0 0 0 0 0 0.010s 0		64 64 64 64 64 64 64 67 67
P4.04 P4.05 P4.06 P4.07 P4.08 P4.09 P4.10 P4.11 P4.12	DI4 terminal function selection DI5 terminal function selection DI6 terminal function selection DI7 terminal function selection DI8 terminal function selection DI9 terminal function selection DI10 terminal function selection DI10 terminal function selection DI10 terminal function selection DI filter time Terminal command mode Terminal UP/DN variation rate	12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		64 64 64 64 64 64 64 67 67 70

r			
P4.14	AI curve 1 minimum input corresponding setup	0.0%	70
P4.15	Al curve 1 maximum input	10.00V	70
P4.16	Al curve 1 maximum input corresponding setup	100.0%	70
P4.17	AI1 filter time	0.10s	70
P4.18	Al curve 2 minimum input	0.00V	71
P4.19	Al curve 2 minimum input corresponding setup	0.0%	71
P4.20	Al curve 2 maximum input	10.00V	71
P4.21	Al curve 2 maximum input corresponding setup	100.0%	71
P4.22	Al2 filter time	0.10s	71
P4.23	Al curve 3 minimum input	0.10V	71
P4.24	AI curve 3 minimum input corresponding setup	0.0%	71
P4.25	AI curve3 maximum input	4.00V	72
P4.26	Al curve 3 maximum input corresponding setup	100.0%	72
P4.27	Al3filter time	0.10s	72
P4.28	PULSE minimum input	0.00kHz	72
P4.29	PULSE minimum input corresponding setup	0.0%	72
P4.30	PULSE maximum input	50.00	72
P4.31	PULSE maximum input corresponding setup	100.0%	72
P4.32	PULSE filter time	0.10s	72
P4.33	Al curve selection	321	72
P4.34	Al below minimum input setup selection	000	73
P4.35	DI1 delay time	0.0s	73
P4.36	DI2 delay time	0.0s	73
P4.37	DI3 delay time	0.0s	73
P4.38	DI terminal effective mode selection 1	00000	73
P4.39	DI terminal effective mode selection 2	00000	74
P5	Output terminal: P5.00-P5.22		 74
P5.00	Y1 terminal output mode selection	0	75
P5.01	Y1R selection (open collector output terminal)	0	 75
P5.02	Relay output selection(TA1.TB1.TC1)	2	 75
P5.03	Expansion card relay output selection(TA2.TB2.TC2)	0	75
P5.04	DO1 output selection(open collector output terminal)	1	75

P5.05	Expansion cardDO2 output selection	4		75
P5.06	Y1P output selection (pulse output terminal)	0		77
P5.07	AO1 output selection	0		77
P5.08	AO2 output selection	1		77
P5.09	Y1P maximum output frequency	50.00kHz		78
P5.10	AO1 zero offset	0.0%		78
P5.11	AO1 gain	1.00		78
P5.12	AO2 zero offset	0.00%		78
P5.13	AO2 gain	1.00		78
P5.17	Y1R output delay time	0.0s		78
P5.18	RELAY1 output delay time	0.0s		78
P5.19	RELAY2 output delay time	0.0s		78
P5.20	DO1 output delay time	0.0s		78
P5.21	DO2 output delay time	0.0s		78
P5.22	DO output terminal valid state selection	00000		78
P6	Start/stop control: P6.00-P6.15			79
P6.00	Start mode	0		79
P6.01	Revolving speed tracking mode	0		79
P6.02	Revolving speed tracking speed	20		80
P6.03	Start frequency	0.00Hz		80
P6.04	Start frequency holding time	0.0s		80
P6.05	Start dc braking current /pre-excitation current	0%		80
P6.06	Start dc braking time /pre-excitation time	0.0s		80
P6.07	Acceleration/deceleration mode	0		80
P6.08	S-curve initial-segment time proportion	30.0%		81
P6.09	S-curve end-segment time proportion	30.0%		81
P6.10	Stop mode	0		82
P6.11	DC braking initial frequency at stop	0.00Hz		82
P6.12	DC braking waiting time at stop	0.0s		82
P6.13	DC braking current at stop	0%		82
P6.14	DC braking time at stop	0.0s		82
P6.15	Brake utilization ratio	100%		83
P6.18	Catching a spinning motor current limit			83

r		r	r	
P6.21	Demagnetization time for svc			83
P6.23	Overexcitation selection	0		83
P6.24	Overexcitation suppression current gain	0		83
P6.25	Overexcitation gain	1.25		
P7	Keyboard and display: P7.00-P7.14			83
P7.01	MF/REV key function selection	0		83
P7.02	STOP/RESET function	1		84
P7.03	LED running display parameter 1	1F		84
P7.04	LED running display parameter 2	0		84
P7.05	LED stop display parameter	0		84
P7.06	Load speed coefficient	1.0000		85
P7.07	Inverter module radiator temperature			85
P7.08	product ID			85
P7.09	Accumulative running time	0h		85
P7.10	Performance version number	-		85
P7.11	Software version No.	-		85
P7.12	Load speed display decimal digits	1		85
P7.13	Accumulative power-on time	-		85
P7.14	Accumulative power consumption	-		85
P8	Auxiliary Function: P8.00-P8.53			86
P8.00	Jog running frequency	2.00Hz		86
P8.01	Jog acceleration time	20.0s		86
P8.02	Jog deceleration time	20.0s		86
P8.03	Acceleration time 2	10.0s		86
P8.04	Deceleration time 2	10.0s		86
P8.05	Acceleration time 3	10.0s		86
P8.06	Deceleration time 3	10.0s		86
P8.07	Acceleration time 4	10.0s		86
P8.08	Deceleration time 4	10.0s		86
P8.09	Hopping frequency 1	0.00Hz		86
P8.10	Hopping frequency 2	0.00Hz		86
P8.11	Hopping frequency amplitude	0.00Hz		86
P8.12	Dead zone time of forward & reverse rotations	0.0s		87
	1			

P8.13	Reverse rotation control	0		87
P8.14	Set frequency below lower limit running mode	0		87
P8.15	Droop control	0.00Hz		87
P8.16	Accumulative power-on time arrival setup	0h		87
P8.17	Accumulative running time arrival setup	0h		88
P8.18	Start protection selection	0		88
P8.19	Frequency detection value (FDT1)	50.00Hz		88
P8.20	Frequency detection hysteresis value (FDT1)	5.0%		88
P8.21	Frequency arrival detection amplitude	0.0%		89
P8.22	Acc./dec. hopping frequency validity	0		89
P8.25	Acc. time1 & acc. time 2 frequency switching point	0.00Hz		89
P8.26	Dec. time1 & dec. time 2 frequency switching point	0.00Hz		90
P8.27	Terminal jog priority	0		90
P8.28	Frequency detection value(FDT2)	50.00Hz		90
P8.29	Frequency detection hysteresis value(FDT2)	5.0%		90
P8.30	Random frequency arrival detection value1	50.00Hz		90
P8.31	Random frequency arrival detection range1	0.0%		90
P8.32	Random frequency arrival detection value2	50.00Hz		90
P8.33	Random frequency arrival detection range2	0.0%		90
P8.34	Zero-current detection level	5.0%		91
P8.35	Zero-current detection delay time	0.10s		91
P8.36	Output current overlimit value	200.0%		92
P8.37	Output current overlimit detection delay time	0.00s		92
P8.38	RanYm current arrival 1	100.0%		92
P8.39	RanYm current arrival range1	0.0%		92
P8.40	RanYm current arrival 2	100.0%		92
P8.41	RanYm current arrival range2	0.0%		92
P8.42	Timing function selection	0		93
P8.43	Running time timing selection	0		93
P8.44	Timing running time	0.0Min		93
P8.45	Al1 input voltage protection value lower limit	3.10V		93
P8.46	Al1 input voltage protection value upper limit	6.80V		93
P8.47	Module temperature arrival	75 ℃		93
P8.48	Cooling fan control	0		93

P8.49	Wake-up frequency	0.00Hz		94
P8.50	Wake-up delay time	0.0s		94
P8.51	Sleep frequency	0.00Hz		94
P8.52	Sleep delay time	0.0s		94
P8.53	The running time arrival	0.0Min		94
P9	Overload and Protection : P9.00-P9.70			94
P9.00	Motor overload protection selection	1		94
P9.01	Motor overload protection gain	1.00		94
P9.02	Motor overload pre-alarm coefficient	80%		94
P9.03	Over-voltage stall gain	0		94
P9.04	Over-voltage stall protection voltage	130%		95
P9.07	Ground short circuit protection upon power-on	1		95
P9.09	Fault auto reset times	0		95
P9.10	Fault auto reset FAULT DO selection	0		95
P9.11	Fault auto reset interval	1.0s		95
P9.12	Input phase lack protection selection	11		95
P9.13	Output phase lack protection selection	1		96
P9.14	The first fault type	-		96
P9.15	The second fault type	-		96
P9.16	The latest fault type	-		96
P9.17	Third fault frequency	-		97
P9.18	Third fault current	-		97
P9.19	Third fault bus voltage	-		97
P9.20	Third fault input terminal	-		97
P9.21	Third fault output terminal	-		97
P9.22	Third fault inverter state	-		97
P9.23	Third fault power-on time	-		97
P9.24	Third fault running time	-		97
P9.27	Second fault frequency	-		97
P9.28	Second fault current	-		97
P9.29	Second fault bus voltage	-		97
P9.30	Second fault input terminal	-		97
P9.31	Second fault output terminal	-		98
P9.32	Second fault inverter state	-		98

				Sector Sector
P9.33	Second fault power-on time	-		98
P9.34	Second fault running time	-		98
P9.37	First fault frequency	-		98
P9.38	First fault current	-		98
P9.39	First fault bus voltage	-		98
P9.40	First fault input terminal	-		98
P9.41	First fault output terminal	-		98
P9.42	First fault inverter state	-		98
P9.43	First fault power-on time	-		98
P9.44	First fault running time	-		98
P9.47	Fault protection action selection 1	00000		98
P9.48	Fault protection action selection 2	00000		99
P9.49	Fault protection action selection 3	00000		99
P9.50	Fault protection action selection 4	00000		100
P9.54	Continued to run when fault frequency selection	0		100
P9.55	Abnormal backup frequency	100.0%		100
P9.56	Motor temperature sensor	0		100
P9.57	Motor overheating protection threshold	110 ℃		100
P9.58	Motor overheating pre-alarm threshold	90 °C		100
P9.59	Transient stop selection	0		101
P9.60	Transient stop action pause protection voltage	90.0%		101
P9.61	Transient stop voltage recovery judgment time	0.50s		101
P9.62	Transient stop action judgment voltage	80.0%		101
P9.63	Load-off protection selection	0		102
P9.64	Load-off detection level	10.0%		102
P9.65	Load-off detection time	1.0s		102
P9.67	Over speed detection value	20.0%		102
P9.68	Over speed detection time	1.0s		102
P9.69	Excessive speed deviation detection value	20.0%		102
P9.70	Excessive speed deviation detection time	5.0s		102
PA	PID Function group: PA.00-PA.28		·	102
PA.00	PID reference source	0		103
PA.01	PID reference value	50.0%		103

PA.02	PID feedback source	0			103
PA.03	PID action direction	0			103
PA.04	PID reference feedback range	1000			104
PA.05	Proportional gain Kp1	20.0			104
PA.06	Integration time Ti1	2.00s			104
PA.07	Differential time Td1	0.000s			104
PA.08	PID cutoff frequency of reverse rotation	2.00Hz			104
PA.09	PID deviation limit	0.0%			104
PA.10	PID differential amplitude limit	0.10%			104
PA.11	PID reference change duration	0.00s			104
PA.12	PID feedback filter time	0.00s			105
PA.13	PID output filter time	0.00s			105
PA.14	Reserved	-			105
PA.15	Proportional gain Kp2	20.0			105
PA.16	Integration time Ti2	2.00s			105
PA.17	Differential time Td2	0.000s			105
PA.18	PID parameter switching condition	0			105
PA.19	PID parameter switching deviation1	20.0%			105
PA.20	PID parameter switching deviation2	80.0%			105
PA.21	PID initial value	0.0%			106
PA.22	PID initial value retention time	0.00s			106
PA.23	Output deviation forward maximum value	1.00%			106
PA.24	Output deviation reverse maximum value	1.00%			106
PA.25	PID integration attribute	00			106
PA.26	PID feedback loss detection value	0.0%			107
PA.27	PID feedback loss detection time	0s			107
PA.28	PID stop operation	0			107
Pb	Swing Frequency, Fixed Length and Counting:	Pb.00-Pb.09	9	1	107
Pb.05	Setup length	1000m			108
Pb.06	Actual length	0m			108
Pb.07	Pulse number per meter	100.0			108
Pb.08	Counting value setup	1000			108
Pb.09	Designated counting value	1000			108
PC	MS Speed Function & Simple PLC Function · PC (0-PC.51	1	1	109
-	,				,-

PC.00	MS command 0	0.0%		109
PC.01	MS command 1	0.0%		109
PC.02	MS command 2	0.0%		109
PC.03	MS command 3	0.0%		109
PC.04	MS command 4	0.0%		109
PC.05	MS command 5	0.0%		109
PC.06	MS command 6	0.0%		109
PC.07	MS command 7	0.0%		109
PC.08	MS command 8	0.0%		109
PC.09	MS command 9	0.0%		109
PC.10	MS command 10	0.0%		109
PC.11	MS command 11	0.0%		109
PC.12	MS command 12	0.0%		109
PC.13	MS command 13	0.0%		109
PC.14	MS command 14	0.0%		109
PC.15	MS command 15	0.0%		109
PC.16	PLC running mode	0		110
PC.17	PLC power off memory selection	00		111
PC.18	PLC 0segment running time	0.0s(h)		111
PC.19	PLC 0segment acc./dec. time	0		111
PC.20	PLC 1segment running time	0.0s(h)		111
PC.21	PLC 1segment acc./dec. time	0		111
PC.22	PLC 2 segment running time	0.0s(h)		111
PC.23	PLC 2 segment acc./dec. time	0		111
PC.24	PLC 3 segment running time	0.0s(h)		111
PC.25	PLC 3 segment acc./dec. time	0		111
PC.26	PLC 4 segment running time	0.0s(h)		111
PC.27	PLC 4 segment acc./dec. time	0		111
PC.28	PLC 5 segment running time	0.0s(h)		111
PC.29	PLC 5 segment acc./dec. time	0		111
PC.30	PLC 6 segment running time	0.0s(h)		111
PC.31	PLC 6 segment acc./dec. time	0		111
PC.32	PLC 7 segment running time	0.0s(h)		111

PC.33	PLC 7 segment acc./dec. time	0			111
PC.34	PLC 8 segment running time	0.0s(h)			111
PC.35	PLC 8 segment acc./dec. time	0			111
PC.36	PLC 9 segment running time	0.0s(h)			111
PC.37	PLC 9 segment acc./dec. time	0			111
PC.38	PLC 10 segment running time	0.0s(h)			111
PC.39	PLC 10 segment acc./dec. time	0			111
PC.40	PLC 11 segment running time	0.0s(h)			111
PC.41	PLC 11 segment acc./dec. time	0			111
PC.42	PLC 12 segment running time	0.0s(h)			112
PC.43	PLC 12 segment acc./dec. time	0			112
PC.44	PLC 13 segment running time	0.0s(h)			112
PC.45	PLC 13 segment acc./dec. time	0			112
PC.46	PLC 14 segment running time	0.0s(h)			112
PC.47	PLC 14 segment acc./dec. time	0			112
PC.48	PLC 15 segment running time	0.0s(h)			112
PC.49	PLC 15 segment acc./dec. time	0			112
PC.50	Running time unit	0			112
PC.51	MS command 0 reference mode	0			112
Pd	Communication function group: Pd.00-Pd.29				112
Pd.00	Baud rate	6005			112
Pd.01	Data format	0			113
Pd.02	Local address	1			113
Pd.03	Response delay	2			113
Pd.04	Excessive communication time	0.0			113
Pd.05	Data transformat selection	30			113
Pd.06	Communication read current resolution	0			114
PE	User customization function code: PE.00-PE.29)			114
PE.00	User function code 0	P0.01			114
PE.01	User function code 1	P0.02			114
PE.02	User function code 2	P0.03			114
PE.03	User function code 3	P0.07			114
PE.04	User function code 4	P0.08			114
			•	·	

PE.05	User function code 5	P0.17			114
PE.06	User function code 6	P0.18			114
PE.07	User function code 7	P3.00			114
PE.08	User function code 8	P3.01			114
PE.09	User function code 9	P4.00			114
PE.10	User function code 10	P4.01			114
PE.11	User function code 11	P4.02			114
PE.12	User function code 12	P5.04			114
PE.13	User function code 13	P5.07			114
PE.14	User function code 14	P6.00			114
PE.15	User function code 15	P6.10			114
PE.16	User function code 16	P0.00			114
PE.17	User function code 17	P0.00			114
PE.18	User function code 18	P0.00			114
PE.19	User function code 19	P0.00			114
PE.20	User function code 20	P0.00			114
PE.21	User function code 21	P0.00			114
PE.22	User function code 22	P0.00			114
PE.23	User function code 23	P0.00			114
PE.24	User function code 24	P0.00			114
PE.25	User function code 25	P0.00			114
PE.26	User function code 26	P0.00			115
PE.27	User function code 27	P0.00			115
PE.28	User function code 28	P0.00			115
PE.29	User function code 29	P0.00			115
PP	Function code management: PP.00-PP.04			115	
PP.00	User password	0			115
PP.01	Parameter initialization	0			115
PP.02	Parameter display attribute	11			116
PP.03	Personalized parameter display selection	00			116
PP.04	Function codes modification attribute	0			117
A0	Torque control group : A0.00-A0.08			117	
A0.00	Speed/ torque control mode selection	0			117

A0.01	Torque setup source selection in torque control mode	0		117
A0.03	Torque digital setup in torque control mode	150%		117
A0.05	Torque control forward maximum frequency	50.00Hz		117
A0.06	Torque control reverse maximum frequency	50.00Hz		117
A0.07	Torque control acc. time	0.00s		117
A0.08	Torque control dec. time	0.00s		118
A1	Virtual IO: A1.00-A1.21			118
A1.00	Virtual VDI1 function selection	0		118
A1.01	Virtual VDI2 function selection	0		118
A1.02	Virtual VDI3 function selection	0		118
A1.03	Virtual VDI4 function selection	0		118
A1.04	Virtual VDI5 function selection	0		118
A1.05	Virtual VD1 terminal valid state set mode	00000		118
A1.06	Virtual VD1 terminal state	00000		119
A1.07	Al1 as DI function selection	0		120
A1.08	Al2 as DI function selection	0		120
A1.09	Al3 as DI function selection	0		120
A1.10	AI as DI valid mode selection	000		120
A1.11	Virtual VDO1 output function	0		121
A1.12	Virtual VDO2 output function	0		121
A1.13	Virtual VDO3 output function	0		121
A1.14	Virtual VDO4 output function	0		121
A1.15	Virtual VDO5 output function	0		121
A1.16	VDO1 output delay time	0.0s		121
A1.17	VDO2 output delay time	0.0s		121
A1.18	VDO3 output delay time	0.0s		121
A1.19	VDO4 output delay time	0.0s		121
A1.20	VDO5 output delay time	0.0s		121
A1.21	VDO output terminal valid state selection	00000		121
A2	The second motor control: A2.00-A2.65			122
A2.00	Motor type selection	0		122
A2.01	Rated power	-		122
A2.02	Rated voltage	-		122

A2.45	Speed-loop filtering time	0.000s		124
A2.46	Vector control over-excitation gain	64		124
A2.47	Torque upper limit source in speed control mode	0		124
A2.48	Torque upper limit digital setup in speed control mode	150.0%		124
A2.51	Excitation regulation proportional gain	2000		124
A2.52	Excitation regulation integration gain	1300		124
A2.53	Torque regulation proportional gain	2000		124
A2.54	Torque regulation integration gain	1300		124
A2.55	Speed loop integration attribute	0		125
A2.56	Synchronous motor field weakening mode	1		125
A2.57	Synchronous motor field weakening depth	100%		125
A2.58	Maximum field weakening current	50%		125
A2.59	Field weakening auto regulation gain	100%		125
A2.60	Field weakening integration multiples	2		125
A2.61	Motor2 control mode	0		125
A2.62	Motor 2 acc./dec. time selection	0		125
A2.63	Motor 2 torque hoist	-		125
A2.65	Motor 2 oscillation suppression gain	-		125
A5	Control optimization group: A5.00-A5.11			131
A5.00	DPWM switching frequency upper limit	12.00Hz		131
A5.01	PWM modulation mode	0		132
A5.02	Dead-zone compensation mode selection	1		132
A5.03	Random PWM depth	0		132
A5.04	Rapid current-limiting enable	1		132
A5.05	Voltage over modulation coefficient	5		132
A5.06	Under-voltage point setup	350		132
A5.08	Low speed carrier frquency	0		133
A5.09	Over-voltage point setup	Model determinat ion		133
A5.11	Dc injection braking threshold at low speed	0.30		
A6	Al curve setup: A6.00-A6.29			133
A6.00	Al curve 4 minimum input	0.00V		133
A6.01	Al curve 4 minimum input corresponding setup	0.0%		133

A6.02	Al curve 4inflection point 1 input	3.00V			133
A6.03	Al curve 4 inflection point 1 input corresponding setup	30.0%			133
A6.04	Al curve 4 inflection point 2 input	6.00V			133
A6.05	Al curve 4 inflection point 2 input corresponding setup	60.0%			133
A6.06	Al curve 4 maximum input	10.00V			133
A6.07	AI curve 4 maximum input corresponding setup	100.0%			133
A6.08	Al curve 4 minimum input	-10.00V			133
A6.09	AI curve 5 minimum input corresponding setup	-100.0%			133
A6.10	Al curve 5 inflection point 1 input	-3.00V			133
A6.11	Al curve 5 inflection point 1 input corresponding setup	-30.0%			133
A6.12	Al curve 5 inflection point 2 input	3.00V			133
A6.13	AI curve 5 inflection point 2 input corresponding setup	30.0%			133
A6.14	AI curve 5 maximum input	10.00V			133
A6.15	Al curve 5 maximum input corresponding setup	100.0%			133
A6.24	Al1 set hopping point	0.0%			134
A6.25	Al1 set hopping amplitude	0.5%			134
A6.26	Al2 set hopping point	0.0%			134
A6.27	Al2 set hopping amplitude	0.5%			134
A6.28	Al3 set hopping point	0.0%			134
A6.29	Al3 set hopping amplitude	0.5%			134
A7	User programmable card parameters: A7.00-A7.09			134	
A7.00	User programmable function selection	0			134
A7.01	Control board output terminal control mode selection	-			134
A7.02	Programmable card expansion AI3x function configuration	-			135
A7.03	Y1P output	0.0%			135
A7.04	AO1 output	0.0%			135
A7.05	Switch output	000			135
A7.06	Programmable card frequency setup	0.0%			135
A7.07	Programmable card torque setup	0.0%			135
A7.08	Programmable card command setup	0			135
A7.09	Programmable card fault setup	0			135
A8	Point to point communication : A8.00-8.11				

A8.01Master slave selection0A8.02Master slave information exchange011A8.03Message frame selection0A8.04Receive data zero offset torque0.00%A8.05Receive data gain torque1.00A8.06Communication interrupt detection time1.0sA8.07Communication Master data transmission cycle0.00%A8.08Receive data zero offset frequency0.00%A8.09Receive data gain frequency1.00A8.10ReverseA8.11view0.5Hz
A8.02 Master slave information exchange 011 A8.03 Message frame selection 0 A8.04 Receive data zero offset torque 0.00% A8.05 Receive data gain torque 1.00 A8.06 Communication interrupt detection time 1.0s A8.07 Communication Master data transmission cycle 0.001s A8.08 Receive data gain frequency 0.00% A8.09 Receive data gain frequency 1.00 A8.10 Reverse A8.11 view 0.5Hz
A8.03 Message frame selection 0 A8.04 Receive data zero offset torque 0.00% A8.05 Receive data gain torque 1.00 A8.06 Communication interrupt detection time 1.0s A8.07 Communication Master data transmission cycle 0.001s A8.08 Receive data zero offset frequency 0.00% A8.09 Receive data gain frequency 1.00 A8.10 Reverse A8.11 view 0.5Hz
A8.04 Receive data zero offset torque 0.00% A8.05 Receive data gain torque 1.00 A8.06 Communication interrupt detection time 1.0s A8.07 Communication Master data transmission cycle 0.001s A8.08 Receive data zero offset frequency 0.00% A8.09 Receive data gain frequency 1.00 A8.10 Reverse A8.11 view 0.5Hz
A8.05 Receive data gain torque 1.00 A8.06 Communication interrupt detection time 1.0s A8.07 Communication Master data transmission cycle 0.001s A8.08 Receive data zero offset frequency 0.00% A8.09 Receive data gain frequency 1.00 A8.10 Reverse A8.11 view 0.5Hz
A8.06 Communication interrupt detection time 1.0s A8.07 Communication Master data transmission cycle 0.001s A8.08 Receive data zero offset frequency 0.00% A8.09 Receive data gain frequency 1.00 A8.10 Reverse A8.11 view 0.5Hz
A8.07 Communication Master data transmission cycle 0.001s A8.08 Receive data zero offset frequency 0.00% A8.09 Receive data gain frequency 1.00 A8.10 Reverse
A8.08 Receive data zero offset frequency 0.00% A8.09 Receive data gain frequency 1.00 A8.10 Reverse A8.11 view 0.5Hz
A8.09 Receive data gain frequency 1.00 A8.10 Reverse
A8.10 Reverse 0.5Hz
A8.11 view 0.5Hz
Ao.TT VIEW 0.5HZ
40 Extended function means 40.00 40.00
A9 Extended function group: A9.00-A9.09
A9.00 0 135
A9.01 0 136
A9.02 0 136
A9.03 0 136
A9.04 0 136
A9.05 0 136
A9.06 0 136
A9.07 0 136
A9.08 0 136
A9.09 0 136
AC AIAO correction: AC.00-AC.19 136
Factory
AC.00 Al1measured voltage 1 136 calibration
AC.01 Al1 display voltage 1 Factory 136
calibration
AC.02 Al1 measured voltage 2 Factory 136
Factory
AC.03 All display voltage 2 136 all display voltage 2
AC.04 Al2 measured voltage 1 Factory 136
calibration
AC.05 Al2 display voltage 1 Factory 136
AC.06 Al2 measured voltage 2 Factory 136

		colibration		
		calibration		
AC.07	Al2 display voltage 2	Factory		136
		calibration		
AC.08	Al3 measured voltage 1	Factory		136
		calibration		
AC 00	Al3 display voltage 1	Factory		136
710.00	Alo display voltage 1	calibration		
AC 10	Al2 maggured voltage 2	Factory		136
A0.10	Alo measured voltage 2	calibration		
AC 11	Al2 display voltage 2	Factory		136
AC.TT	AI3 display voltage 2	calibration		
10.10		Factory		137
AC.12	AU1 target voltage 1	calibration		
		Factory		137
AC.13	A01 measured voltage 1	calibration		
		Factory		137
AC.14	A01 target voltage 2	calibration		
		Factory		137
AC.15	A01 measured voltage 2	calibration		
		Factory		137
AC.16	A02 target voltage 1	calibration		
AC.17		Factory	1	137
	A02 measured voltage 1	calibration		
AC.18		Factory		137
	A02 target voltage 2	calibration		
		Factory	1 1	137
AC.19	A02 measured voltage 2			
		campiation		

Appendix III Recommended accessories selection

Motor adapter	Brake unit model	Number of brake units	Resistance configuration	Resistance quantity	brake torque(10%ED) %
0.40	inverter inlay		70W 750Ω	1	230
0.75	inverter inlay		100W 300Ω	1	130
1.5	inverter inlay		200W 300 Ω	1	125
2.2	inverter inlay		200W 200Ω	1	135
3.7	inverter inlay		400W 150 Ω	1	135
5.5	inverter inlay		500W 100 Ω	1	135
7.5	inverter inlay		800W 75Ω	1	130
11	inverter inlay		1000W 60Ω	1	135
15	inverter inlay		1560W 45Ω	1	125
18.5	inverter inlay		4800W 32Ω	1	125
22	inverter inlay		4800W 27.2 Ω	1	125
30	DBU-4030	1	6000W 20Ω	1	125
37	DBU-4045	1	9600W 16Ω	1	125
45	DBU -4045	1	9600W 13.6Ω	1	125
55	DBU -4030	2	6000W 20Ω	2	135
75	DBU -4045	2	9600W 13.6Ω	2	145
110	DBU -4030	3	9600W 20Ω	3	100
160	DBU -4220	1	40KW 3.4 Ω	1	140
220	DBU -4220	1	60KW 3.2Ω	1	110
300	DBU -4220	2	40KW4.5Ω	2	110
600	DBU -4220	4	40KW 4.5Ω	4	110

1Brake unitbraking resistorselection:

Product Feedback

Dear users:

Thank you for your interest and purchasing of SANYU products!

SANYU adheres to the "user-centric", based on customer demand, and offering full customer service to enhance customer satisfaction.

In order to provide better service for you, we hope to be able to timely access to your personal information and your purchased SANYU products information . We hope to learn about your present and future demand for SANYU products as well as your valuable feedback of the products. In order to help you get our service faster and more convenient, please visit our company web site <u>www.sanyuacdrive.com</u> for information feedback.

- 1) Download the product manual you need.
- Read and Download all kinds of product technical information, such as operation instruction, product specification, features, FAQ, etc.
- 3) Application cases.
- 4) Technical consultation, on-line feedback
- 5) Feedback product information and customer requirement information by e-mail.
- Inquiry for the latest products, obtain various types of warranty and extend additional service, etc.