

TS600 Series Programmable Logic Controller

Command Manual

No.	Change description	Version	Release date
1	First release.	V1.0	March 2024
2	 Updated the timing diagram of the ALT command in section 3.2.6, the functional diagram of MC_Phasing in section 3.21.45, the illustration of MC axis control acceleration and deceleration commands, and the diagram of axis state machine in section 3.21. Added descriptions of the MC_SavecamTable command and its error codes in section 3.21.37, error codes for single-axis and master-slave axis commands in section 3.21.33 and 3.21.47, instructions for MC_GetCamTablePhase, MC_GearInPos, and MSC commands in section 3.21.39, 3.21.42, and 3.27.6. Revised the descriptions in sections 3.25.15, 3.25.16, and 3.25.17. Added pulse descriptions for MC_SyncMoveVelocity and MC_MoveVelocityCSV commands. Updated the content of section 3.22. Updated the description of the DCNT command in section 3.6.12. Updated the description of usage examples in 3.18.2 SORTR. Updated the usage descriptions for 3.23.1-ReadSDO_CO and 3.23.2-WriteSDO_CO. Introduced new CAN free port commands: 3.23.4-CANfree_Recv and 3.23.5-CANfree_Send. Updated the description of the S4+7 operand for position-based PID mode in section 3.27.2. Updated the precautions for the DUTY command in section 3.29.3. Added descriptions for motion control probe commands in section 3.21.23. Introduced new commands: MC_GetCamTableVelRatio in section 3.21.40, MB_TCP_Master in 3.25.19, RS&SR in 3.1.6, ROUND in 3.15.17, AMUL in 3.8.5, MC_GroupPause in 3.21.54, MC_TorqueControl in 3.21.31, and MB_Master in 3.25.18. Updated the Error Code List in section 4.2.2. 	V1.1	September 2024

Preface

Data Introduction

The TS600 series PLC is a small compact and high-performance PLC with a full function model that supports EtherCAT master stations. Its body comes with 16 inputs and 16 outputs. The TS600 series PLC meets various needs of users for small and medium-sized automated devices, and applies to suitable for scenarios such as demanding volume, multi-axis operation control, temperature control, and communication networking.

This manual introduces basic commands and command examples, as well as complex application commands and command examples, which are used in product programming applications.

Targeted Readers

This manual applies to the following readers:

- Electrical engineers
- Software engineers
- Application engineers

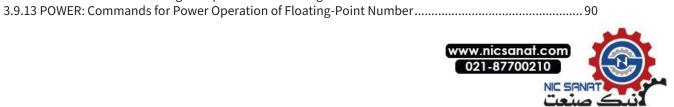
Initial Use

The users using this product for the first time should read this manual carefully first. If you have any doubts about some specific functions and performance, feel free to consult our technical support personnel for assistance, which is beneficial for the correct use of this product.

List of Related Manuals

Manual Type Manual Name		Manual Version
User's Manual	TS600 Series Programmable Logic Controller User Manual	V1.1
Programming and Application Manual	TS600 Series Programmable Logic Controller Programming and Application Manual	V1.1

This manual is not delivered along with the product. To obtain an electronic version of the PDF file, you can: Log in to the official website of INVT at www.invt.com to download PDF files.



Contents

1 Command Overview	
1.1 Command Composition	
1.2 List of Soft Elements and Variables	
1.3 Soft Element	3
1.3.1 Bit Soft Elements	3
1.3.2 Word Soft Elements	4
1.3.3 Special Soft Elements	5
1.3.4 Bit Operation of Word Elements	
1.4 Variables	
1.4.1 Custom Variables	6
1.4.2 Defining Variables	6
1.4.3 Defining Arrays	8
1.4.4 Defining Structure	8
1.4.5 How to Use Variables	9
1.5 Special Functions	9
1.5.1 Graphic Block Commands	9
1.5.2 Library Functions	10
1.5.3 C Language Functions	13
2 Command Reference Sheet	17
3 Command Instructions	25
3.1 Contact Logic Command	25
3.1.1 Command list	25
3.1.2 LD&LDI&LDP&LDF: Contact Operation Commands	26
3.1.3 AND&ANI&ANDP&ANDF: Serial Contact Operation Commands	27
3.1.4 OR&ORI&ORP&ORF: Parallel Contact Operation Commands	28
3.1.5 ANB&ORB: Operation Commands for Energy Flow Block Connection	29
3.1.6 EU&ED: Energy Flow Edge Detection Commands	30
3.1.7 RS&SR: Set and Reset Priority Commands	31
3.2 Output Control Command	32
3.2.1 Command list	32
3.2.2 OUT: Coil Output Commands	32
3.2.3 SET: Coil Set Commands	33
3.2.4 RST: Coil Reset Commands	
3.2.5 PLS&PLF: Pulse Edge Detection Coil Commands	
3.2.6 ALT: Alternating Output Commands	35
3.2.7 NOP: Null Operation Commands	
3.3 Energy Flow Control Command	36
3.3.1 INV: Energy Flow Inversion Commands	36
3.4 SFC Command	
3.4.1 Command list	
3.4.2 STL: SFC State Load Commands	37
3.4.3 SET/RST/OUT S (label): SFC State Operation Commands	38
3.4.4 RET: SFC Program Segment End	38
3.5 Program Flow Control Command	39
3.5.1 Command list	39
3.5.2 FOR: Loop Operation	40
3.5.3 NEXT: Loop Return	
3.5.4 LBL: Jump Label Definition Commands	
3.5.5 CJ: Conditional Jump Commands	42
3.5.6 CFEND: Conditional Return of Main User Program	43
3.5.7 WDT: User Program Watchdog Reset	
3.5.8 EI: Interrupt Enabling	44
3.5.9 DI: Interrupt Disabling	
3.5.10 CIRET: Conditional Return of User Interrupt Program	45

TS600 Series Programmable Logic Controller Command Manual	Contents
3.5.11 STOP: User Program Stop	46
3.5.12 CALL: User Subroutine Call	
3.5.13 CSRET: Conditional Return of User Subroutine	47
3.5.14 IRQ_SET: Interrupt Enable Control Command	
3.6 Timing and Counting Command	
3.6.1 Command list	
3.6.2 TON: ON Delay Timing Commands	
3.6.3 TONR: Memory-Type ON Delay Timing Commands	
3.6.4 TOF: OFF Delay Timing Commands	
3.6.5 TMON: Non-Triggering Timing Commands	
3.6.6 TPR: Pulse Timing Commands	
3.6.7 TONG: ON Delay Timing Commands	
3.6.8 TOFG: OFF Delay Timing Commands	
3.6.9 TACR: Temporal Accumulation Timing Commands	
3.6.10 CTU: 16-Bit Increment Counter Commands	
3.6.11 CTR: 16-Bit Loop Counter Commands	
3.6.12 DCNT: 32-Bit Increment-Decrement Counter Commands	
3.7 Data Transmission Command	
3.7.1 Command list	
3.7.2 MOV: Word/Doubleword Data Transmission Commands	
3.7.3 RMOV: Floating-Point Number Data Transmission Commands	
3.7.5 FMOV: Data Block Word/Doubleword Stuffing Commands	
3.7.6 SMOV: Word/Doubleword Shift Transmission Commands	
3.7.7 SWAP: High-Low Byte Swap Commands	
3.7.8 XCH: Word Exchange Commands	
3.7.9 PUSH: Data Push Commands	
3.7.10 FIFO: First In First Out Commands	
3.7.11 LIFO: Last In First Out Commands	
3.7.12 WSFR: Word String Shift Right Commands	
3.7.13 WSFL: Word String Shift Left Commands	
3.8 Arithmetic Operation Command for Integers	
3.8.1 Command list	
3.8.2 ADD: Integer/Long Integer Addition Commands	
3.8.3 SUB: Integer/Long Integer Subtraction Commands	
3.8.4 MUL: Integer/Long Integer Multiplication Commands	
3.8.5 AMUL: Multiplication Commands	
3.8.6 DIV: Integer/Long Integer Division Commands	
3.8.7 SQT: Commands for Arithmetic Square Root of Integer/Long Integer	77
3.8.8 INC: Commands for Integer/Long Integer Increment by 1	77
3.8.9 DEC: Commands for Integer/Long Integer Decrement by 1	78
3.8.10 VABS: Commands for Absolute Value of Integer/Long Integer	79
3.8.11 NEG: Integer/Long Integer Negation Commands	
3.8.12 SUM: Integer/Long Integer Accumulation Commands	80
3.8.13 MEAN: Commands for Mean Value of Integers/Long Integers	
3.9 Arithmetic Operation Command for Floating-Point Numbers	82
3.9.1 Command list	
3.9.2 RADD: Floating-Point Number Addition Commands	
3.9.3 RSUB: Floating-Point Number Subtraction Commands	
3.9.4 RMUL: Floating-Point Number Multiplication Commands	
3.9.5 RDIV: Floating-Point Number Division Commands	
3.9.6 RSQT: Commands for Square Root of Floating-Point Number	
3.9.7 RVABS: Commands for Absolute Value of Floating-Point Number	
3.9.8 RNEG: Floating-Point Number Negation Commands	
3.9.9 SIN: Commands for Sine Operation of Floating-Point Number	87

3.9.14 LN: Commands for Natural Logarithm Operation of Floating-Point Number	
3.9.15 EXP: Commands for Natural Number Power Operation of Floating-Point Number	
3.9.16 RMEAN: Commands for Mean Operation of Floating-Point Number	
3.9.17 ASIN: Commands for Anti-Sine Operation of Floating-Point Number	
3.9.18 ACOS: Commands for Anti-Cosine Operation of Floating-Point Number	94
3.9.19 ATAN: Commands for Anti-Tangent Operation of Floating-Point Number	95
3.9.20 SINH: Commands for Hyperbolic Sine Operation of Floating-Point Number	
3.9.21 COSH: Commands for Hyperbolic Cosine Operation of Floating-Point Number	
3.9.22 TANH: Commands for Hyperbolic Tangent Operation of Floating-Point Number	
3.9.23 LOG: Commands for Common Logarithm Operation of Floating-Point Number	
3.9.24 RAD: Commands for Angle-to-Radian Conversion of Floating-Point Number	
3.9.25 DEG: Commands for Radian-to-Angle Conversion of Floating-Point Number	
3.10 Word Logic Operation Command	
3.10.1 Command list	
3.10.2 WAND: Commands for Logical AND Operation of Word/Doubleword Data	
3.10.3 WOR: Commands for Logical OR Operation of Word/Doubleword Data	
3.10.4 WXOR: Commands for Logical XOR Operation of Word/Doubleword Data	
3.10.5 WINV: Commands for Inversion Operation of Word/Doubleword Data	
3.11 Bit shift rotation command	
3.11.1 Command list	
3.11.2 ROR: Commands for 16-Bit/32-Bit Cyclic Shift Right	
3.11.3 ROL: Commands for 16-Bit/32-Bit Cyclic Shift Left	
3.11.4 RCR: Commands for 16-Bit/32-Bit Cyclic Shift Right with Carry	
3.11.5 RCL: Commands for 16-Bit/32-Bit Cyclic Shift Left with Carry	
3.11.6 SHR: Commands for 16-Bit/32-Bit Shift Right	
3.11.7 SHL: Commands for 16-Bit/32-Bit Shift Left	
3.11.8 SFTR: Command for Bit String Shift Right	
3.11.9 SFTL: Commands for Bit String Shift Left	
3.12 Enhanced Bit Processing Command	
3.12.1 Command list	
3.12.2 ZRST: Commands for Batch Bit Reset	
3.12.3 ZSET: Commands for Batch Bit Set	
3.12.4 DECO: Decode Commands	
3.12.5 ENCO: Encode Commands	
3.12.6 BITS: Commands for ON Bit Statistics in Word/Doubleword	
3.12.7 BON: Commands for ON Bit Statistics in Word	
3.13 Word Contact Command	
3.13.1 Command list	
3.13.2 BLD&BLDI: Commands for Contact of Word Bit Data	
3.13.3 BAND&BANI: Commands for Contact of Serial Word Bit Data	
3.13.4 BOR&BORI: Commands for Contact of Parallel Word Bit Data	
3.13.5 LD*: LD Logic Operation Commands	
3.13.6 AND*: AND Logic Operation Commands	
3.13.7 OR*: OR Logic Operation Command	
3.13.8 BOUT: Commands for Word Bit Data Coil Output	
3.13.9 BSET: Commands for Word Bit Data Coil Set	
3.13.10 BRST: Commands for Word Bit Data Coil Reset	
3.14 Contact Comparison Command	
3.14.1 Command list	
3.14.3 AND (=, <, >, <>, <=): Commands for Integer/Long Integer AND Contact Comparison	
3.14.4 OR (=, <, >, <=, <=): Commands for Integer/Long Integer OR Contact Comparison	
3.14.5 LDR (=, <, >, <=): Commands for Floating-Point Number LD Contact Comparison	
3.14.6 ANDR (=, <, >, <=, <=): Commands for Floating-point Number AND Contact Comparison	
3.14.7 ORR (=, <, >, <>, >=, <=): Commands for Floating-Point Number OR Contact Comparison	
3.14.8 CMP: Integer Comparison Set	
3.14.10 PCMP: Floating Point Number Comparison Set	
3.14.10 RCMP: Floating-Point Number Comparison Set	
2 TA LL V. B. MOLO/DOIDIEMOLO DALA REGION COMPALISON 26L	1 1

_	ood Series i Togrammaste Edgle Controtter Command Mandat	COTICCITES
	3.14.12 RZCP: Commands for Floating-Point Number Region Comparison Set	136
	3.15 Numerical Conversion Command	136
	3.15.1 Command list	
	3.15.2 DTI: Commands for Conversion from Long Integer to Integer	
	3.15.3 ITD: Commands for Conversion from Integer to Long Integer	
	3.15.4 FLT: Commands for Conversion from Integer/Long Integer to Floating-Point Number	
	3.15.5 INT: Commands for Conversion from Floating-Point Number to Integer/Long Integer	
	3.15.6 BCD: Commands for Conversion from Word/Doubleword Data to 16-Bit/32-Bit BCD Code	
	3.15.7 BIN: Commands for Conversion from 16-Bit/32-Bit BCD Code to Word/Doubleword Data	
	3.15.8 GRY: Commands for Conversion from Word/Doubleword Data to 16-Bit/32-Bit Gray Code	
	3.15.9 GBIN: Commands for Conversion from 16-Bit/32-Bit Gray Code to Word/Doubleword Data	
	3.15.10 SEG: Commands for Conversion from Word Data to 7-Segment Code	
	3.15.11 ITA: Commands for Conversion from 16-Bit Hexadecimal Number to ASCII Code	
	3.15.12 ATI: Commands for Conversion from ASCII Code to 16-Bit Hexadecimal Number	
	3.15.13 LCNV: Engineering Conversion Commands	
	3.15.14 RLCNV: Floating-Point Engineering Conversion Commands	
	3.15.15 DABIN: Commands for Conversion from Decimal ASCII Code to Integer/Long Integer	
	3.15.16 BINDA: Commands for Conversion from Integer/Long Integer to Decimal ASCII Code	
	3.15.17 ROUND: Rounding command	
	3.16 Batch Data Processing Command	
	3.16.2 BKADD: Commands for Addition Operation of Word/Doubleword Data Block	
	3.16.3 BKSUB: Commands for Subtraction Operation of Word/Doubleword Data Block	
	3.16.4 BKCMP =, >, <, >>, <=, >=: Commands for Word/Doubleword Data Block Comparison Set	
	3.16.5 BKITD: Commands for Batch Conversion from Integers to Long Integers	
	3.16.6 BKDTI: Commands for Batch Conversion from Long Integers to Integers	
	3.16.7 BKFLT: Commands for Batch Conversion from Integers/Long Integers to Floating-Point Nu	
	3.16.8 BKINT: Batch Conversion from Floating-Point Numbers to Integers/Long integers	
	3.16.9 BKWBIT: Commands to Assign Word Element to Bit Element Combination	
	3.16.10 BKBITW: Commands to Assign Bit Element Combination to Word Element	
	3.16.11 BKAND: Commands for AND Operation of Word/Doubleword Data Block	
	3.16.12 BKOR: Commands for OR Operation of Word/Doubleword Data Block	
	3.16.13 BKXNR: Commands for XNOR Operation of Word/Doubleword Data Block	
	3.16.14 BKXOR: Commands for XOR Operation of Word/Doubleword Data Block	
	3.16.15 BKINV: Commands for Inversion Operation of Word/Doubleword Data Block	
	3.17 Data Table Command	170
	3.17.1 Command list	170
	3.17.2 LIMIT: Commands for Upper-Lower Limit Control	170
	3.17.3 DBAND: Commands for Deadband Control	171
	3.17.4 ZONE: Commands for Zone Control	
	3.17.5 SCL: Commands for Coordinate Determination of Word/Doubleword Data	173
	3.17.6 SER: Commands for Data Retrieval	
	3.18 Table Operation Command	
	3.18.1 Command list	
	3.18.2 SORTR: Commands to Sort Word/Doubleword Data by Row	
	3.18.3 SORTC: Commands to Sort Word/Doubleword Data by Column	
	3.18.4 FDEL: Commands for Data Deletion of Data Table	
	3.18.5 FINS: Commands for Data Insertion of Data Table	
	3.19 String Command	
	3.19.1 Command list	
	3.19.2 STRADD: Commands for String Combination	
	3.19.3 STRLEN: Commands for String Length Detection	
	3.19.4 STRRIGHT: Commands Used to Read from Right Side of String	
	3.19.5 STRLEFT: Commands Used to Read from Left Side of String	
	3.19.6 STRMIDR: Commands Used to Randomly Read from String	
	3.19.7 STRMIDW: Commands Used to Randomly Replace from String	
	3.19.8 STRINSTR: Commands for String Retrieval	
	3.20 Data Processing Command	
	J.ZV DULU I 1000JJIIE CUIIIIIUI	

3.20.1 Command list	195
3.20.2 WTOB: Commands for Data Separation of Byte Unit	195
3.20.3 BTOW: Commands for Data Combination of Byte Unit	196
3.20.4 UNI: Commands for 4-Bit Combination of 16-Bit Data	198
3.20.5 DIS: Commands for 4-Bit Separation of 16-Bit Data	199
3.20.6 ANS: Commands for Signal Alarm Set	
3.20.7 ANR: Command for Signal Alarm Reset	
3.21 MC Axis Control (ETHERCAT & Pulse Output Commands)	
3.21.1 Command list	
3.21.2 Axis State Machines	
3.21.3 MC_SetAxisParaAxis	
3.21.4 MC_Power	
3.21.5 MC_Reset	
3.21.6 MC_ReadStatus	
3.21.7 MC_ReadAxisError	
3.21.8 MC_ReadDigitalInput	
3.21.9 MC_ReadPosition	
3.21.10 MC_ReadVelocity	
3.21.11 MC_Reduvelocity	
3.21.12 MC_MoveAbsolute	
3.21.13 MC_MoveRelative	
3.21.14 MC_MoveVelocity	
3.21.15 MC Jog	
_ 0	
3.21.16 MC_Home	
3.21.17 MC_Homing	
3.21.18 MC_SetOverride	
3.21.19 MC_Stop	
3.21.20 MC_Halt	
3.21.21 MC_ImmediateStop	
3.21.22 MC_MoveSuperImposed	
3.21.23 MC_TouchProbe	
3.21.24 MC_MoveFeed	
3.21.25 MC_MoveBuffer	
3.21.26 MC_MoveVelocityCSV	
3.21.27 MC_SyncMoveVelocity	
3.21.28 MC_FollowPosition	
3.21.29 MC_FollowVelocity	
3.21.30 MC_SyncTorqueControl	
3.21.31 MC_TorqueControl	
3.21.32 MC_ReadActualTorque	
3.21.33 Error Codes of Single Axis Commands	
3.21.34 MC_CamIn	
3.21.35 MC_CamOut	
3.21.36 MC_GenerateCamTable	294
3.21.37 MC_SaveCamTable	297
3.21.38 MC_DigitalCamSwitch	298
3.21.39 MC_GetCamTablePhase	301
3.21.40 MC_GetCamTableVelRatio	302
3.21.41 MC_GetCamTableDistance	303
3.21.42 MC_GearInPos	304
3.21.43 MC_Gearln	309
3.21.44 MC_GearOut	
3.21.45 MC_Phasing	
3.21.46 MC_CombineAxes	
3.21.47 Error Codes of Master and Slave Axis Commands	
3.21.48 MC_MoveLinear	
3.21.49 MC_MoveCircular2D	
3.21.50 MC_MoveEllipse	
3.21.51 MC_GroupSetOverride	

TS600 Series Programmable Logic Controller Command Manual	Contents
3.25.18 MB_Master Commands	
3.25.19 MB_TCP_Master Commands	407
3.26 Real-time Clock Command	409
3.26.1 Command list	
3.26.2 TRD: Real-Time Clock Read	409
3.26.3 TWR: Real-Time Clock Write	
3.26.4 TADD: Clock Addition Operation	
3.26.5 TSUB: Clock Subtraction Operation	
3.26.6 HOUR: Hour Meter Commands	
3.26.7 DCMP (=, <, >, <>, >=, <=): Date Comparison Commands	
3.26.8 TCMP (=, <, >, <>, >=, <=): Time Comparison Commands	
3.26.9 HTO*S: Commands for Conversion from Hours, Minutes, or Secon	
Data	
3.26.10 *STOH: Commands for Conversion from Word/Doubleword Sec	
Seconds	
3.27 Control Calculation Command	421
3.27.1 Command list	
3.27.2 PID: PID Control Commands	
3.27.3 RAMP: Ramp signal output command	
3.27.4 HACKLE: Sawtooth Wave Signal Output Command	
3.27.5 TRIANGLE: Triangle wave signal output command	
3.27.6 MSC: Multi-station control command	
3.28 Verification Command	
3.28.1 Command list	
3.28.2 CCITT: CCITT Checksum Calculation Command	
3.28.3 CRC16: CRC16 Checksum Calculation Command	
3.28.4 LRC: LRC16 Checksum Calculation Command	
3.28.5 CCD: CCD Checksum Calculation Commands	
3.29 Other Commands	
3.29.1 Command list	
3.29.2 RND: Generate Random Number Command	
3.29.3 DUTY: Generate Duty Cycle Pulse Command	
3.29.4 REF: Immediate I/O Refresh Command	
4 Appendix	452

 4.1 System variables
 452

 4.1.1 Overview
 452

 4.1.2 List of system variables
 452

 4.1.3 SYS_CAN CAN interface running information
 452

 4.1.4 SYS_COM Serial Port Operation Information
 453

 4.1.5 SYS_ECAT EtherCAT running status information
 455

 4.1.6 SYS_ETHERNET Ethernet Information
 456

 4.1.7 SYS_INFO PLC Running Information
 457

 4.2 Error Codes
 460

 4.2.1 Error Code Classification
 460

 4.2.2 Error Code List
 461

1 Command Overview

1.1 Command Composition

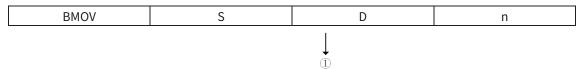
Commands consist of command symbol codes and operands. See below for meanings of command symbol codes and operands.

- Command symbol number: The description of a command function.
- Command operand: The data used in a command.

Command operands includes input data, output data, and constant numerical data.

Input Data:

Input data are data used in operations, and commands read their data for operation processing. In the command instructions, a single input data is represented by S. If there are more than one input data, they are represented by S1, S2, S3, etc, respectively. According to variables and soft elements specified in individual commands, the use of input data is listed as follows.


Table 1-1Use of Input Data

Category	Category Description			
	It specifies a numerical value used in the operation. It cannot be changed during program execution, since it is set during program creation.			
	During program execution, the data used in the command can be changed by changing the data stored in the specified software element.			

Output Data:

Commands control or output the data of output operands In the command instructions, a single output data is represented by D. If there are more than one output data, they are represented by D1, D2, etc, respectively. In addition to bit elements, operands have single-word or double-word elements and also constants.

Example - Block Transfer Command:

"①": The data to be transmitted is specified through the BMOV command.

1.2 List of Soft Elements and Variables

Bit soft elements, word soft elements, special soft elements, variables, arrays, structures, and custom variables are supported. See below for details:

Bit Soft Elements

Type	Range	Points	Data Type	Description	
Χ	X0-X1777	1024, encoded on	BOOL	Not saved in case of power-down	
^	V0-V1111	the octal basis	BOOL	Not saved in case of power-down	
٧	Y0-Y1777	1024, encoded on	BOOL	Not sayed in case of newer down	
Y	10-11111	the octal basis	BOOL	Not saved in case of power-down	
М	M0-M32767	32768 points	BOOL	M0–M999 unsaved after power off,	

Туре	Range	Points	Data Type	Description
				M1000 and later saved after power off
C	S0-S4095	5 4000 mainta BOOL		S0–S999 unsaved after power off,
5	50-54095	4096 points	BOOL S1000 and later save	S1000 and later saved after power off
LM local	I MO I MC2	C4 mainta		
auxiliary relay	LM0-LM63	64 points	-	-

Word Soft Elements

Туре	Range	Points	Data Type	Description
	D0 D00767	20760	BOOL/INT/WORD/D	D0–D999 unsaved after power off,
D	D0-D32767	32768 points	WORD/DINT/REAL	D1000 and later saved after power off
R	R0-R32767	32768 points	BOOL/INT/WORD/D WORD/DINT/REAL	R0–R999 unsaved after power off, R1000 and later saved after power off
V local data register	V0-V63	64	-	-
Z indexed addressing register	Z0-Z15	16	-	-

Custom Variables

Туре	Capacity	Data Form	Description		
BOOL					
INT					
DINT	2 MD (0 h:+-)	Variable array structure	256 kB saved after power off,		
WORD	2 MB (8 bits)		others unsaved after power off		
DWORD					
REAL					

Special Soft Elements

Туре	Function	Range	Points	Description
L	Jump tag	L0-L1023	1024 points	Used in conjunction with CJ and LBL commands
SBR	Subroutine label	SBR0-SBR63	64	Used in conjunction with the CALL command to call the SBR subroutine (whose properties can be set to normal and encrypted), jointly occupying the system program area capacity
Character	Character, string	-	-	Character or string, used as a command parameter

Special SM Elements

Special Soft Elements	Description	R/W Access Permission
SM0	Monitoring run bit, which is always ON in RUN state and always OFF in STOP state	R
SM1	Initial running pulse bit, which is set ON when the user program switches from STOP to RUN and set OFF after one running cycle	R

Special Soft Elements	Description	R/W Access Permission			
SM2	Power on flag bit, which is set ON when the system is energized and set OFF after the user program has run for one cycle	R			
SM3	Set ON after power on or a system error is detected when he user program switches from STOP to RUN, or reset to zero if no system error occurs				
•••	-	-			
SM10	Clock oscillation with a cycle of 10 ms (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R			
SM11	Clock oscillation with a cycle of 100 ms (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R			
SM12	Clock oscillation with a cycle of 1 s (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R			
SM13	Clock oscillation with a cycle of 1 min (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R			
SM14	Clock oscillation with a cycle of 1 hour (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R			
SM15	Scan cycle oscillation bit, which is flipped once per scan cycle (with the first cycle set OFF when the user program runs)	R			
•••	-	-			
SM18	Operation zero flag	R			
SM19	Operation borrow flag	R			
SM20	Operation carry flag	R			
SM22	Bit set for command execution error	R			
SM23	Bit set for overflow of command element number subscript	R			
SM24	Bit set for illegal command parameter	R			
•••	-	-			
SM30	Multi-cycle command completion flag bit	R			
SM31	Flag for BINDA command output character	R/W			
SM32	Flag for processing mode of ATI/ITA/ASC/CCITT/CRC16/LRC/CCD command bit	R/W			
SM33	SORTR/SORTC command descending sort enabled	R/W			
SM34	Bit for data format settings of SMOV command	R/W			
SM35	Flag for all comparison results of BKCMP command matrices being 1	R			

Description of Access Permissions:

- Read only: The output controlled by the PLC is only readable but not writable by users.
- Read and write: The input controlled by the PLC is both readable and writable by users.

1.3 Soft Element

1.3.1 Bit Soft Elements

This PLC provides programming supports for bit soft elements, whose specific types, ranges, number of points, and related descriptions are shown in the following table:

Type	Range	Points	Data Type	Description
Х	X0-X1777	1024, encoded on the octal basis	BOOL	Input
Υ	Y0-Y1777	1024, encoded on the octal basis	BOOL	Output

Туре	Range	Points	Data Type	Description
M	M0-M32767	22760 points	POOL	M0–M999 unsaved after power off,
M	MO-M32101	32768 points	BOOL	M1000 and later saved after power off
	CO C400F	CO C4005 400C		S0–S999 unsaved after power off, S1000
S	S0-S4095	4096 points	BOOL	and later saved after power off

∠Note: The power-down keeping range cannot be changed.

1.3.2 Word Soft Elements

This PLC provides programming supports for word soft elements, whose specific types, ranges, number of points, and related descriptions are shown in the following table:

Туре	Range	Points	Data Type	Description		
D	D0-D32767	32768 points	BOOL/INT/DINT/WORD/ DWORD/REAL	D0–D999 unsaved after power off, D1000 and later saved after power off		
R	R0-R32767	32768 points	BOOL/INT/DINT/WORD/ DWORD/REAL	R0–R999 unsaved after power off, R1000 and later saved after power off		
Т	T0-T399	400 points	INT	T0–T199: 100ms accuracy T200–T299: 10ms accuracy T300–T399: 1ms accuracy		
С	C0-C235	256 points	INT/DINT	C0 – C199: 16-bit CTUD or 16-bit cyclic counter C200 – C255: 32-bit CTUD		

∠Note:

- The saving range after power off cannot be changed.
- Word soft elements can be used as integers or floating-point numbers. The soft elements themselves
 do not have data type attribute, and the elements are interpreted as integers or floating-point numbers
 according to the parameter attributes of commands.
- When interpreted as integers, word soft elements can be used as 16-bit or 32-bit data depending on command parameters. When used as a 16-bit data, a word soft element occupies 1 soft element; when used as a 32-bit data, it occupies 2 soft elements. When interpreted as a floating-point number, every word soft element occupies 2 soft elements.

Example

1. Use word soft elements as 16-bit integers.

Using a 16-bit assignment command, assign a value of 100 is assigned to the word soft element D1, which occupies the soft element D1.

2. Use word soft elements as 32-bit integers.

Using a 32-bit assignment command, assign a value of 100 is assigned to the word soft element D1, which occupies the soft elements D1 (low bit) and D2 (high bit).

3. Use word soft elements as floating-point numbers.

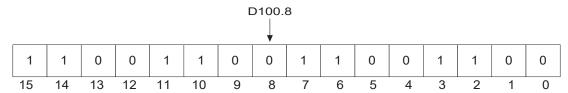
Using a floating-point number command, assign a value of 100 to the word soft element D1, which occupies the soft elements D1 and D2.

1.3.3 Special Soft Elements

This PLC provides programming supports for special soft elements, whose specific functions, ranges, and related descriptions are shown in the following table:

Type	Function	Range	Points	Description
SBR	Subroutine label	SBR0-SBR1023	Used by the CALL co call the SBR subrour properties can be se and encrypted), joir occupying the syste area capacity	
L	Jump tag	L0-L1023	1024	Used in conjunction with CJ and LBL commands
Constant	Decimal	-32,768–32,767 (16-bit), aal -2,147,483,648–2,147,483,647 (32-bit)		-
Character	Character, string	-	-	Character or string, used as a command parameter

Special Soft Elements	Description	R/W Access Permission
SM0	Monitoring run bit, which is always ON in RUN state and always OFF in STOP state	R
SM1	Initial running pulse bit, which is set ON when the user program switches from STOP to RUN and set OFF after one running cycle	R
SM2	Power on flag bit, which is set ON when the system is energized and set OFF after the user program has run for one cycle	R
SM3	Set ON after power on or a system error is detected when he user program switches from STOP to RUN, or reset to zero if no system error occurs	R
•••	-	-
SM10	Clock oscillation with a cycle of 10 ms (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R
SM11	Clock oscillation with a cycle of 100 ms (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R
SM12	Clock oscillation with a cycle of 1 s (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R
SM13	Clock oscillation with a cycle of 1 min (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R
SM14	Clock oscillation with a cycle of 1 hour (flipped in half a cycle, with the first half cycle set OFF when the user program runs)	R
SM15	Scan cycle oscillation bit, which is flipped once per scan cycle (with the first cycle set OFF when the user program runs)	R
•••	-	-
SM18	Operation zero flag	R
SM19	Operation borrow flag	R



Special Soft Elements	Description						
SM20	Operation carry flag	R					
•••	-	-					
SM22	Bit set for command execution error	R					
SM23	Bit set for overflow of command element number subscript	R					
SM24	Bit set for illegal command parameter	R					
•••	-	-					
SM30	Multi-cycle command completion flag bit	R					
SM31	Flag for BINDA command output character	R/W					
SM32	Flag for processing mode of ATI/ITA/ASC/CCITT/CRC16/LRC/CCD command bit	R/W					
SM33	SORTR/SORTC command descending sort enabled	R/W					
SM34	Bit for data format settings of SMOV command	R/W					
SM35	Flag for all comparison results of BKCMP command matrices being 1	R					

1.3.4 Bit Operation of Word Elements

Bit operation of word elements can be done by (.). For example, D100.8 means operation shall be done to the 8th bit on D100 word element, and the lowest bit is the 0th bit.

For example:

The bit count of a word element starts from the 0th bit: D100.8 can be seen as a BOOL element, which is suitable for bit operation commands.

1.4 Variables

1.4.1 Custom Variables

In programming engineering, in addition to directly using direct addresses such as X, Y, M, D, R, and other elements for programming, programming can also be done in the form of variables without specific storage addresses to achieve the required control logic or machining control processes. This can both improve the efficiency of code writing and enhance the code readability.

Type Capacity Data Form Description

BOOL
INT
DINT
WORD
DWORD
REAL

Capacity Data Form Description

Variable, array, structure unsaved after power off, others unsaved after power off

Table 1-2Supported Custom Variables

1.4.2 Defining Variables

This series PLC supports custom variables, and users can directly use variable names in programs for

programming by defining global variables. You need to follow the following rules when defining a global variable name:

- 1. It can only contain "_, letters, numbers, Chinese characters" and cannot start with "_, numbers".
- 2. Global variables cannot have the same name as "soft element forms, constants, standard data types, and commands".
- 3. Global variable names cannot be keywords such as "ARRAY, TRUE, FALSE, ON, OFF, and NULL".

Variable Data Type

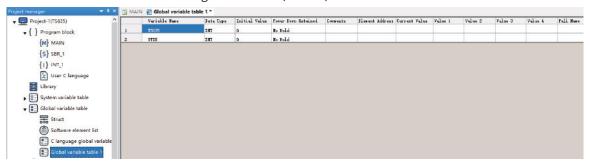
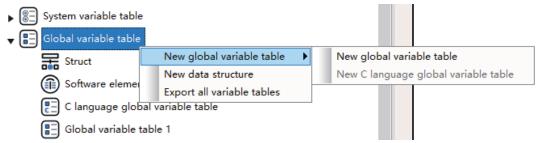

Variable definitions support structures and arrays, and supported variable data types are listed as follows:

Table 1-3Variable Data Type

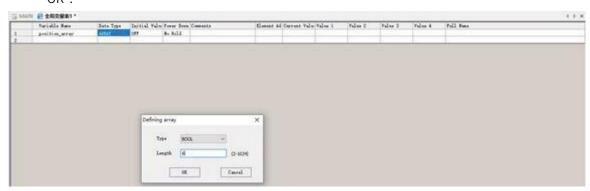

Data Type	Description				
BOOL	Boolean				
INT	Single-word integer				
DINT	Double-word integer				
WORD	Single-word unsigned integer				
DWORD	Double-word unsigned integer				
REAL	Real number				

Defining Global Variables

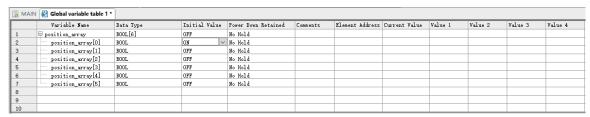
"Global variable table" in the engineering management column of the programming software Auto Station Pro can be used for variable management to add, delete, and edit variables.

1. Adding a variable table and variables: Right click on "Global variable table" and select "New global variable table" to create a new global variable table.

- 2. Double click on the variable table to enter the variable editing interface.
- (1) In the variable table, right click on the pop-up menu to insert or delete variables.
- (2) If a custom variable name is entered in the "Variable name" column of the variable table, you can directly use the variable name for programming.
- (3) "Data Type" can be set to BOOL, INT, DINT, WORD, DWORD, REAL, array, or structure (structures need to be defined in advance). When selecting an array as the data type, you can set the type and length of the array variable in the pop-up dialog box. A structure variable can be defined by selecting the structured defined in advance.
- (4) The "Initial Value" column defines initial values for variables. For arrays and structures, the initial value of each element can be defined separately.


(5) "Power Down Retained" can be set to either "Hold" or "No Hold", and the settings of the initial values are valid to only non-holding variables.

MAIN	N 🔐 Global variable table 1 *											
	Variable Name	Data Type	Initial Value	Power Down Retained	Comments	Element Address	Current Value	Value 1	Value 2	Value 3	Value 4	Full Name
1	TS635	INT	0	No Hold								
2	YYDS	INT	0	No Hold								
3	VAR1	BOOL	OFF	Hold								
4	VAR2	BOOL	OFF	No Hold								
5	VAR3	BOOL	OFF	No Hold								
6	VAR4	BOOL	OFF	No Hold								
7	VAR5	BOOL	OFF	No Hold								
8	VAR6	BOOL	OFF	No Hold								
9	VAR7	BOOL	OFF	No Hold								
10	VARB	BOOL	OFF	No Hold								


1.4.3 Defining Arrays

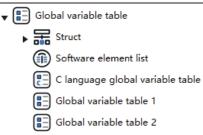
Users can define arrays if ARRAY is chosen as the data type when programming.

1. To define an array, select the type and length of the array variable in the pop-up dialog box, and click "OK".

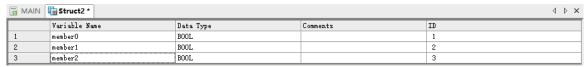
2. Click on the "Initial Value" column of the array variable to initial value setting interface of the array variable.

- 3. When using an array in a command, if you don't enter an array subscript, access starts from the first element of the array. If you enter an array subscript, access starts from the element specified by the subscript. For example:
- (1) Assign the 10 elements from Array_0[0] through Array_0[9] to D0-D9.

(2) Assign the 2 elements from Array_0[2] through Array_0[3] to D0-D1.



1.4.4 Defining Structure

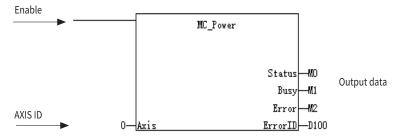

During variable definition, if it is necessary to define a structural variable, you should define the data structure of the structure variable in advance.

- 1. Right click on "Struct" under "Global Variable table", select "New date structure", and enter the a structure name to define the structure.
- 2. When defining a variable in the variable table, you can select the type of this structure as the data type of the variable to define the variable as a structure variable.

3. After establishing structure and member variables, you can select a structure from the data type defined by the variable to define a structure variable.

4. Click on the "Initial Value" column of structure variables to enter the initial value setting interface of structure variables, where you can set initial values of structure variable members.

1.4.5 How to Use Variables


After defining variables, variable names can be directly used for programming variables, eliminating the need to allocate soft elements.

- When using array variables, arrays in programming are represented by "[numbers]", which start from 0.
- When using structure variables, every structure member in programming is represented by "structure variable name. member variable".

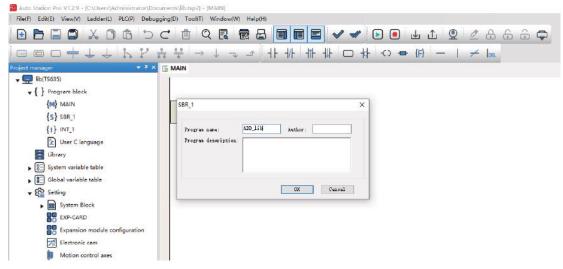
1.5 Special Functions

1.5.1 Graphic Block Commands

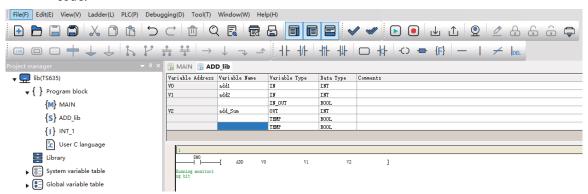
Some commands of this PLC support graphic block programming, and graphic block commands consist of command names, energy flow signals, input sides, and output sides. Taking the graphic block command of a motion control axis as an example, its specific composition is shown in the figure below.

When programming, after entering the name of the graphic block command, you can add the graphic block command to the program network by simply pressing the "ENTER" key. In the input parameter command of the graphic block command, the item displayed as "???" is a mandatory parameter, which must be assigned with a value. For a non-mandatory parameter, the command input automatically defaults to the parameter value in the command, and the command output cannot obtain the status in the command during programming or monitoring debugging.

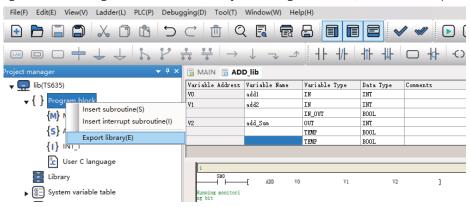
Graphic blocks support directly double clicking on any graphic block command under the toolbox command set node during programming, and you can drag the graphic block command with the left mouse button to add it to the current focus position of the ladder diagram.


1.5.2 Library Functions

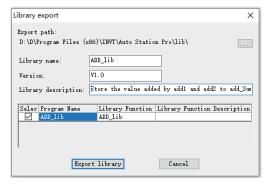
Library functions abstract and encapsulate reusable parts of a program into a universal program block, which can be repeatedly called in the program. Using encapsulated libraries in programming enhances program development efficiency, reduces programming errors, and improves program quality.


The basic step to use library functions is as follows: Choose "Create a library project to be encapsulated" \rightarrow "Write the program" -> "Export a library file" \rightarrow "Create current project" \rightarrow "Import the library file".

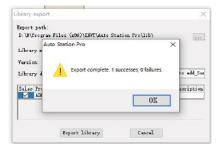
1.5.2.1 Example of exporting an addition library:


1. Create a new addition library project and then a new subroutine Add_lib.

2. Write the input variables add1 and add2, then the output variable add_Sum, and finally the core code.

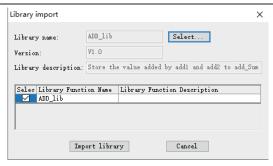


3. Right click on "Program block" in the "Project manager" column, and select "Export library".

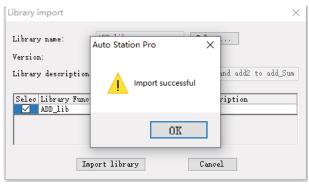


4. Select the save path, fill in the "Library name", "Version", and "Library description" fields, and select the subroutine to save.

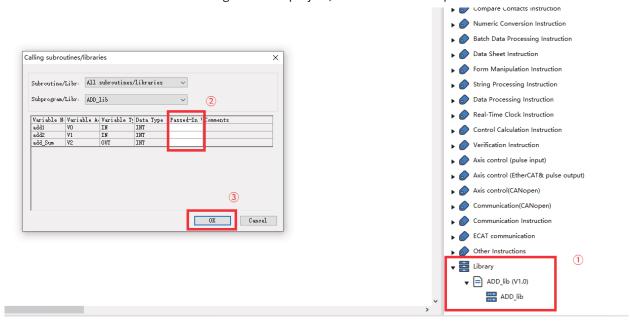
5. Export is completed.


1.5.2.2 Example of importing an addition library:

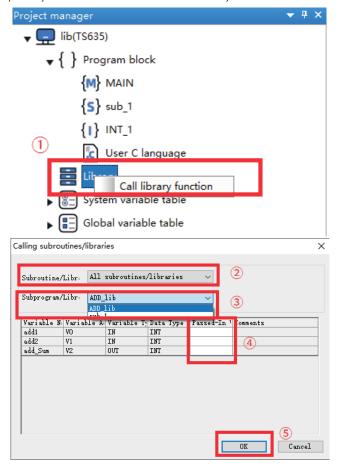
1. Open the project that requires the use of library functions, right click on "Library" at the bottom of the "Instruction tree" column, and select "Import library".



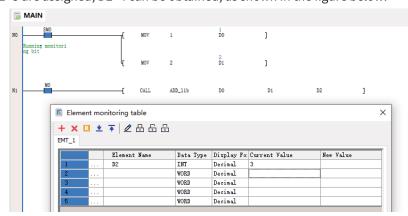
2. Select the library save path (which is the lib file under the installation path of the upper computer software by default), then select the load library function, and finally click "Import library".



3. Import is successful.


1.5.2.3 There are two ways to call library functions:

1. In the "Instruction tree" column, select the newly imported library function, double click on the functional function or drag it into the project, and fill in the value passed in.


2. In the "Project manager" column, right click on "Library", select "Subroutine/Libr" and "Subprogram/Libr", fill in the "Passed-In Value" field, and click "OK".

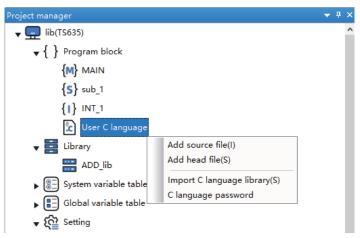
Using either of the above two methods generates the following ladder diagram code, which indicates a successful library import.

If D0=1 and D1=3 are assigned, D2=4 can be obtained, as shown in the figure below.

To update the library, you need to delete original library functions, including those under "Library" in "Project manager" and "Instruction tree", and then re-import the library file.

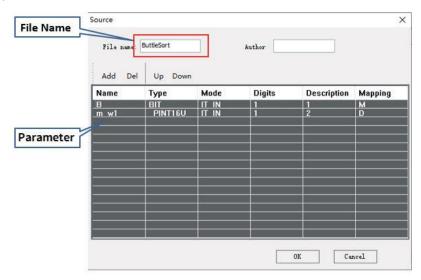
1.5.3 C Language Functions

The TS series PLC allows users to use C language to write function blocks in programming software, calls



them where needed, supports commonly used C language attribute libraries, and uses the CALL command to call C language in ladder diagrams. Parameters can be passed to bit elements M, word elements D, and word elements R to read and write element values. By replacing complex logic, arithmetic operations, and other functions implemented in other programming languages of PLC, C language enables programmer to remarkably improve development efficiency. Here is a brief explanation of the creation and use of C language. For specific usage methods, refer to Chapter 4 of the Programming and Application Manual.

Operation Steps:

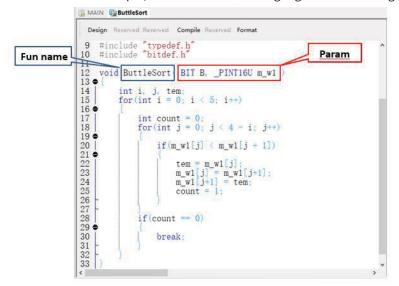

Step 1 Create Clanguage

Open the PLC editing software, choose "User C language" node in the "Project manager" toolbar on the left, right-click and select "Add source file", and the software interface will pop up the user C language interface design window.

Step 2 Design Clanguage interface

In the C language source file interface design dialog box, fill in the user C language function information. The function name is a mandatory item and cannot be the same as names of subroutines, interrupt subroutines, and other C language functions; the use of function names that include strings SBR_ and INT_ should be avoided; the addition of up to 16 parameters are supported; parameters cannot be empty; parameter names cannot be duplicate; and PLC soft element names cannot be used.

Supported Data Types:


Туре	Description
BIT	Boolean quantity
_INT16U	16-bit unsigned integer
_INT16S	16-bit signed integer

Туре	Description
_INT32U	32-bit unsigned integer
_INT32S	32-bit signed integer
_FP32	32-bit floating point
_PINT16U	16-bit unsigned int pointer
_PINT16S	16-bit signed int pointer
_PINT32U	32-bit unsigned int pointer
_PINT32S	32-bit signed int pointer
_PFP32S	32-bit float pointer

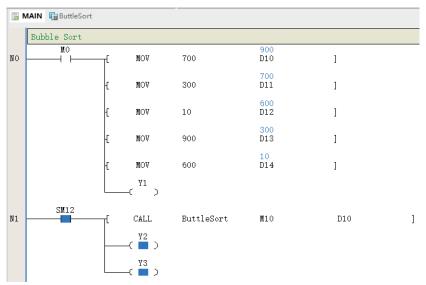
Step 3 Clanguage editing

After creation, enter the C language editing interface where users can write the functions needed to realize. The default generated part includes the contained header files (the three header files plcstdafx. h, typedef. h, and bitdef. h are contained by default) and C language interface function body. Users do not need to manually change or delete default header files, function interface names, return value types, and function parameters, otherwise compilation errors will be caused. After you click the design button and re-edit the interface design, this part will be reproduced, and the previous section needs to be manually deleted to avoid compilation errors. In the example, the function is of C language bubble sort algorithm.

Parameter passing mode: When ladder diagram is called, the passed-in M and D are the start addresses of B and m_w1. As shown in the above figure, if the elements in the command ButtleSort are M0 and D0, then in the C language function, B[0] is M0, B[10] is M10, m_w1[0] is D0, m_w1[10] is D10; if the parameters used in the ladder diagram are M100 and D100, then B[0] is M100, and m_w1[0] is D100.

Double-word operation: A D is added before m_w1, as in Dm_w1[10]=100000, which means to assign a value to the combined doubleword m_w1[10] m_w1[11].

Floating-point operation: This PLC supports defining floating-point variables in functions and performing floating-point operations (for example, the floating-point register D0 (doubleword) can be represented as Fm_w1[0], Fm_w1[0]=100.01).


Step 4 Using C Language Programs

User C language functions are called by CALL commands. For example, for the bubble sort function mentioned above, the following shall be input in ladder diagram:

- CALL Command
- Function Name (ButtleSort)
- Parameters (M10...D10)

When compiling a ladder diagram, check the command block. If it is a CALL command, check whether its function name is a C language function (by distinguishing between ladder subroutines and interrupt subroutines). If it is a C language function, check parameters and match the types and quantity of parameters. If no error is found during the command block check is correct, compile the C language file to generate an executable file.

2 Command Reference Sheet

All commands supported by this PLC are summarized in the command reference sheet and classified according to the corresponding function categories.

Table 2-1 Command Reference Sheet

Command Category	Name	Function
	LD	Normally open contact
	LDI	Normally closed contact
	LDP	Take rising pulse edge
	LDF	Take falling pulse edge
	AND	Normally open contact AND
	ANI	Normally closed contact OR
	ANDP	Serial connection of AND rising pulse edge
	ANDF	detection
	ANDF	Serial connection of AND falling pulse edge
Contact Logic		detection
Command	OR	Normally open contact OR
	ORI	Normally closed contact OR
	ORP	Serial connection of OR rising pulse edge
		detection
	ORF	Serial connection of OR falling pulse edge detection
-	ANB	Energy flow block AND
	ORB	Energy flow block OR
	EU	Rising energy flow edge detection
	ED	Falling energy flow edge detection
	OUT	Coil output
	SET	Coil set
	RST	Coil reset
Output Control	PLS	Rising pulse edge detection coil
Command	PLF	Falling pulse edge detection coil
	ALT	Alternating output
	NOP	Null operation
Energy Flow Control		i i
Command	INV	Energy flow inversion
Communa	STL	SFC state load
	SET Sxx	SFC state transition
SFC Command	OUT Sxx	SFC state jump
0.000	RST Sxx	SFC state clear
	RET	SFC program segment end
	FOR	Loop operation
	NEXT	Loop return
	LBL	Jump label definition
	CJ	Conditional jump
	CFEND	Conditional return of main user program
Program Flow Control	WDT	User program watchdog reset
Command	El	Interrupt enable
331111111111	DI	Interrupt disable
	CIRET	Conditional return of user interrupt program
	STOP	User program stop
	CALL	User subroutine call
	CSRET	Conditional return of user subroutine

Command Category	Name	Function
	TON	ON delay timing
	TONR	Memory-type ON delay timing
Timing and Counting	TOF	OFF delay timing
Timing and Counting	TMON	Non-retriggering single stable timing
Command	CTU	16-bit increment counter
	CTR	16-bit loop counter
	DCNT	32-bit increment-decrement counter
	*MOV	Word/doubleword data transmission
	RMOV	Floating-point number data transmission
	BMOV	Block data transmission
	*FMOV	Data block word/doubleword stuffing
	SMOV	Word/doubleword shift transmission
Data Transmission	SWAP	High-low byte swap
Command	*XCH	Word/doubleword exchange
	PUSH	Data push
	FIFO	First in first out
	LIFO	Last in first out
	WSFR	Word string shift right
	WSFL	Word string shift left
	*ADD	Integer/long integer addition
_	*SUB	Integer/long integer subtraction
	*MUL	Integer/long integer multiplication
_	*DIV	Integer/long integer division
Arithmetic Operation	*SQT	Arithmetic square root of integer/long integer
Command for Integers	*INC	Integer/long integer increment by 1
Command for integers	*DEC	Integer/long integer decrement by 1
	*VABS	Absolute value of integer/long integer
	*NEG	Integer/long integer negation
_	*SUM	Integer/long integer accumulation
	*MEAN	Mean value of integers/long integers
	RADD	Floating-point number addition
	RSUB	Floating-point number subtraction
-	RMUL	Floating-point number multiplication
	RDIV	Floating-point number division
	RSQT	Arithmetic square root of floating-point number
-	RVABS	Absolute value of floating-point number
	RNEG	Floating-point number negation
	SIN	Sine operation of floating-point number
	COS	Cosine operation of floating-point number
Arithmetic Operation	TAN	Tangent operation of floating-point number
Arithmetic Operation	POWER	Power operation of floating-point number
Command for		Natural logarithm operation of floating-point
Floating-Point	LN	number
Numbers	EXP	Natural number power operation of
	LAF	floating-point number
	RSUM	Accumulation operation of floating-point
<u> </u>		number
<u> </u>	RMEAN	Mean operation of floating-point numbers
	ASIN	Anti-sine operation of floating-point number
	ACOS	Anti-cosine operation of floating-point number
	ATAN	Anti-tangent operation of floating-point number
	SINH	Hyperbolic sine operation of floating-point number

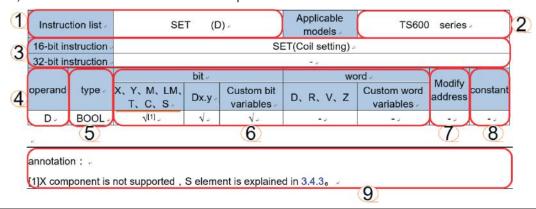
Command Category	Name	Function
	COSH	Hyperbolic cosine operation of floating-point
		number
	TANH	Hyperbolic tangent operation of floating-point
		number
	LOG	Common logarithm operation of floating-point number
		Angle-to-radian conversion of floating-point
	RAD	number
		Radian-to-angle conversion of floating-point
	DEG	number
	*WAND	Word/doubleword AND operation
Word Logic Operation	*WOR	Word/doubleword OR operation
Command	*WXOR	Word/doubleword XOR operation
	*WINV	Word/doubleword negation operation
	*ROR	16-bit/32-bit cyclic shift right
	*ROL	16-bit/32-bit cyclic shift left
	*RCR	16-bit/32-bit cyclic shift right with carry
Bit shift rotation	*RCL	16-Bit/32-bit cyclic shift left with carry
command	*SHR	16-bit/32-bit shift right
	*SHL	16-bit/32-bit shift left
	SFTR	Bit string shift right
	SFTL	Bit string shift left
	ZRST	Batch bit reset
	ZSET	Batch bit set
Enhanced Bit	DECO	Decode
Processing Command	ENCO	Encode
	*BITS	ON bit statistics in word/doubleword
	BON BLD	ON bit judgment in word Commands for Contact of Word Bit Data
	DLU	Commands for Contact of Word Bit Data
	BLDI	Inversion
	BAND	Commands for Contact of Serial Word Bit Data
		Commands for Contact of Serial Word Bit Data
	BANI	Inversion
	000	Commands for Contact of Parallel Word Bit
	BOR	Data
	BORI	Commands for Contact of Parallel Word Bit
	DOKI	Data Inversion
	LD*&	Logical AND operation of word/doubleword LD
		contact
Word Contact	LD*	Logical OR operation of word/doubleword LD
Command	· ·	contact
	LD*^	Logical XOR operation of word/doubleword LD
		contact
	AND*&	Logical AND operation of word/doubleword AND contact
		Logical OR operation of word/doubleword AND
	AND*	contact
		Logical XOR operation of word/doubleword
	AND*^	AND contact
	0.040	Logical AND operation of word/doubleword OR
	OR*&	contact
	OD*	Logical OR operation of word/doubleword OR
1	OR*	contact

Command Category	Name	Function
	OR*^	Logical XOR operation of word/doubleword OR
	OR ^	contact
	BOUT	Word bit data coil output
	BSET	Word bit data coil set
	BRST	Word bit data coil reset
	LD*=	Integer/long integer LD contact comparison equal to
	LD*>	Integer/long integer LD contact comparison greater than
	LD*<	Integer/long integer LD contact comparison less than
	LD*<>	Integer/long integer LD contact comparison not equal to
	LD*>=	Integer/long integer LD contact comparison greater than or equal to
	LD*<=	Integer/long integer LD contact comparison less than or equal to
	AND*=	Integer/long integer AND contact comparison equal to
	AND*>	Integer/long integer AND contact comparison greater than
	AND*<	Integer/long integer AND contact comparison less than
	AND*<>	Integer/long integer AND contact comparison not equal to
	AND*>=	Integer/long integer AND contact comparison greater than or equal to
	AND*<=	Integer/long integer AND contact comparison less than or equal to
Contact Comparison Command	OR*=	Integer/long integer OR contact comparison equal to
	OR*>	Integer/long integer OR contact comparison greater than
	OR*<	Integer/long integer OR contact comparison less than
	OR*<>	Integer/long integer OR contact comparison not equal to
	OR*>=	Integer/long integer OR contact comparison greater than or equal to
	OR*<=	Integer/long integer OR contact comparison less than or equal to
	LDR=	Floating-point number LD contact comparison equal to
	LDR>	Floating-point number LD contact comparison greater than
	LDR<	Floating-point number LD contact comparison less than
	LDR<>	Floating-point number LD contact comparison not equal to
	LDR>=	Floating-point number LD contact comparison greater than or equal
	LDR<=	Floating-point number LD contact comparison less than or equal
	ANDR=	Floating-point number AND contact comparison equal to

	Name	
Command Category	Name	Function
	ANDR>	Floating-point number AND contact
		comparison greater than
	ANDR<	Floating-point number AND contact
		comparison less than
	ANDR<>	Floating-point number AND contact
		comparison not equal to
	ANDR>=	Floating-point number AND contact
		comparison greater than or equal to
	ANDR<=	Floating-point number AND contact
		comparison less than or equal to
	ORR=	Floating-point number OR contact comparison
		equal to
	ORR<	Floating-point number OR contact comparison
		greater than
	ORR>	Floating-point number OR contact comparison
		less than
	ORR<>	Floating-point number OR contact comparison
		not equal to
	ORR>=	Floating-point number OR contact comparison
		greater than or equal to
	ORR<=	Floating-point number OR contact comparison
	CMD	less than or equal to
	CMP	Integer comparison set
	LCMP	Long integer comparison set
	RCMP *ZCP	Floating-point number comparison set
	RZCP	Word/doubleword data region comparison set Floating-point number region comparison set
	LD*&	Word/doubleword LD contact AND
	LD*	Word/doubleword LD contact OR
	LD*^	Word/doubleword LD contact XOR
	AND*&	Word/doubleword AND contact AND
Logic Contact	AND*	Word/doubleword AND contact OR
Command	AND*^	Word/doubleword AND contact XOR
	OR*&	Word/doubleword OR contact AND
	OR*	Word/doubleword OR contact OR
	OR*^	Word/doubleword OR contact XOR
	DTI	Conversion from long integer to integer
	ITD	Conversion from integer to long integer
		Conversion from Integer/long integer to
	*FLT	floating-point number
	*1817	Conversion from floating-point number to
	*INT	Integer/long integer
	*BCD	Conversion from word/doubleword data to
	ВСВ	16-bit/32-bit BCD code
Numerical Conversion	*BIN	Conversion from 16-bit/32-bit BCD code to
Command	5	word/doubleword data
Command	*GRY	Conversion from word/doubleword to
	-	16-bit/32-bit Gray code
	*GBIN	Conversion from 16-bit/32-bit Gray code to
	CEC	word/doubleword data
	SEG	Conversion from word data to 7-segment code
	ITA	Conversion from 16-bit hexadecimal number to
		ASCII code Conversion from ASCII code to 16-bit
	ATI	hexadecimal number
		Incvaricular namber

Command Category	Name	Function
	LCNV	Engineering conversion
	RLCNV	Floating-point number engineering conversion
	DADIN	Conversion from decimal ASCII code to
	DABIN	integer/long integer
	BINDA	Conversion from integer/long integer to
	DINDA	decimal ASCII code
	*BKADD	Addition operation of word/doubleword data block
	*BKSUB	Subtraction operation of word/doubleword data block
	*BKCMP=	Set word/doubleword data block comparison equal to
	*BKCMP>	Set word/doubleword data block comparison greater than
	*BKCMP<	Set word/doubleword data block comparison less than
	*BKCMP<>	Set word/doubleword data block comparison not equal to
	*BKCMP>=	Set word/doubleword data block comparison greater than or equal to
	*BKCMP<=	Set word/doubleword data block comparison less than or equal to
Batch Data Processing	BKITD	Batch conversion from integers to long integers
Command	BKDTI	Batch conversion from long integers to integers
	*BKFLT	Batch conversion from integers/long integers to floating-point numbers
	*BKINT	Batch conversion from floating-point numbers to integer/long integers
	BKWBIT	Assign word element to bit element combination
	BKBITW	Assign bit element combination to word element
	*BKAND	AND operation of word/doubleword data block
	*BKOR	OR operation of word/doubleword data block
	*BKXNR	XNOR operation of word/doubleword data block
	*BKXOR	XOR operation of word/doubleword data block
	*BKINV	Inversion operation of word/doubleword data block
	LIMIT	Upper-lower limit control
	DBAND	Deadband control
Data Table Command	ZONE	Zone control
Data Table Command	*SCL	Coordinate determination of word/doubleword data
	SER	Data retrieval
	*SORTR	Sort word/doubleword data by row
Table Operation	*SORTC	Sort word/doubleword data by column
Command	FDEL	Data deletion of data table
	FINS	Data insertion of data table
	STRADD	String combination
	STRLEN	String length detection
String Command	STRRIGHT	Read from right side of string
	STRLEFT STRMIDR	Read from left side of string Randomly read from string

Command Category		Name	Function	
		STRMIDW	Randomly replace from string	
		STRINSTR	String retrieval	
		STRMOV	String transfer	
		WTOB	Data separation of byte unit	
		BTOW	Data combination of byte unit	
Data Pro	ocessing	UNI	4-bit combination of 16-bit data	
Comr	mand	DIS	4-bit separation of 16-bit data	
		ANS	Signal alarm set	
		ANR	Signal alarm reset	
		MC_Power_CO	Communication control servo axis enabled	
		MC_Reset_CO	Fault reset of communication control servo ax	
		MC_ReadActualPosition_CO	Communication control reads the current actual axis position	
		MC_ReadActualVelocity_CO	Read current actual velocity by communication control	
		MC_Halt_CO	Communication control servo axis halt (interruptible)	
•	n Motion s Command	MC_Stop_CO	Communication control servo axis stop (uninterruptible)	
(Develo	oped in	MC_MoveAbsolute_CO	Absolute positioning of communication contraxis	
Mid-2	2023)	MC_MoveRelative_CO	Relative positioning of communication contro axis	
		MC_MoveVelocity_CO	Velocity operation mode of communication control axis	
		MC_Jog_CO	Communication control axis jogging	
		MC_Home_CO	Communication control axis homing	
		MC_WriteParameter_CO	Write axis parameter by communication control	
		MC_ReadParameter_CO	Read axis parameter by communication conti	
		ENC_Counter	Encoder enable	
		ENC_Reset	Encoder reset	
		ENC_Preset	Encoder preset	
		ENC_TouchProbe	Encoder probe	
		ENC_ArrayCompare	Unidimensional array comparison of encoder	
C	.: /TCC00\	ENC_StepCompare	Unidimensional step size comparison of encoder	
Encoder A	XIS (15600)	ENC_Compare	Single-point comparison output	
		ENC_GroupArrayCompare	Bidimensional array comparison of encoder	
		ENC_ReadStatus	Encoder status acquisition	
		ENC_DigitalOutput	Encoder digital output control	
		ENC_ResetCompare	Encoder reset comparison output	
		ENC_SetUnit	Set axis gear ratio	
		ENC_SetLineRotationMode	Set axis operation mode	
High-speed Counter		HC_Counter	High-speed counter enable	
		HC_Preset	High-speed counter preset value	
		HC_TouchProbe	High-speed counter probe	
		HC_Compare	High-speed counter comparison	
		HC_ArrayCompare	High-speed counter array comparison	
		HC_StepCompare	High-speed counter equidistance comparisor	
Communi- Free cation Protocol Free Serial			Sending and receiving under free protocol for serial ports	
Command Ports				



Command Category		Name	Function	
Command	Category	TCP_Server	Server socket creation	
		TCP_Server		
Free		TCP_Accept	Reception of client connection request by	
		TCD Client	Server	
	Protocol	TCP_Client	Client socket creation	
	for TCP/IP	TCP_Send	Send TCP data	
		TCP_Recv	Receive TCP data	
		TCP_Close	Close TCP socket	
	Free	UDP_Peer	UDP socket creation	
	Protocol	UDP_Send	Send UDP Data	
	for UDP/IP	UDP_Recv	Receive UDP data	
		ECAT_ReadParameter_CoE	Read SDO parameter from slave station	
	EtherCAT	ECAT_WriteParameter_CoE	Write SDO parameter to slave station	
		ECAT_RestartMaster_CoE	Restart EtherCAT master station	
		TRD	Real-time clock read	
		TWR	Real-time clock write	
		TADD	Clock addition operation	
		TSUB	Clock subtraction operation	
		HOUR	Hour meter	
		DCMP=	Date comparison equal to	
		DCMP>	Date comparison greater than	
		DCMP<	Date comparison less than	
		DCMP<>	Date comparison not equal to	
Real-time	o Clock	DCMP>=	Date comparison greater than or equal to	
		DCMP<=	Date comparison less than or equal to	
Comm	ianu	TCMP=	Time comparison equal to	
		TCMP>	Time comparison greater than	
		TCMP<	Time comparison less than	
		TCMP<>	Time comparison not equal to	
		TCMP>=	Time comparison greater than or equal to	
		TCMP<=	Time comparison less than or equal to	
		HTO*S	Conversion from hours, minutes, or seconds to	
		H10 3	word/doubleword second data	
		*STOH	Conversion from word/doubleword second	
		310H	data to hours, minutes, or seconds	
Control Calculation Command		PID	PID function	
		RAMP	Ramp signal output	
		HACKLE	Hackled wave signal output	
		TRIANGLE	Triangular wave signal output	
		CCITT	CCITT checksum calculation	
Verification	Command	CRC16	CRC16 checksum calculation	
vernication	Command	LRC	LRC checksum calculation	
		CCD	CCD checksum calculation	
Other Con	nmands	RND	Generate random number	
Other Commands		DUTY	Generate timed pulse	

3 Command Instructions

In Chapter "Command Instructions", command contents are explained in details through "Command Table", "Operand Content Description", "Command Function", "Precautions", and "Application Example". Among them, the SET command is taken as an example for "Command Table".

No.	Item	Description	
1)	Command list	Describes how to write the command code and the order in which the operands are filled in	
2	Applicable models	Describes the model of the IVT PLC product supported by the command	
3	Instruction name	Displays the names of 16-bit and 32-bit commands	
4	Operand	Displays the method to input the operand, which is either an source operand or an destination operand. S represents the source operand, D represents the destination operand, and n is the source operand that represents the quantity	
6	Туре	Indicates the data type supported by the operand, which can be BOOL (bit), WORD (unsigned 16-bit), DWORD (unsigned 32-bit), INT (signed 16-bit), or DINT (signed 32-bit). Some commands support array input	
7	Indexing	Indicates that the operand supports indexing through the Z element in the form of, for example, D0Z0, where the Z element itself does not support indexing	
8	Indicates that the operand supports constant inputs, which include Constant floating-point number constants and integer constants. In case of a string command, string constants are supported		
9	Remark	Further details the supported element types	
Others	Supported element	Lists all the bit and word elements supported in PLC, where "\scrip" is used to indicates that the operand supports a certain part of the elements, and "⑨" (remark) is used to provide detailed explanations	

3.1 Contact Logic Command

3.1.1 Command list

Command Category	Name	Function
	LD	Normally open contact
	LDI	Normally closed contact
Contact Logic Command	LDP	Take rising pulse edge
	LDF	Take falling pulse edge
	AND	Normally open contact AND
	ANI	Normally closed contact OR
	ANDP	Serial connection of AND rising pulse edge detection

Command Category	Name	Function
	ANDF	Serial connection of AND falling pulse edge detection
	OR	Normally open contact OR
	ORI	Normally closed contact OR
	ORP	Serial connection of OR rising pulse edge detection
	ORF	Serial connection of OR falling pulse edge detection
	ANB	Energy flow block AND
	ORB	Energy flow block OR
	EU	Rising energy flow edge detection
	ED	Falling energy flow edge detection

3.1.2 LD&LDI&LDP&LDF: Contact Operation Commands

Comma	nd list	I	_D*	(S)	Applicable model	TS6	00 series			
16-Bit co	mmand			LD: N	Normally open co	ntact				
32-Bit co	mmand				-					
16-Bit co	mmand			LDI: N	Iormally closed co	ontact				
32-Bit co	mmand				-					
16-Bit co	mmand			LDP:	Take rising pulse	edge				
32-Bit co	mmand				-					
16-Bit co	mmand			LDF:	Take falling pulse	ake falling pulse edge				
32-Bit co	mmand				-					
			Bit		Wor	·d				
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant		
S	BOOL	√ [1]	✓	√	-	-	-	-		

Remark:

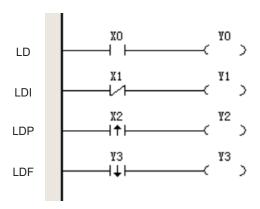
[1] LDP and LDF do not support LM elements.

Operand Description

S: The source operand, which determines the soft elements or variables of the energy flow state.

Function Description

LD&LDI&LDP&LDF commands are used for the output state operation starting from the left busbar to obtain the output energy flow state. Among them:


- 1. The LD command is used for normally open contact to take the energy flow state. If the corresponding signal is detected to be high level during this scan, the contact is valid.
- 2. The LDI command is used for normally closed contact to take the energy flow state. If the corresponding signal is detected to be high level during this scan, the contact is valid.
- 3. The LDP command is used to take the rising edge of a bit element. If a rising jump of the corresponding signal is detected during this scan, the contact is valid. However, the contact becomes invalid as soon as the next scan.
- 4. The LDF command is used to take the falling edge of a bit element. If a falling jump of the corresponding signal is detected during this scan, the contact is valid. However, the contact becomes invalid as soon as the next scan.

Precautions

Up to 4096 edge commands such as LDP and LDF can be present at the same time.

Application Example

3.1.3 AND&ANI&ANDP&ANDF: Serial Contact Operation Commands

Comm	and list	AN	D*	(S)	Applicable model	TS6	00 series	
16-Bit co	ommand			AND: N	lormally open coi	ntact AND		
32-Bit co	ommand				-			
16-Bit co	ommand			ANI: N	ormally closed co	ontact OR		
32-Bit co	ommand				-			
16-Bit co	ommand	A	ANDP:	Serial conne	ction of AND risin	g pulse edge de	etection	
32-Bit co	ommand				-			
16-Bit co	ommand	A	ANDF	Serial connec	tion of AND fallin	g pulse edge de	etection	
32-Bit co	ommand				-			
			Bit		Wor	·d		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	BOOL	√ [1]	✓	√	-	-	-	-

Remark:

[1] ANDP and ANDF do not support LM elements.

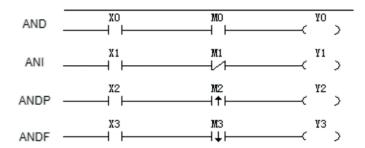
Operand Description

S: The source operand, which determines the soft elements or variables of the energy flow state.

Function Description

AND&ANI&ANDP&ANDF commands are used for the output state operation after connecting soft elements in series. The command first reads the state of the bit element and then performs a logical "AND" operation with its previous energy flow state to obtain the output energy flow state. Among them:

- The AND command is used for normally open contact to take the energy flow state. If the
 corresponding signal is detected to be high level during this scan, the contact is valid. The "AND"
 operation is done through this logic.
- The ANI command is used for normally closed contact to take the energy flow state. If the
 corresponding signal is detected to be high level during this scan, the contact is valid. The "AND"
 operation is done through this logic.
- 3. The ANDP command is used to take the rising edge of a bit element. If a rising jump of the corresponding signal is detected during this scan, the contact is valid. However, the contact becomes invalid as soon as the next scan. The "AND" operation is done through this logic.
- 4. The ANDF command is used to take the falling edge of a bit element. If a falling jump of the



corresponding signal is detected during this scan, the contact is valid. However, the contact becomes invalid as soon as the next scan. The "AND" operation is done through this logic.

Precautions

Up to 4096 edge commands such as ANDP and ANDF can be present at the same time.

Application Example

3.1.4 OR&ORI&ORP&ORF: Parallel Contact Operation Commands

Comma	and list	С	R*	(S)	Applicable model	TS6	00 series		
16-Bit co	mmand			OR: No	ormally open con	tact OR			
32-Bit co	mmand				-				
16-Bit co	mmand			ORI: No	rmally closed co	ntact OR			
32-Bit co	mmand				-				
16-Bit co	mmand		ORP:	Serial connect	tion of OR rising	pulse edge det	ection		
32-Bit co	mmand				-				
16-Bit co	mmand		ORF:	Serial connect	ion of OR falling	of OR falling pulse edge detection			
32-Bit co	mmand				-				
			Bit		Wor	rd			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S	BOOL	√ [1]	√	✓	-	-	-	-	

Remark:

[1] ORP and ORF do not support LM elements.

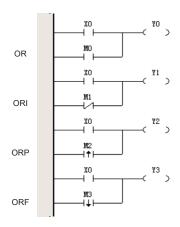
Operand Description

S: The source operand, which determines the soft elements or variables of the energy flow state.

Function Description

OR&ORI&ORP&ORF commands are used for the output state operation after connecting soft elements in parallel. The command first reads the state of the bit element and then performs a logical "OR" operation with its previous energy flow state to obtain the output energy flow state. Among them:

- 1. The OR command is used for normally open contact to take the energy flow state. If the corresponding signal is detected to be high level during this scan, the contact is valid. The "OR" operation is done through this logic.
- The ORI command is used for normally closed contact to take the energy flow state. If the
 corresponding signal is detected to be high level during this scan, the contact is valid. The "OR"
 operation is done through this logic.
- 3. The ORP command is used to take the rising edge of a bit element. If a rising jump of the corresponding

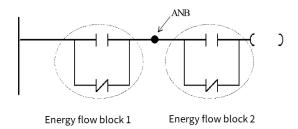


- signal is detected during this scan, the contact is valid. However, the contact becomes invalid as soon as the next scan. The "OR" operation is done through this logic.
- 4. The ORF command is used to take the falling edge of a bit element. If a falling jump of the corresponding signal is detected during this scan, the contact is valid. However, the contact becomes invalid as soon as the next scan. The "OR" operation is done through this logic.

Precautions

Up to 4096 edge commands such as ORP and ORF can be present at the same time.

Application Example



3.1.5 ANB&ORB: Operation Commands for Energy Flow Block Connection

Commar	nd list		*B		Applicable model	TS600 series			
16-Bit con	nmand		ANB: Energy flow block AND						
32-Bit con	nmand		-						
16-Bit con	nmand		ORB: Energy flow block OR						
32-Bit con	nmand				-				
			Bit		W	/ord			
Operand	Туре	X, Y, M, LM, T,	Dv.v	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
-	-	-	-	-	-	-	-	-	

Function Description

ANB Command:

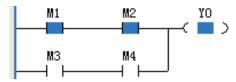
It performs an "AND" operation on the energy flow values of two energy flow blocks and assigns the values to the current energy flow.

ORB Command:


Energy flow block 1

Energy flow block 2

It performs an "OR" operation on the energy flow values of two energy flow blocks and assigns the values to the current energy flow.


Application Example

ANB Command:

When at least one of M0 and M1 is ON, and at least one of M2 and M3 is ON, Y0 outputs ON.

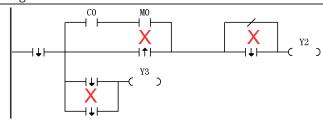
ORB Command:

In case of M1=M2=ON or M3=M5=ON, Y0 outputs ON.

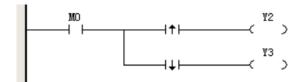
3.1.6 EU&ED: Energy Flow Edge Detection Commands

Comma	and list	E* Applicable model TS600 series						
16-Bit co	mmand			EU: Rising e	energy flow ed	lge detection		
32-Bit co	mmand				-			
16-Bit co	mmand		ED: Falling energy flow edge detection					
32-Bit co	mmand				-			
			Bit		V	Vord		
Operand	Type	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
-	-	-	-	-	-	-	-	-

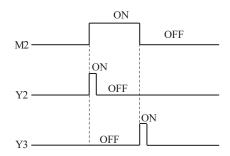
Function Description


EU: It compares the changes in input energy flow between this scan and the last scan. When the energy flow has a rising edge change (OFF \rightarrow ON), the output is valid during this scan cycle.

ED: It compares the changes in input energy flow between this scan and the last scan. When the energy flow has a falling edge change (ON \rightarrow OFF), the output is valid during this scan cycle.


Precautions

- In the ladder diagram, the rising or falling edge contact command should be used in series with other contact elements and cannot be used in parallel with other contact elements.
- In the ladder diagram, the rising or falling edge contact command cannot be directly connected to the left energy flow busbar.
- Up to 4096 edge commands such as EU and ED can be present at the same time.
- An example of incorrect use of EU and ED commands in the ladder diagram is shown below.


Application Example

In two consecutive scan cycles, the states of the M0 contact are OFF and ON, respectively. The EU command detects a change in the rising edge, causing Y2 to output the ON state for one scan cycle width.

In two consecutive scan cycles, the states of the M0 contact are ON and OFF, respectively. The ED command detects a change in the falling edge, causing Y3 to output the ON state for one scan cycle width.

Timing diagram

3.1.7 RS&SR: Set and Reset Priority Commands

Comma	and list		E*		Applicable model	TS600 series				
16-Bit co	mmand		RS set priority trigger							
32-Bit co	mmand		-							
16-Bit co	mmand		SR reset priority trigger							
32-Bit co	mmand				-					
		Bit			W	/ord				
Operand	Type	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant		
		C, S	Dx.y	variable	С	variable				
R,R1	BOOL	√ [1]	-	✓	-	-	-	-		
Q	BOOL	√ [2]	-	√	-	-	-	-		

Remark:

[1] Only X, Y, M, and S elements are supported.

 $\left[2\right]$ Only the Y, M, and S elements are supported.

Function Description

RS: Set priority latch, where the set signal takes precedence. If both the set (S1) and reset (R) signals are true, the value of output Q will be 1.

SR: Reset priority latch, where the reset signal takes precedence. If both the set (S) and reset (R1) signals are true, the value of output Q will be 0.

Precautions

S1 and S can be regarded as energy flow input bits.

Application Example

	S1	R	Q
RS	0	0	Previous state
	0	1	0
	1	0	1
	1	1	1
	S	R1	Q
RS	0	0	Previous state
	0	1	0
	1	0	1
	1	1	0

3.2 Output Control Command

3.2.1 Command list

Command Category	Name	Function	
	OUT	Coil output	
	SET	Coil set	
	RST	Coil reset	
Output Control Command	PLS	Rising pulse edge detection coil	
	PLF	Falling pulse edge detection coil	
	ALT	Alternating output	
	NOP	Null operation	

3.2.2 OUT: Coil Output Commands

Comma	nd list	C	UT	(D)	Applicable model	TS600 series			
16-Bit co	mmand		OUT: Coil output						
32-Bit co	mmand		-						
		Bit			Wor				
Operand	Type	X, Y, M,	Dv.v	Custom bit	D D V 7 T C	Custom word	Indexing	Constant	
		LM, T, C, S	Dx.y	variable	D, R, V, Z, T, C	variable			
D	BOOL	√ [1]	\checkmark	✓	-	-	-	-	

Remark:

[1] The X element is not supported, and the S element is separately listed in 3.2.3 SET: Coil Set Commands.

Operand Description

D: The destination operand.

Function Description

It assigns the current energy flow value to the specified coil (D).

Application Example

When M1 is ON, Y0 outputs ON.

3.2.3 SET: Coil Set Commands

nd list	SET (D)			Applicable model	TS600 series				
mmand		SET: Coil set							
mmand		_							
	Bit			W	ord				
Type		Dx.y	Custom bit	D, R, V, Z		Indexing	Constant		
BOOL		\	variable √	_	- variable	_	_		
	mmand mmand	mmand mmand Type X, Y, M, LM, T, C, S	mmand mmand Bit Type X, Y, M, LM, T, C, S Dx.y	mmand Bit Type X, Y, M, LM, T, C, S Dx.y Custom bit variable	mmand SET (D) model SET: Coil so mmand - Bit W Type X, Y, M, LM, T, C, S Dx.y Custom bit variable D, R, V, Z	mmand SET (D) model SET: Coil set mmand	mmand SET (D) model TS600 series mmand SET: Coil set mmand - Bit Word Type X, Y, M, LM, Dx.y Custom bit variable D, R, V, Z Custom word variable		

Remark:

[1] The X element is not supported, and the S element is separately listed in 3.4.3 SET/RST/OUT S (label): SFC State Operation Commands.

Operand Description

D: The destination operand.

Function Description

When the energy flow is valid, the bit element specified by (D) will be set. After setting, the bit element specified by (D) will still remain in the set state, regardless of whether the command is driven or not. This state can be reset by the RST command.

Application Example

In case M0=ON, the M1 element is set.

3.2.4 RST: Coil Reset Commands

Comma	nd list	RST (D)			Applicable model	TS600 series			
16-Bit co	mmand		RST: Coil reset						
32-Bit co	mmand		-						
		Bit			Wor	·d			
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
D	BOOL	√ [1]	✓	√	-	-	-	-	

Remark:

[1] The X element is not supported, and the S element is separately listed in 3.4.3 SET/RST/OUT S (label): SFC State Operation Commands.

Operand Description

D: The destination operand.

Function Description

When the energy flow is valid, the bit element specified by (D) will be reset. After resetting, the bit element specified by (D) will still remain in the set state, regardless of whether the command is driven or not. This state can be set by the SET command.

Application Example

In case M0=ON, the M1 element is reset.

3.2.5 PLS&PLF: Pulse Edge Detection Coil Commands

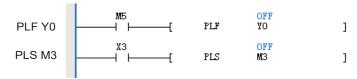
Comma	and list	Р	PL* (D) Applicable model				TS600 series		
16-Bit co	mmand		PLS: Rising pulse edge detection coil						
32-Bit co	mmand				-				
16-Bit co	mmand			PLF: Falli	ng pulse edge de	tection coil			
32-Bit co	mmand				-				
			Bit		Wor	d			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
D	BOOL	√ [1]	✓	√	-	-	-	-	

Remark:

[1] The X element is not supported.

Operand Description

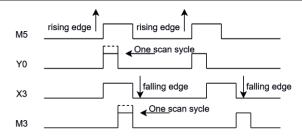
D: The destination operand.


Function Description

- 1. PLS command: When the rising edge of the energy flow appears, the specified (D) element is set and the set state is maintained for one scan cycle.
- 2. PLF command: When the falling edge of the energy flow appears, the specified (D) element is set and the set state is maintained for one scan cycle.

Precautions

Up to 4096 edge commands such as PLS and PLF can be present at the same time.


Application Example

When M5 is switched from ON to OFF, the Y0 element is set. When X3 is switched from OFF to ON, the M3 element is set.

Timing diagram

3.2.6 ALT: Alternating Output Commands

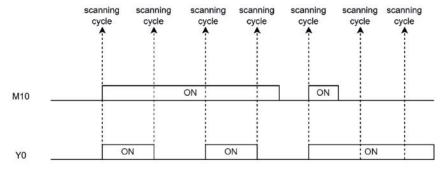
Command list		A	LT	(D)	Applicable model	TS	600 series	
16-Bit command ALT: Alternating						output		
32-Bit con	nmand		-					
			Bit		W	ord		
Operand	Туре	X, Y, M, LM,	,	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
D	BOOL	√ [1]	\	\	-	-	-	-

Remark:

[1] Only the Y, M, and S elements are supported.

Operand Description

D: The destination operand, which alternately outputs bit elements.


Function Description

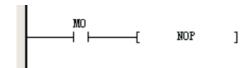
When the energy flow is effective, the bit element pointed to by (D) acts in reverse for each scan cycle.

Application Example

When M10 is set to ON, Y0 flips the element values at each scan cycle, as shown in the following figure.

3.2.7 NOP: Null Operation Commands

Command list		NOP			Applicable model	TS600 series			
16-Bit co	mmand			N	IOP: Null operation				
32-Bit co	mmand		-						
			Bit		W	ord			
Operand	Type	X, Y, M, LM, T, C, S	X, Y, M, LM, T, C, S Dx.y Custom bit variable		D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
_	-	-				-	-	-	


Function Description

This command does not generate any action.

Precautions

In the ladder diagram, this command cannot be directly connected to the left energy flow busbar.

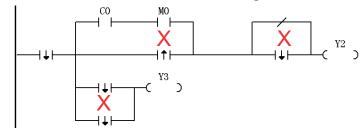
Application Example

In case of M0=ON, the PLC performs a null operation.

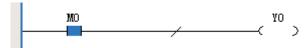
3.3 Energy Flow Control Command

3.3.1 INV: Energy Flow Inversion Commands

Comma	and list	INV			Applicable model	TS600 series			
16-Bit co	mmand		INV: Energy flow inversion						
32-Bit co	mmand				-				
		Bit			Wo	ord			
Operand	Type	X, Y, M, LM, T, C, S	X, Y, M, LM, T, C, S Dx.y		D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
-	-	-	-	-	-	-	-	-	


Function Description

It inverts the current energy flow value and assign the resultant value to the current energy flow.


Precautions

- In the ladder diagram, the energy flow inversion command should be used in series with contact elements and cannot be used in parallel with other contact elements.
- INV cannot be used as the first command for parallel branches of the output.
- In the ladder diagram, the energy flow inversion command cannot be directly connected to the left energy flow busbar.

An example of incorrect use of INV commands in the ladder diagram is shown below:

Application Example

In case of M0=ON, the current energy flow is ON. After inversion, the value is assigned to Y0, which means that Y0 is reset.

3.4 SFC Command

3.4.1 Command list

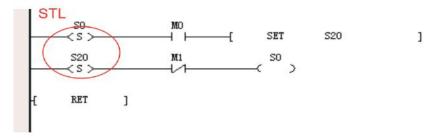
Command Category	Name	Function
	STL	SFC state load
	SET S _(label)	SFC state transition
SFC Command	OUT S _(label)	SFC state jump
	RST S _(label)	SFC state clear
	RET	SFC program end

3.4.2 STL: SFC State Load Commands

Commai	nd list	st STL (S) Applicable model				TS6	600 series	
16-Bit cor	mmand		STL: SFC state load					
32-Bit command -								
		Bit			V	Vord		
Operand	Туре	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
	T, C, S		Dx.y	variable	T, C	variable		
S	BOOL	√ [1]	-	-	-	-	-	-

Remark:

[1] Only the S element is supported.


Operand Description

S: The S element number of the STL statement to be executed.

Function Description

- 1. It represents the beginning of a step state (S) processing.
- 2. If the step state is valid (ON), its built-in commands will be executed.
- 3. If the step state changes from valid to invalid (falling edge change), its built-in command sequence will not be executed, and the built-in ladder diagram program will be reset.
- 4. If the step state is invalid,, its built-in command sequence will not be executed.
- 5. Continuous STL commands (serial connection of STL components) represent a defined parallel merging structure. STL commands can be consecutively used for up to 16 times, (the parallel branch merging structure has a maximum of 16 branches).

Application Example

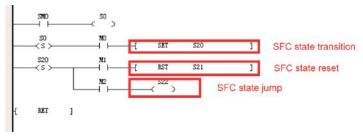
As shown in the above figure, STL is used to load a stepping state. In case of S0=ON, this step state is enabled; when M0 is set, it transitions to the S20 step state.

3.4.3 SET/RST/OUT S (label): SFC State Operation Commands

Comma	nd list	SET/RST/C	OUT S _{(la}	bel) (D)	Applicable model	TS6	TS600 series			
16-Bit cor	mmand		SET S _(label) : SFC state transition							
32-Bit cor	nmand				-					
16-Bit cor	mmand			RST S	(label): SFC stat	e clear				
32-Bit cor	nmand	-								
16-Bit cor	mmand			OUT S	(label): SFC stat	te jump				
32-Bit cor	nmand				-					
			Bit		W	ord ord				
Operand	erand Type X, Y, M, LM, T, C, S		Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant		
S	BOOL	√ [1]	-	-	-	-	-	-		

Remark:

[1] Only the S element is supported.


Operand Description

S: The S element number of the STL statement to be executed.

Function Description

- 1. SET S_(label): When the command is driven, it sets the specified step state (D) to valid and the currently valid step state to invalid, completing the step state jump action.
- 2. RST $S_{(label)}$: When the command is driven, it sets the specified step state (D) to invalid.
- 3. OUT $S_{(label)}$: When the command is driven, it sets the specified step state (D) to valid and the currently valid step state to invalid, completing the step state transition action.

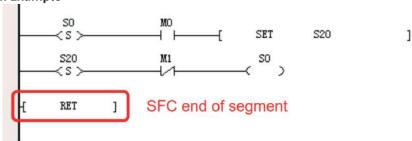
Application Example

When the S0 step state is activated:

- ➤ In case of M0=ON, this step state transitions to the S20 step state;
- ➤ In case of M1=ON, this step state resets to the S21 step state;
- In case of M2=ON, this step state jumps to the S22 step state.

3.4.4 RET: SFC Program Segment End

Comma	nd list		RET		Applicable model	TS600 series			
16-Bit co	mmand		RET: SFC Program Segment End						
32-Bit co	mmand	-							
		Bit			W	/ord			
Operand	Type	X, Y, M, LM, T, C, S	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		T, C, S Dx.y		variable	T, C	variable			
-	-	-	-	-	-	-	-	-	


Function Description

- The step ladder diagram is a controlled device based run procedure, which is decomposed into several states or processes, logically programs each state, and then switch states based on signal conditions.
 During programming, the STL ladder diagram is used, which provides a clear thought, simplifies logical design, and facilitates debugging and maintenance.
- 2. The step ladder diagram command can be represented by a ladder diagram, where the state (S) is considered as a control process, and the input conditions and output control are programmed in sequence. The most significant feature of this control is that the current process is not connected to the previous process when running and the device can be controlled in a simple sequence of each process.
- 3. The step ladder diagram has corresponding programming rules, which include the programming methods of ordinary ladder diagrams and differ from programming rules of ordinary ladder diagrams to a certain extent, as explained below.
- 4. The step ladder program starts with the STL command (note that it is different from the S state in the ordinary ladder diagram) and ends with the RET command. The intermediate program is led by the S state and followed by all operation logics of the S state, including the operations used for switching to the next state when the conditions are met.

Precautions

It can be used only in the main program.

Application Example

The RET command indicates that the SFC program segment ends and separates from the ordinary ladder diagram, and the ladder diagram program after the segment continues to run.

3.5 Program Flow Control Command

3.5.1 Command list

Command Category	Name	Function
	FOR	Loop operation
	NEXT	Loop return
	LBL	Jump label definition
	CJ	Conditional jump
	CFEND	Conditional return of main user program
Program Flow Control	WDT	User program watchdog reset
Command	EI	Interrupt enabling
	DI	Interrupt disabling
	CIRET	Conditional return of user interrupt program
	STOP	User program stop
	CALL	User subroutine call
	CSRET	Conditional return of user subroutine

3.5.2 FOR: Loop Operation

Comma	nd list	FOR (S) Applicable model TS600 serie					00 series		
16-Bit co	mmand		FOR: Loop operation						
32-Bit command -									
		Bit			W	/ord			
Operand	Type	X, Y, M,	D.,	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
	Operand Type X, Y, M, LM, T, C, S		Dx.y	variable	T, C	variable			
S	INT	-	-	-	√	√	√	✓	

Operand Description

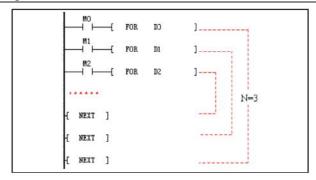
S: The source operand, which indicates the number of loops.

Function Description

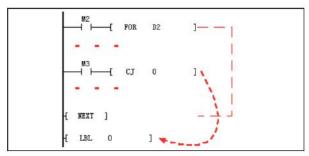
It forms a FOR-NEXT structure with the NEXT command, as explained in the section for NEXT.

3.5.3 NEXT: Loop Return

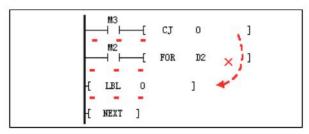
Comma	and list		NEXT-			TS600 series			
16-Bit co	mmand		NEXT: Loop return						
32-Bit co	mmand	-							
			Bit		Wo	ord			
Operand	Type	X, Y, M, LM,	Dvv	Custom bit	DDVZTC	Custom word	Indexing	Constant	
		X, Y, M, LM, T, C, S	T, C, S Dx.y varia		D, R, V, Z, T, C	variable			
-	-	-	-	-	-	-	-	-	

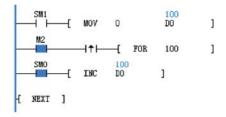

Function Description

- 1. The FOR command matches with the NEXT command to form a FOR NEXT structure.
- 2. When the energy flow before the FOR command is valid and the number of loop times (S) is greater than zero, the command in the middle of the FOR-NEXT structure is consecutively looped for S times. When the command has been looped for S times, the program continues to execute the commands after the FOR-NEXT structure.
- 3. If the energy flow before the FOR command is invalid, or the number of loop times (S) is less than or equal to zero, the command in the middle of the FOR-NEXT structure is not executed, and the program directly jumps after the FOR-NEXT structure and continues to execute.


Precautions

- FOR-NEXT commands must be used in pairs within a program body (POU), otherwise the user program cannot be compiled correctly.
- Nesting multiple FOR-NEXT structures is supported, and the TS600 series only supports up to 8 layers of nested FOR-NEXT structures. An example of 3-layer nested FOR-NEXT structures is shown in the figure below.




 Conditional jump commands (CJ) can be used within the loop body to jump out of the loop body, thereby early terminating the loop body execution, as shown in the ladder diagram below.

• Users are prohibited from using jump statements (CJ) to jump into a loop body, otherwise the following ladder diagram cannot be compiled correctly.

Application Example

The initial conditions for running are D0=0 and M2=OFF. When M2 changes from OFF to ON, the command within the FOR-NEXT structure are executed for 100 times continuously, and D0 is increased by 1 for 100 times. After the loop ends, the result is D0=100.

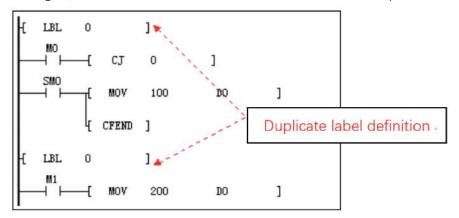
3.5.4 LBL: Jump Label Definition Commands

Command list		LI	BL	(S)	Applicable model	TS	600 series	
16-Bit co	mmand	nand LBL: Jump label definition						
32-Bit command -								
		Bit			Wo	ord		
Operand	Type	X, Y, M, LM,	D.,	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S Dx.y		variable	С	variable		
S	INT	-	-	-	-	-	-	√

Operand Description

S: The label value.

Function Description


- 1. It defines a label that has a value of S.
- 2. It does not generate any substantive operation, but only indicates the specific jump position for the conditional jump command (CJ).

Precautions

- The range of label value S: $0 \le S \le 1023$.
- In a user program, it is not allowed to have two duplicate defined labels in the same program body, otherwise the user program cannot be compiled. However, duplicate label definitions are allowed in different program bodies (such as different subroutines).

Error Example

As shown in the figure, there are the same label definitions and therefore a compilation error occurs.

3.5.5 CJ: Conditional Jump Commands

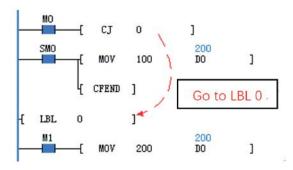
Comma	nd list	C	CJ (S) Applicable model TS6		600 series			
16-Bit cor	nmand			CJ:	Conditional j	ump		
32-Bit con	nmand				-			
			Bi	t	W	ord		
Operand	Type	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
				variable	С	variable		
S	INT	-	-	-	-	-	-	✓

Operand Description

S: The label value.

Function Description

- 1. When the energy flow is valid, the user program jumps to the legally labeled command with the number S for execution.
- 2. If the energy flow is invalid, no jump operation occurs and the next command after CJ is executed in sequence.


Precautions

- The label S (0 ≤ S ≤ 1023) that the CJ command needs to jump to should be a valid and defined label, otherwise the user program cannot be compiled correctly.
- It is not allowed to use the CJ command for jumping into a FOR-NEXT structure.

• It is allowed to use the CJ command for jumping out of or into the SFC state, but this will disrupt the logic of the SFC state and make the program more complex. Therefore, it is not recommended to use the command in this way.

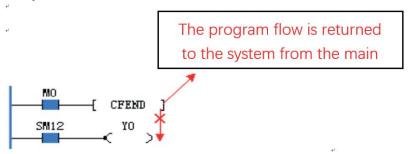
Application Example

The initial conditions are M0=OFF, M1=ON, and D0=100, with CJ 0 not jumping. After executing CFEND, the program flow exits the main program prematurely, and the commands LD M1 and MOV 200 D0 are not executed.

In case of M0=ON and M1=ON, the command CJ 0 is executed, and the commands MOV 100 D0 and CFEND are skipped. After jumping to LBL 0, the program executes the command MOV 200 D0, with D0=200 obtained as the result.

3.5.6 CFEND: Conditional Return of Main User Program

Comma	nd list		CFEN	D (S)	Applicable model	I Sh()() series		
16-Bit co	mmand		(CFEND: Conditio	nal return o	f main user pro	gram	
32-Bit co	mmand				-			
			В	it	V	Vord		
Operand	Type	X, Y, M,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		X, Y, M, LM, T, C, S	_M, T, C, S Dx.y variable		T, C	variable		
S	INT	-				-	-	√


Function Description

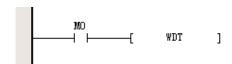
- When the energy flow of the command is valid, the main program returns to the system from the current scan cycle (the main program of the user program is called and executed by the system repeatedly according to the scan cycle), and subsequent commands in the main program are not executed.
- 2. When the energy flow of the command is invalid, the command does not generate any action, and subsequent commands are executed in sequence.

Precautions

The CFEND command must be present in the main user program, otherwise the program cannot be compiled.

Application Example

When the program runs with M0=OFF, the command CFEND command does not generate any action, the subsequent commands LD SM12 and OUT Y0 are executed, and the Y0 cycle flashing output is visible. In case of M0=ON, the command CFEND generates an action, and the program flow returns to the system prematurely from the main program, the subsequent commands LD SM12 and OUT Y0 are not executed, and the Y0 cycle flashing output disappears.


3.5.7 WDT: User Program Watchdog Reset

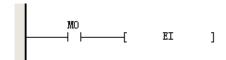
Comman	Command list WDT		Т	Applicable model	TS6	600 series			
16-Bit com	mand			WDT: User բ	program watchdog reset				
32-Bit com	mand				-				
			Bit		W	ord			
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		T, C, S	T, C, S Dx.y variable		С	variable			
-	ı	-			-	-	-	-	

Function Description

When the energy flow is valid, this command resets the timing value of the user program watchdog to zero, and the user program watchdog of the system restarts timing.

Application Example

In case of M0=ON, the system watchdog timing value is reset to zero.


3.5.8 EI: Interrupt Enabling

Commai	nd list		EI			TS6	600 series	
16-Bit cor	nmand			EI: Inte	rrupt enablir	ng		
32-Bit cor	nmand				-			
			Bit		W	ord		
Operand	Type	X, Y, M, LM, T, C, S				Custom word variable	Indexing	Constant
-	-	-				-	-	-

Function Description

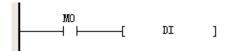
- 1. When the energy flow is valid, the interrupt is enabled.
- 2. When the EI command is valid, interrupt requests are allowed to be added to the interrupt request queue, waiting for the system to respond.
- 3. Interrupt enable can be disabled using the DI command.

Application Example

In case of M0=ON, the enable system is interrupted, and interrupt requests are allowed.

3.5.9 DI: Interrupt Disabling

Commar	nd list		DI			TS6	600 series	
16-Bit con	nmand			DI: Int	errupt eisabl	ling		
32-Bit con	nmand				-			
			Bit		W	ord		
Operand	Type	X, Y, M, LM, T, C, S			D, R, V, Z, T, C	Custom word variable	Indexing	Constant
-	-	-			-	-	-	-


Function Description

- 1. When the energy flow is valid, the global interrupt enable flag becomes invalid, which means that the global interrupt is turned off.
- 2. When the global interrupt enable flag is invalid, various interrupt events cannot generate interrupt requests.
- 3. Interrupt disable can be enabled using the EI command.

Precautions

When the interrupt disable request command takes effect, if there are still pending interrupt requests in the interrupt request queue, the remaining interrupt requests must still be responded to, but new interrupt events cannot generate interrupt requests.

Application Example

In case of M0=ON, the enable system is interrupted, and interrupt requests are prohibited.

3.5.10 CIRET: Conditional Return of User Interrupt Program

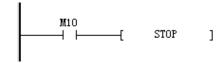
Commai	nd list		CIRET			TS	6600 series	
16-Bit cor	nmand		CIF	RET: Conditional	return of us	ser interrupt p	rogram	
32-Bit cor	nmand				-			
			Bi	t	W	/ord		
Operand	Type	X, Y, M,	D	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		LM, T, C, S Dx.y variable		variable	T, C	variable		
-	-			-	-	-	-	-

Function Description

When the energy flow is valid, the interrupt program being executed is exited prematurely.

Application Example

When this command is used in the interrupt subroutine, the subsequent program does not run. Note that when using the interrupt subroutine, the EI command is required to enable interrupt requests.


3.5.11 STOP: User Program Stop

Co	ommar	nd list		STOP			TS6	600 series	
16-	Bit con	nmand			STOP: U	Jser program	stop		
32-	Bit con	nmand				-			
				Bit		W	ord		
Ор	erand	Туре	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
			C, S Dx.y variable		variable	T, C	variable		
	-	-	-				-	-	

Function Description

When the energy flow is valid, the system immediately stops the execution of the user program.

Application Example

In case of M10=ON, the user program stops.

3.5.12 CALL: User Subroutine Call

Commai	CALL (sub (parameter			,	Applicable model	TS6	600 series	
16-Bit cor	nmand				-			
32-Bit cor	mmand				-			
			Bit		Word			
Operand	Type	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S			T, C	variable		
-	-			-	-	-	-	

Function Description

When the energy flow is valid, the system calls a subroutine with the specified name for execution. After the subroutine is executed, the system returns to the command after the CALL command to continue execution.

Precautions

- The subroutine called in the CALL command must be defined beforehand in the user program. If an undefined subroutine appears in the CALL command, the program cannot be compiled.
- The element type of the operand carried in the CALL command should match the data type defined in the local variable table of the subroutine, otherwise the program cannot be compiled.
- The number of operands carried in the CALL command should match the local variable table of the subroutine, otherwise the program cannot be compiled.
- When the CALL command calls the program as a C language function, the subroutine name and parameter input follow the same rules described above.

The following examples explain illegal matching uses:

Example 1: In the local variable table of the SBR1 subroutine, the data type of operand 1 is DINT/DWORD.

The following uses are illegal:

- 1. CALL SBR1 Z0 (the Z element cannot be used for the data type DINT/DWORD).
- 2. CALL SBR1 C199 (elements C0–C199 cannot be used for the data type DINT/DWORD).

Example 2: In the local variable table of the SBR1 subroutine, the data type of operand 1 is INT/WORD.

The following uses are illegal:

- 1. CALL SBR1 C200 (elements C200–C255 cannot be used for the data type INT/WORD).
- 2. The element type of the operand carried in the CALL command should match the variable type defined in the local variable table of the subroutine, otherwise the program cannot be compiled.

The following examples explain illegal matching uses:

Example 3: In the local variable table of the SBR1 subroutine, the operand type of operand 1 is OUT or IN_OUT.

The following uses are illegal:

- 1. CALL SBR1 321 (the constant cannot be changed, and therefore it does not match the OUT or IN-OUT type operand).
- 2. CALL SBR1 X0 (X0 is read-only, and therefore it does not match the OUT or IN-OUT type operand).

3.5.13 CSRET: Conditional Return of User Subroutine

Commai	nd list	(CSRET		Applicable model	TS6	00 series	
16-Bit cor	nmand		CSI	RET: Conditio	nal return of	user subroutine	е	
32-Bit cor	nmand				-			
			Bit		W	/ord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	C, S Dx.y variable T, C variable					
-	-	-				-		

Function Description

When the energy flow is valid, the system exits the subroutine being executed and returns to the subroutine at the previous level.

Application Example

In case of M500=ON, the system does not execute the programs after the CSRET command and returns to the main program.

3.5.14 IRQ_SET: Interrupt Enable Control Command

16-Bit command		IRQ_SET: Interrupt enable command					
32-Bit command			-				
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type
S1	EN	Enable/Disable	M, S, Y, custom variable	No	-	ON, OFF	BOOL

16-Bit command		IRQ_SET: Interrupt enable command					
32-Bit command			-				
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type
S2	Num	Interrupt number	M, S, Y, custom variable	No	-	0-35	INT
D2	Status	Execution state	M, S, Y, custom variable	No	-	ON, OFF	BOOL

Function Description

Num interrupt number enable is turned on when the energy flow connection EN = ON.

Num interrupt number enable is turned off when the energy flow connection EN = OFF.

∠Note: Interrupt number enable is turned on by default after the interrupt configuration and EI startup.

3.6 Timing and Counting Command

3.6.1 Command list

Command Category	Name	Function
	TON	ON delay timing
	TONR	Memory-type ON delay timing
	TOF	OFF delay timing
Timing and Counting Command	TMON	Non-retriggering single stable timing
	CTU	16-bit increment counter
	CTR	16-bit loop counter
	DCNT	32-bit increment-decrement
	DCNT	counter

3.6.2 TON: ON Delay Timing Commands

Commai	nd list	TON	TON (D) (S)			TS	600 series	
16-Bit cor	nmand			TON	N: ON delay timing			
32-Bit cor	nmand				-			
			Bit		Wo	ord		
Operand	Type	X, Y, M, LM, T,	Dur	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
D	INT	-	-	-	√ [1]	-	-	-
S	INT	-	-	-	✓	√	√	√

Remark:

[1] The T element is supported.

Operand Description

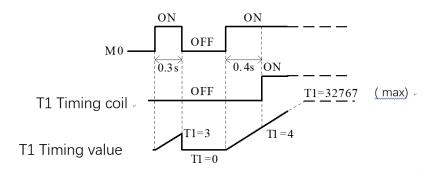
- D: The destination operand, which indicates the specified T element.
- S: The source operand, which indicates the preset value of timing.

Function Description

1. When the energy flow is valid and the timing value is < 32767, the specified T element (D) is timed (the

timing value accumulates over time). When the timing value reaches 32767, the timing value will remain unchanged at 32767.

- 2. When the timing value is ≥ the preset value (S), the timing coil output of the specified T element is ON.
- 3. When the energy flow is OFF, timing stops, the timing value is reset to zero, and the timing coil output is OFF.
- 4. When the system executes this instruction for the first time, the timing coil value of the specified T element will be reset to OFF and the timing value will be reset to zero.


Precautions

The subscript value of the T element ranges between T0 and T399.

Application Example

Timing diagram

3.6.3 TONR: Memory-Type ON Delay Timing Commands

Comma	nd list	TONE	TONR (D) (S)			TS600 series		
16-Bit cor	mmand			TONR: Mem	ory-type ON de	lay timing		
32-Bit cor	mmand				-			
			Bit		Wo	rd		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
D	INT	-			√ [1]	-	-	-
S	INT	-	-	-	✓	✓	√	✓

Remark:

[1] The T element is supported.

Operand Description

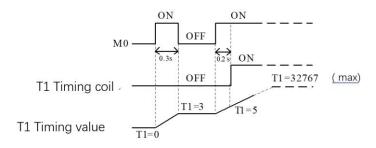
D: The destination operand, which indicates the specified T element.

S: The source operand, which indicates the preset value of timing.

Function Description

- 1. When the energy flow is valid and the timing value is < 32767, the specified T element (D) is timed (the timing value increases over time). When the timing value reaches 32767, the timing value will remain unchanged at 32767.
- 2. When the timing value is ≥ the preset value (S), the timing coil output of the specified T element is ON.

3. When the energy flow is OFF, timing stops, and the timing coil and the timing value remain the current timing value.


Precautions

The subscript value of the T element ranges between T0 and T399.

Application Example

Timing diagram

3.6.4 TOF: OFF Delay Timing Commands

Comma	nd list	TOF	TOF (D) (S)			TS6	600 series	
16-Bit cor	nmand		TOF: OFF delay timing					
32-Bit cor	nmand		-					
			Bit		Wo	rd		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
D	INT	-	-	-	√ [1]	-	-	-
S	INT	-	-	-	√	√	✓	√

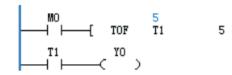
Remark:

[1] The T element is supported.

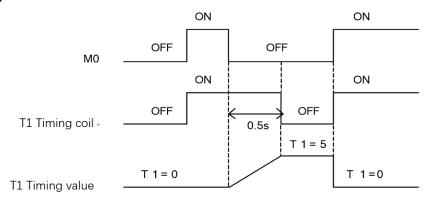
Operand Description

- D: The destination operand, which indicates the specified T element.
- S: The source operand, which indicates the preset value of timing.

Function Description


- 1. When the energy flow changes from ON to OFF (falling edge), the specified timer T (D) starts timing.
- 2. When the energy flow is OFF, and the specified timer T has started timing, the timing is continued. Once the timing value equals the preset value (S), the timing coil output of the specified T element is OFF, and thereafter the timing value will remain unchanged at the preset value.
- 3. If the timing is not started, it will not be started even if the energy flow input is OFF.
- 4. When the energy flow is ON, timing stops, the timing value is reset to zero, and the timing coil output is ON.

Precautions


The subscript value of the T element ranges between T0 and T399.

Application Example

Timing diagram

3.6.5 TMON: Non-Triggering Timing Commands

Comma	nd list	TMON	(D)	(S)	Applicable model	TS600 series		
16-Bit co	mmand			TMON: Non-re	triggering singl	e stable timing	5	
32-Bit co	mmand				-			
			Bit		Wo	rd		
Operand	Type	X, Y, M, LM,	Dv v	Custom bit	DDVZTC	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	D, R, V, Z, T, C	variable		
D	INT	-	-	-	√ [1]	-	-	-
S	INT	-	-	-	√	✓	√	✓

Remark:

[1] The T element is supported.

Operand Description

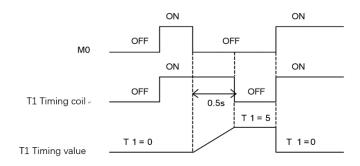
D: The destination operand, which indicates the specified T element.

S: The source operand, which indicates the preset value of timing.

Function Description

- 1. When the input energy flow changes from OFF to ON (rising edge) and is in the non-timing state, the specified timer T (D) starts timing (from the current value). In the timing state (the timing length is determined by S), the timing coil output keeps ON.
- 2. In the timing state (the timing length is determined by S), the timing keeps and the timing coil output remains ON, regardless of how the energy flow changes.
- 3. When the timing value is reached, timing stops, the timing value is reset to zero, and the coil output is reset to OFF.

Precautions


The subscript value of the T element ranges between T0 and T399.

Application Example

Timing diagram

3.6.6 TPR: Pulse Timing Commands

Commar	nd list	TPR (P) (R) (O) (E) Applicable model TS600 se				00 series		
16-Bit con	nmand		TPR: Pulse timing					
32-Bit con	nmand		-					
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
PreTime	DINT	-	-	-	√ [2]	✓	-	✓
ReSet	BOOL	√ [1]	-	✓	-	-	-	-
OutPut	BOOL	√ [1]	_	√	_	-	-	_
ElapTime	DINT	-	-	-	√ [2]	√	-	-

Remark:

[1] The Y, M, and S elements are supported.

[2] The D and R elements are supported.

Operand Description

PreTime: The preset timing, measured in milliseconds. The set value ranges between 0 and 2147483647 ms (up to approximately 24 days); if the PT set value is \leq 0, the timing is done according to 0.

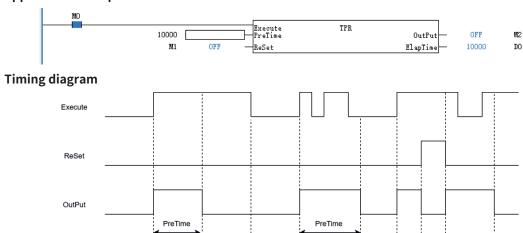
ReSet: The reset timer.

OutPut: The output result.

ElapTime: The elapsed time.

Function Description

- When the IN input energy flow of the timer command changes from OFF to ON, the timer starts timing
 and the output Q becomes ON. At this point, Q remains ON within the time specified by the PT
 parameter, regardless of how the input energy flow of IN changes. After the timing reaches the time
 specified by the PT parameter, Q becomes OFF.
- 2. During the timing operation of the timer, ET outputs the current timing. After the timing of the timer reaches the time specified by the PT parameter: If the IN input energy flow is ON, the ET value remains; if the IN input energy flow is OFF, the ET value becomes 0.


3. During the timing process of the timer, if the reset input R changes from OFF to ON, the timing of the TPR timer is reset to 0, and the output Q becomes OFF. After the reset input becomes OFF, if the energy flow of IN is valid, the timing of the timer can be restored.

Precautions

Up to 1024 TPR commands are supported.

Application Example

ElapTime

3.6.7 TONG: ON Delay Timing Commands

Commar	nd list	TONG (TONG (P) (R) (O) (E) Applicable model TS600 series					
16-Bit con	nmand		TONG: ON delay timing					
32-Bit con	nmand				-			
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
PreTime	DINT	-	-	-	√ [2]	√	-	✓
ReSet	BOOL	√ [1]	-	✓	-	-	-	-
OutPut	BOOL	√ [1]	√ ^[1] - √				-	-
ElapTime	DINT	-	-	-	√ [2]	√	-	-

Remark:

[1] The Y, M, and S elements are supported.

[2] The D and R elements are supported.

Operand Description

PreTime: The preset timing, measured in milliseconds. The set value ranges between 0 and 2147483647 ms (up to approximately 24 days); if the PT set value is \leq 0, the timing is done according to 0.

ReSet: The reset timer.

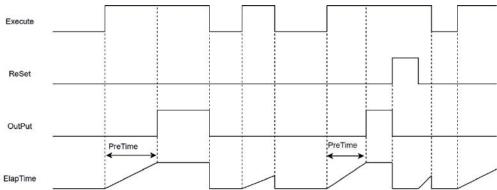
OutPut: The output result. ElapTime: The elapsed time.

Function Description

1. When the timer command IN changes the input energy flow from OFF to ON, the timer starts timing and the output Q becomes OFF. During the period when the IN input energy flow remains ON, the running

time of the timer is the time specified by the PT parameter. After the timing reaches the time specified by the PT parameter, Q becomes ON. During or after the timing process, if the IN input energy flow becomes OFF, the timing ends, and Q becomes OFF. During this period, when the IN input energy flow is OFF, the output Q remains OFF.

- 2. During the timing operation of the timer with the IN input energy flow being ON, ET outputs the current timing. After the timing of the timer reaches the time specified by the PT parameter, the ET value remains unchanged; if the IN input energy flow is OFF, the ET value becomes 0.
- 3. During the timing process of the timer, if the reset input R changes from OFF to ON, the timing of the TONR timer is reset to 0, and the output Q becomes OFF. After the reset input R becomes OFF, it is necessary to change the IN input energy flow from OFF to ON again in order to restore the timing of the timer.


Precautions

Up to 1024 TONG commands are supported.

Application Example

Timing diagram

3.6.8 TOFG: OFF Delay Timing Commands

Commar	ıd list	TOFG (P) (R) (O) (E) Applicable model				TS6	TS600 series		
16-Bit con	nmand		TOFG: OFF delay timing						
32-Bit con	nmand				-				
			Bit		V	/ord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
PreTime	DINT	-	-	-	√ [2]	✓	-	✓	
ReSet	BOOL	√ [1]	-	✓	-	-	-	-	
OutPut	BOOL	√ [1]	-	✓	-	-	-	-	
ElapTime	DINT	-	-	-	√ [2]	√	-	-	

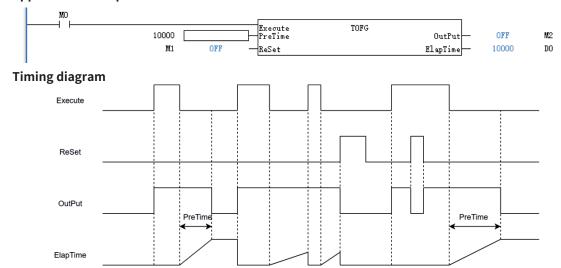
Remark:

- [1] The Y, M, and S elements are supported.
- [2] The D and R elements are supported.

Operand Description

PreTime: The preset timing, measured in milliseconds. The set value ranges between 0 and 2147483647 ms (up to approximately 24 days); if the PT set value is \leq 0, the timing is done according to 0.

ReSet: The reset timer.
OutPut: The output result.
ElapTime: The elapsed time.


Function Description

- 1. When the IN input energy flow of the timer command changes from OFF to ON, the timer starts timing and the output Q becomes ON. When the IN input energy flow changes from ON to OFF with IN remaining OFF, the running time of the timer is the time specified by the PT parameter. When the timing of the timer reaches the time specified by the PT parameter, Q becomes OFF. During the period when the IN input energy flow is OFF, Q remains OFF.
- 2. When the IN input energy flow is ON, the ET output value becomes 0. When IN changes from ON to OFF, during the timing operation of the timer, ET outputs the current timing. After the timing of the timer reaches the time specified by the PT parameter, the ET value remains unchanged.
- 3. When the IN input energy flow is ON, if the reset input R changes from OFF to ON, the output Q becomes OFF; if R returns to OFF, the output Q returns to ON. When the IN input energy flow changes from ON to OFF, for the TOFR timer during or after the timing process, if the reset input R changes from OFF to ON, the output Q becomes OFF, and ET is reset to 0. After the reset input R becomes OFF, it is necessary to change the IN input energy flow from ON to OFF again in order to restore the timing of the timer.

Precautions

Up to 1024 TOFG commands are supported.

Application Example

3.6.9 TACR: Temporal Accumulation Timing Commands

Commai	nd list	TACR (P)	(R)	(O) (E)	Applicable model	TS6	600 series	
16-Bit cor	nmand		TACR: Temporal accumulation timing					
32-Bit cor	nmand		-					
			Bit		V	Vord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
PreTime	DINT	-	-	-	√ [2]	✓	-	✓
ReSet	BOOL	√ [1]	-	√	-	-	-	-
OutPut	BOOL	√[1] - √					-	-
ElapTime	DINT	-	-	-	√ [2]	√	_	-

Remark:

[1] The Y, M, and S elements are supported.

[2] The D and R elements are supported.

Operand Description

PreTime: The preset timing, measured in milliseconds. The set value ranges between 0 and 2147483647 ms (up to approximately 24 days); if the PT set value is \leq 0, the timing is done according to 0.

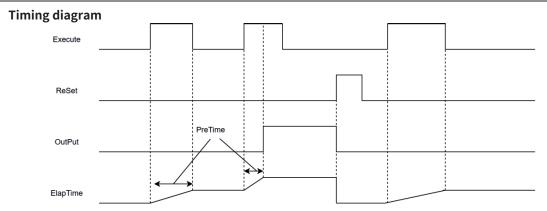
ReSet: The reset timer.

OutPut: The output result.

ElapTime: The elapsed time.

Function Description

- When the IN input energy flow of the timer command is ON, if the timing value of the timer does not
 reach the time specified by the PT parameter, the timer continues to count and the output Q becomes
 OFF. When the timer timing time reaches the time specified by the PT parameter, Q becomes ON.
 During the timing period of the timer with IN being ON, if IN becomes OFF, the timing of the timer
 remains unchanged. After IN becomes ON again, the timer starts counting from the current holding
 value. After the time specified by the PT parameter is reached, Q becomes ON.
- 2. When the IN input energy flow is ON, ET outputs the current timing value. After the timing reaches the time specified by the PT parameter, the ET value remains. When the IN input energy flow is OFF, ET remains unchanged.
- 3. For the timer during or after the timing process, if the reset input R changes from OFF to ON, the output Q becomes OFF, and ET is reset to 0. After the reset input R becomes OFF, it is necessary to change the IN input energy flow from ON to OFF again in order to restore the timing of the timer.


Precautions

Up to 1024 TACR commands are supported.

Application Example

3.6.10 CTU: 16-Bit Increment Counter Commands

Commai	nd list	СТ	J (D)	(S)	Applicable model	TS	600 series	
16-Bit cor	mmand			CTU: 16-bit	increment	counter		
32-Bit cor	mmand				-			
			Bit		V	/ord		
Operand	Туре	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
D	INT	-	-	-	√ [1]	-	-	-
S	INT	-	-	-	√	√	√	√

Remark:

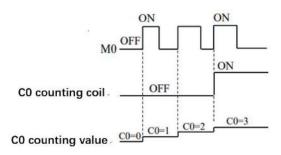
[1] The C element is supported.

Operand Description

- D: The destination operand, which indicates the specified C element.
- S: The source operand, which indicates the preset counting value.

Function Description

- 1. When the energy flow changes from OFF to ON (rising edge), the counting value of the specified 16-bit counter C (D) increases by one.
- 2. After reaching 32767, the counting value remains unchanged.
- 3. When the counting value is \geq the preset counting value (S), the counting coil is set to ON.


Precautions

The subscript values of the C element ranges between 0 and 199.

Application Example

Timing diagram

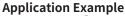
3.6.11 CTR: 16-Bit Loop Counter Commands

Commai	nd list	CTR	CTR (D) (S) Applicable model TS600 serie				600 series	
16-Bit cor	mmand			CTF	R: 16-bit loop o	counter		
32-Bit cor	mmand				-			
			Bit		W	ord		
Operand	Туре	X, Y, M,		Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	С	variable		
D	INT	-	-	-	√ [1]	-	-	-
S	INT	-	-	-	√	√	√	√

Remark:

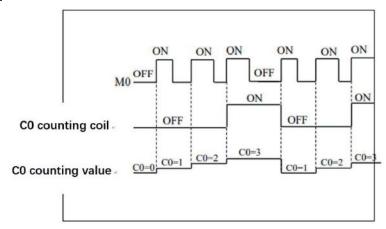
[1] The C element is supported.

Operand Description


- D: The destination operand, which indicates the specified C element.
- S: The source operand, which indicates the preset counting value.

Function Description

- 1. When the input energy flow changes from OFF to ON (rising edge), the counting value of the specified 16-bit counter C (D) increases by one.
- 2. When the counting value is equal to the preset counting value (S), the counting coil is set to ON.
- 3. When the counting value is equal to the preset counting value (S), if the input energy flow changes from OFF to ON (rising edge) once again, the counting value is set to 1 and the counting coil is reset to OFF.


Precautions

The subscript values of the C element ranges between 0 and 199.

Timing diagram

3.6.12 DCNT: 32-Bit Increment-Decrement Counter Commands

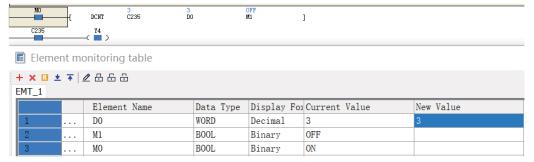
Commar	nd list	DCNT	(D) (S	S1) (S2)	Applicable model	TS600 series		
16-Bit con	nmand			DCNT: 32-bit i	ncrement-de	crement counter		
32-Bit con	nmand				-			
			Bit		V	/ord		
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
D	DINT	-	-	-	√ [1]	-	-	-
S1	DINT	-	-	-	√ [2]	√	√	√
S2	BOOL	√ [3]	-	√	-	-	-	✓

Remark:

- [1]Only the C element is supported.
- [2] The Z and T elements are not supported.
- [3]Only the M element is supported.

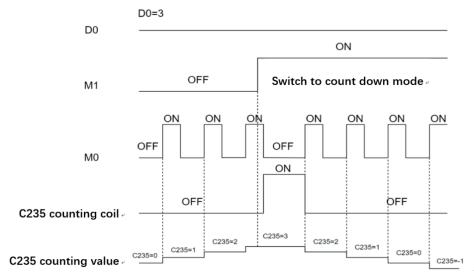
Operand Description

- D: The destination operand, which indicates the specified C element (C200–C255).
- S1: Source operand 1, which indicates the preset counting value.
- S2: Source operand 2, which indicates the counting direction flag bit, where OFF means increasing and ON means decreasing.


Function Description

- 1. When the input energy flow changes from OFF to ON (rising edge), the counting value of the specified 32-bit counter C (D) increases or decrease by 1 (the counting direction, either increasing or decreasing, depends on the S2 operand).
- 2. For the increment counter, when the counting value is ≥ the preset counting value (S), the counting coil is set to ON.
- 3. For the decrement counter, when the counting value is ≤ the preset counting value (S), the counting coil is set to OFF.
- 4. When the counting value is 2147483647, if the timer increases the counting by 1 once more, the count value becomes -2147483648.
- 5. When the counting value is -2147483648, if the timer decreases the counting by 1 once more, the count value becomes 2147483647.

Precautions


The subscript value of the C element ranges between C200 and C255.

Application Example

Timing diagram

3.7 Data Transmission Command

3.7.1 Command list

Command Category	Name	Function
	*MOV	Word/doubleword data transmission
	RMOV	Floating-point number data transmission
	BMOV	Block data transmission
	FMOV	Data block word/doubleword stuffing
	SMOV	Word/doubleword shift transmission
Deta Tuananianian Commune	SWAP	High-low byte swap
Data Transmission Command	*XCH	Word/doubleword exchange
	PUSH	Data push
	FIFO	First in first out
	LIFO	Last in first out
	WSFR	Word string shift right
	WSFL	Word string shift left

3.7.2 MOV: Word/Doubleword Data Transmission Commands

Command list		*MOV (S) (D)			Applicable model	TS600 series				
16-Bit command		MOV: Word data transmission								
32-Bit command		DMOV: Doubleword data transmission								
Operand	Type	Bit			Word					
		X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant		
		T, C, S		variable	T, C	variable				
S	INT/DINT	-	-	-	√ [1]	√	√	√		
D	INT/DINT	-	-	-	√ [1]	√	√	-		

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, the content of S is assigned to D, and the value of S remains unchanged.

Precautions

The MOV command supports both signed and unsigned integers. If both operands of the command are soft elements, then their data types are both signed integers. If the source operand of the command is a signed long integer such as (-10, +100), the destination operand is also a signed integer. If the source operand of the command is an unsigned long integer such as (100, 45535), the destination operand is also a unsigned integer.

Application Example

In case of M0=ON, the content of D0 is assigned to D10 to obtain D10=500, or the content of (D0, D1) is assigned to (D10, D11) to obtain (D10, D11)=50000.

3.7.3 RMOV: Floating-Point Number Data Transmission Commands

Command list		RMOV (S) (D)			Applicable model	TS600 series				
16-Bit command		-								
32-Bit command		RMOV: Floating-point number data transmission								
Operand	Туре	Bit			Word					
		X, Y, M, LM, T,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant		
		C, S		variable	T, C	variable				
S	REAL	-	-	-	√ [1]	✓	√	✓		
D	REAL	-	-	-	√ [1]	✓	√	-		

Remark:

[1] Only the D, R, and V elements are supported.

Operand Description

- S: The source operand.
- D: The destination operand.

Function Description

When the energy flow is valid, the content of S is assigned to D, and the value of S remains unchanged.

Application Example

In case of M0=ON, the content of (D0, D1) is assigned to (D10, D11) to obtain (D10, D11)=50000.00.

3.7.4 BMOV: Block Data Transmission Commands

Comma	and list	BMOV	(S1) ([D) (S2)	Applicable model	TS600 series				
16-Bit co	mmand	BMOV: Block data transmission								
32-Bit co	mmand				-					
			Bit		W	ord .				
Operand	Туре	X, Y, M, LM,	Dv.v	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant		
		T, C, S	Dx.y	variable	T, C	variable				
S1	INT,			_	√ [1]	./				
31	Array*S2	-	_	_	V 1 3	V	V	_		
D	INT,			_	√ [1]	,	,			
D	Array*S2	-	-	-	A 1-1	V	V	-		
S2	INT	-	-	-	✓	✓	✓	✓		

Remark:

[1] The Z element is not supported.

Operand Description

- S1: The source operand, which indicates the starting unit of a data block.
- D: The destination operand, which indicates the starting unit of a data block.
- S2: The data block size.

Function Description

When the energy flow is valid, the content of the S2 units starting from the S1 unit is assigned to the S2 units starting from the D unit, and the content of the S2 units starting from the S1 unit remains unchanged.

Application Example

In case of M0=ON, the contents of the 10 units starting from D0 are assigned to the 10 units starting from D100. D100=D0, D101=D1, ..., D109=D9.

3.7.5 FMOV: Data Block Word/Doubleword Stuffing Commands

Comma	nd list	FMOV (S1) (D) (S2)			Applicable model	TS600 series				
16-Bit co	mmand	FMOV: Data block word stuffing								
32-Bit co	mmand	DFMOV: Data block doubleword stuffing								
			Bit		V	Vord				
Operand	Type	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Custom word Indexing Co			
		C, S	Dx.y	variable	T, C	variable				
C1	INT/DI				√ [1]	,	,	,		
S1	NT	-	-	-	V (2)	V	V	V		
	INT/DI									
D	NT,				√ [2]	,	,			
D	Array*	-	-	-	V [-]	V	√	-		
	S2									
S2	INT	-	-	-	✓	✓	√	✓		

Remark:

[1] For the 32-bit command DFMOV, the T and Z elements are not supported.

[2] For the 16-bit command FMOV, the Z element is not supported; for the 32-bit command DBMOV, the Z and T elements are not supported.

Operand Description

S1: The source operand, which indicates the starting unit of a data block.

D: The destination operand, which indicates the starting unit of a data block.

S2: The data block size.

Function Description

When the energy flow is valid, the content of the S1 unit is stuffed into the S2 units starting from the D unit, and the content of the S1 unit remains unchanged.

Application Example

In case of M0=ON, the content of D0 is stuffed into the 10 units starting from D100. D100 = D101 = \cdots = D109 = D0 = 500.

In case of M0=ON, the content of (D0, D1) is stuffed into the 10×2 units starting from D10. (D10, D11) = (D12, D13) = \cdots = (D28, D29) = (D0, D1) = 100000.

3.7.6 SMOV: Word/Doubleword Shift Transmission Commands

Comm	Command list		SMOV (S1) (S2) (S3) (D) (n)		Applicable model	TS600 series				
16-Bit co	ommand	SMOV: Word shift transmission								
32-Bit co	ommand	DSMOV: Doubleword shift transmission								
			Bit		W	ord				
Operand	Туре	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant		
		T, C, S	Dx.y	variable	С	variable				
S1	INT/DINT	-	-	-	√ [1]	✓	-	✓		
S2	INT/DINT	-	-	-	√ [1]	✓	-	✓		
S3	INT/DINT	-	1	ı	√ [1]	✓	ı	✓		
D	INT/DINT	-	-	-	√ [1]	√	-	-		
n	INT/DINT	_	-	-	√ [1]	√	-	√		

Remark:

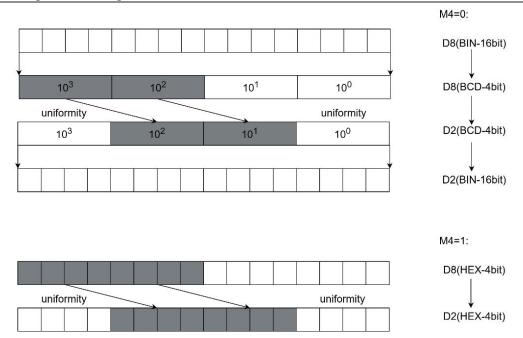
[1] The Z, C, and T soft elements are not supported.

Operand Description

The operands need to be driven by the contact, and there are up to 5 operational variables, among which:

- S1 is the data source variable to be copied. When SM34 is OFF, it is in the BCD mode (decimal bit). The S1 operand ranges from 0000 to 9999 or 000000000 to 99999999 and cannot be negative. When SM34 is ON, it is in the BIN mode, and the S1 operand can be negative.
- S2 is the starting bit number for data source transmission and ranges from 1 to 4 or 1 to 8.
- S3 is the number of bits for data source transmission and ranges from or 1 to S2.
- D is the destination variable for data source transmission.
- n is the starting bit of the destination variable for data source transmission and ranges from S3 to S4 or S3 to S8.

The transmission process of data bits is related to the state of the special flag SM34. When SM34 is OFF, they are in the BCD mode (decimal); when SM34 is ON, they are is in the BIN mode, where every 4 bits (hexadecimal) are transmitted as a unit.


Function Description

Move the digit data of a total of S3 digits starting from the S2 digit (low to high) in S1 to a total of S3 digits starting from the n digit in destination D.

Application Example

Assuming D8=1234 and D2=5678, if M0 is set to ON with SM34=OFF (in the BCD mode), the value of D2 becomes 5128;

assuming D8=0x04D2=1234 and D2=0x162E=5678, if M0 is set to ON with SM34=ON (in the BIN mode), D2=0x104E=4174 is obtained.

3.7.7 SWAP: High-Low Byte Swap Commands

Command list		SWAP (D))	Applicable model	TS600 series			
16-Bit con	nmand			SWAP:	: High-low byte swap				
32-Bit con	nmand		-						
			Bit		V	Vord			
Operand	nd Type X, Y, M, LM, T, C, S		Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
D	INT	-	-	-	✓	√	√	-	

Operand Description

D: The destination operand, which indicates the word element for high-low byte swap.

Function Description

When the energy flow is valid, the value of the content of D after high-low byte swap is saved to the D unit.

Application Example

In case of M0=ON, the value of the content of D0=0x1027 (4135) after high-low byte swap is saved to D0, and D0=0x2710 (10000) is obtained.

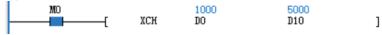
3.7.8 XCH: Word Exchange Commands

Comma	and list	XCH (D1) (D2) Applicable model T			TS6	S600 series		
16-Bit co	mmand			XCH: Wo	ord exchange command			
32-Bit co	mmand			DXCH: Double	oleword exchange command			
		Bit			W	ord		
Operand	Туре	X, Y, M,	, M, D (Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	С	variable		
D1	INT/DINT	-	-	-	√ [1]	√	√	-
D2	INT/DINT	-	-	-	√ [1]	√	√	-

Remark:

[1] For 32-bit commands, the Z and T soft elements are not supported.

Operand Description


D1: Destination operand 1

D2: Destination operand 2

Function Description

When the energy flow is valid, the values of the contents of D1 and D2 after exchange are saved to the D1 and D2 units.

Application Example

In case of M0=ON, the content of D0 is exchanged with that of D10:

Before execution: D0=5000, and D10=1000; after execution: D0=1000, and D10=5000.

In case of M1=ON, the content of (D0, D1) is exchanged with that of (D10, D11):

Before execution: (D0, D1)=5000000, and (D10, D11)=1000000; after execution: (D0, D1)=1000000, and (D10, D11)=5000000.

3.7.9 PUSH: Data Push Commands

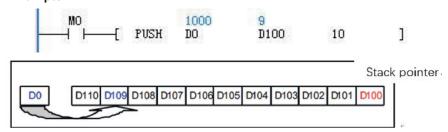
Comm	and list	PUSH	(S1)	(D) (S2)	Applicable model	TS6	00 series			
16-Bit c	ommand	PUSH: Data push								
32-Bit c	ommand		-							
			Bit			ord ord				
Operand	Туре	X, Y, M,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant		
		LM, T, C, S	DX.y	variable	T, C	variable				
S1	INT	-	-	-	✓	✓	✓	✓		
	INT,									
D	Array*[S2]	-	-	-	√ [1]	✓	\checkmark	✓		
	+1									
S2	WORD	-	-	-	✓	✓	✓	\checkmark		

Remark:

[1] The Z, T, and C elements are not supported.

Operand Description

- S1: The push value.
- D: The number of elements in the storage stack, where their labels represent the positions of the stack bottom.
- S2: The stack size.


Function Description

- 1. When the energy flow is valid, the value of S1 is pushed into the stack top with the D unit as the bottom, and the value of D increases by 1. At this point, the number of the stack top unit is: the number of D + the value of D.
- 2. When the value of D is equal to the value of S2, there are still push commands to be executed, and the carry flag bit (SM20) is set to 1, and no stack pushing operation is performed.

Precautions

- When the stack definition being operated is illegal (that is, the stack size is less than or equal to zero, the number of elements in the stack is less than zero, or the number of elements in the stack exceeds the stack size limit), an error related to the illegal stack definition is reported.
- The stack size does not include the stack bottom element (the element specified by D).

Application Example

In case of M0=ON, the content of D0 is pushed into the stack with D100 as the stack bottom.

Before execution: D0=1000, D100=8, and D109=0; after execution: D0=1000, D100=9, and D109=1000.

3.7.10 FIFO: First In First Out Commands

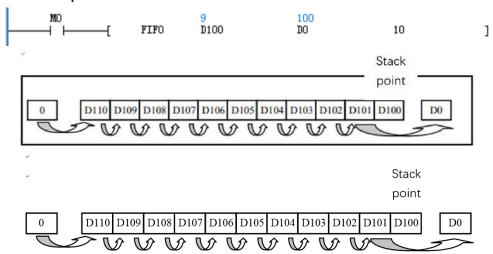
Comma	ınd list	FIFO (D1) (D2) (S)			Applicable model	TS600 series				
16-Bit co	mmand	FIFO: First in first out								
32-Bit co	mmand		-							
			Bit		W	ord				
Operand	Туре	X, Y, M, LM,	Dv.v	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant		
		T, C, S	Dx.y	variable	С	variable				
	INT,									
D1	Array**	-	-	-	√ [1]	✓	✓	-		
	[S]+1									
D2	INT	-	-	-	✓	✓	✓	-		
S	WORD	-	-	-	√	√	√	√		

Remark:

[1] The Z, T, and C elements are not supported.

Operand Description

- D1: The number of elements in the queue, where the element with the element number + +1 is the first element in the queue.
- D2: The storage unit of the output queue value.
- S: The queue size.


Function Description

- 1. When the energy flow is valid, the first value of the word queue starting with D1 (the content of the next unit after D1) is assigned to the D2 unit, and the value of D1 decreases by 1, the contents of the S units after D1 move from back to front, and the last unit is filled with 0.
- 2. If the value of D1 is equal to 0, this indicates that the queue is empty, and the zero flag bit (SM18) is set to 1.

Precautions

- When the queue definition being operated is illegal (that is, the queue size is less than or equal to zero, the number of elements in the queue is less than zero, or the number of elements in the queue exceeds the queue size limit), an error related to the illegal queue definition is reported.
- The queue size does not include the queue bottom element (the element specified by D1).
- S indicates the queue size, which has a range greater than 0.

Application Example

In case of M0=ON, the content of D101 is stuffed into D0, the contents of units D101 to D110 move from back to front, and the content of D110 is filled with 0.

Before execution: D0=0, D100=10, D101=1000, D102=2000,, D109=9000, D110=10000; After execution: D0=1000, D100=9, D101=2000, D102=3000,, D109=10000, D100=0.

3.7.11 LIFO: Last In First Out Commands

Comma	nd list	LIFO (D1) (D2) (S)		Applicable model	TS600 series			
16-Bit co	mmand			LIFO	D: Last in first	out		
32-Bit co	mmand							
			Bit		W	ord (
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
	INT,							
D1	Array**	-	-	-	√ [1]	✓	✓	-
	[S]+1							
D2	INT	-	-	-	✓	✓	✓	-
S	WORD	-	-	-	✓	✓	✓	√

Remark:

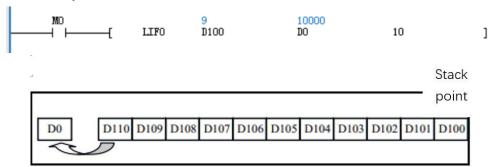
[1] The Z, T, and C elements are not supported.

Operand Description

D1: The number of elements in the stack, where the element with the element number + +1 is the first element in the stack.

D2: The storage unit of the output stack value.

S: The stack size.


Function Description

- 1. When the energy flow is valid, the content of the stack top unit with D1 as the stack bottom is assigned to the D2 unit, and the value of D1 decreases by 1.
- 2. If the value of D1 is equal to 0, this indicates that the stack is empty, and the zero flag bit (SM18) is set to 1.

Precautions

- When the stack definition being operated is illegal (that is, the stack size is less than or equal to zero, the number of elements in the stack is less than zero, or the number of elements in the stack exceeds the stack size limit), an error related to the illegal stack definition is reported.
- The stack size does not include the stack bottom element (the element specified by D1).
- S indicates the stack size, which has a range greater than 0.

Application Example

In case of M0=ON, the content of D110 is assigned to D0, and the contents of units D101 to D110 remain unchanged:

Before execution: D0=0, D100=10, D101=1000, D102=2000,, D109=9000, D110=10000;

After execution: D0=10000, D100=9, D101=1000, D102=2000,, D109=9000, D110=10000.

3.7.12 WSFR: Word String Shift Right Commands

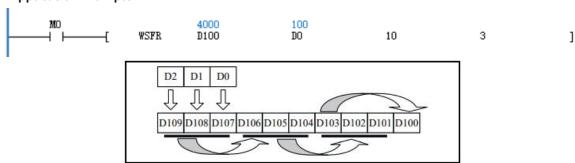
Comma	and list	WSFR (S1)	(D)	(S2) (S3	Applicable model	TS600 series			
16-Bit co	mmand		WSFR: Word string shift right							
32-Bit co	mmand					-				
				Bit		W	ord .			
Operand	Туре	X, Y, M, LN	۸, ا	Dx.y	Custom bit		Custom word	Indexing	Constant	
		T, C, S	T, C, S variable T, C variable							
S1	INT, Array*S3	-		-	-	√ [1]	✓	√	-	
D	INT, Array*S2	_		-	-	√ [1]	√	√	-	
S2	INT	✓ ✓ ✓					√	√		
S3	WORD	-		-	-	✓	√	√	√	

Remark:

[1] The Z element is not supported.

Operand Description

- S1: The source operand.
- D2: The destination operand, which indicates the starting element of the word string.
- S2: The size of the destination word queue.
- S3: The number of words filled in after right shift.


Function Description

When the energy flow is valid, the contents (taking a word as the unit) of the S2 units starting from the D unit is shifted to the right for S3 units, the rightmost S3 data are discarded, the contents of the S3 units starting from the S1 unit are shifted into the left end of the word string.

Precautions

- For the left-right order, the elements with smaller numbers indicate right, while those with larger numbers indicate left.
- S2≥0, S3≥0.
- S2≥S3.

Application Example

In case of M0=ON, the contents (taking a word as the unit) of the 10 units starting from the D100 unit are shifted to the right for 3 units, and the data of the rightmost D102 to D100 units are discarded. At the same time, the contents of the 3 units starting from the D0 unit are shifted into the left end of the word string:

Before execution: D2=300, D1=200, and D0=100. D109=10000, D108=9000, D107=8000, D106=7000, D105=6000, D104=5000, D103=4000, D102=3000, D101=2000, and D100=1000;

After execution: The contents of D0 to D2 remain unchanged. D2=300, D1=200, and D0=100. D109=300, D108=200, D107=100, D106=10000, D105=9000, D104=8000, D103=7000, D102=6000, D101=5000, and D100=4000.

3.7.13 WSFL: Word String Shift Left Commands

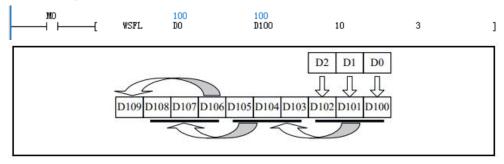
Comm	and list	WSFL	(S1) (S3)	(D) (S2)	Applicable model	TS6	00 series				
16-Bit co	ommand		WSFL: Word string shift left								
32-Bit co	ommand		-								
			Bit		W	ord ord					
Operand	Type	X, Y, M,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant			
		LM, T, C, S	Dx.y	variable	T, C	variable					
S1	INT,				√ [1]	,	,				
31	Array*S3	-	-	_	V 1-3	√	√	-			
D	INT,				√ [1]	_	√				
D Array*S2		-	-	-	V 1-3	V	V	-			
S2	INT	-						✓			
S3	WORD	-	-	-	√	√	√	√			

Remark:

[1] The Z element is not supported.

Operand Description

- S1: The source operand.
- D2: The destination operand, which indicates the starting element of the word string.
- S2: The size of the destination word queue.
- S3: The number of words filled in after right shift.


Function Description

When the energy flow is valid, the contents (taking a word as the unit) of the S2 units starting from the D unit are shifted to the left for S3 units, the leftmost S3 data are discarded, the contents of the S3 units starting from the S1 unit are shifted into the right end of the word string.

Precautions

- For the left-right order, the elements with smaller numbers indicate right, while those with larger numbers indicate left.
- S2≥0; S3≥0.
- S2≥S3.

Application Example

In case of M0=ON, the contents (taking a word as the unit) of the first 10 units starting from the D100 unit are shifted to the left by 3 units, and the data of the leftmost D109 to D107 units are discarded. At the same time, the contents of the 3 units starting from the D0 unit are shifted into the right end of the string:

Before execution: D0=100, D1=200, and D2=300. D109=10000, D108=9000, D107=8000, D106=7000,

D105=6000, D104=5000, D103=4000, D102=3000, D101=2000, and D100=1000;

After execution: The contents of D0 to D2 remain unchanged. D2=300, D1=200, and D0=100. D109=7000, D108=6000, D107=5000, D106=4000, D105=3000, D104=2000, D103=1000, D102=300, D101=200, and D100=100.

3.8 Arithmetic Operation Command for Integers

3.8.1 Command list

Command Category	Name	Function
	*ADD	Integer/long integer addition
	*SUB	Integer/long integer subtraction
	*MUL	Integer/long integer multiplication
	*DIV	Integer/long integer division
A with ati a Our a wati a w	*SQT	Arithmetic square root of integer/long integer
Arithmetic Operation	*INC	Integer/long integer increment by 1
Command for Integers	*DEC	Integer/long integer decrement by 1
	*VABS	Absolute value of integer/long integer
	*NEG	Integer/long integer negation
	*SUM	Integer/long integer accumulation
	*MEAN	Mean value of integers/long integers

3.8.2 ADD: Integer/Long Integer Addition Commands

Command list		ADD (S1) (S2) (D)	Applicable model	TS6	TS600 series		
16-Bit co	ommand			Add	d: Integer addition				
32-Bit co	mmand			Add: L	Long integer addition				
			Bit		Word				
Operand	Туре	X, Y, M, LM,	Dvvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		T, C, S	Dx.y	variable	С	variable			
S1	INT/DINT	-	-	-	√ [1]	✓	✓	√	
S2	INT/DINT	-	-	-	√ [1]	✓	√	√	
D	INT/DINT	-	-	-	√ [1]	✓	✓	_	

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S1: Source operand 1.

S2: Source operand 2.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, S1 is added to S2, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 32767/2147483647, the carry flag bit (SM20) is set; when the operation result is equal to 0, the zero flag bit (SM18) is set; when the operation result is less than -32768/-2147483648, the borrow flag bit (SM19) is set.

Application Example

In case of M0=ON, D0 (1000) is added to D1 (2000), and the result is assigned to D10 to obtain D10=3000.

In case of M0=ON, the value (100000) of (D0, D1) is added to the value (200000) of (D2, D3), and the result is assigned to (D10, D11) to obtain (D10, D11)=300000.

3.8.3 SUB: Integer/Long Integer Subtraction Commands

Comm	and list	SUB (SUB (S1) (S2) (D) Applicable model				TS600 series			
16-Bit co	ommand		SUB: Integer subtraction							
32-Bit co	ommand		DSUB: Long integer subtraction							
			Bit		W	ord				
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant		
		T, C, S	DX.y	variable	С	variable				
S1	INT/DINT	-	-	-	√ [1]	✓	✓	√		
S2	INT/DINT	ı	ı	-	√ [1]	✓	\	√		
D	INT/DINT	-	-	-	√ [1]	√	√	-		

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S1: Source operand 1

S2: Source operand 2

D: The destination operand

Function Description

- 1. When the energy flow is valid, S1 is added to S2, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 32767/2147483647, the carry flag bit (SM20) is set; when the operation result is equal to 0, the zero flag bit (SM18) is set; when the operation result is less than -32768/-2147483648, the borrow flag bit (SM19) is set.

Application Example

In case of M1=ON, D1 (2000) is subtracted from D0 (1000), and the result is assigned to D10 to obtain D10=-1000.

In case of M1=ON, the value (200000) of (D2, D3) is subtracted from the value (100000) of (D0, D1), and the result is assigned to (D10, D11) to obtain (D10, D11)=-100000.

3.8.4 MUL: Integer/Long Integer Multiplication Commands

Comm	and list	MUL (S1) (:	S2) (D)	Applicable model	TS600 series		
16-Bit co	ommand		MUL: Integer/long integer multiplication					
32-Bit co	ommand		DMUL: Integer/long integer multiplication				1	
			Bit	Word		ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	INT/DINT	-	-	-	√ [1]	✓	✓	√
S2	INT/DINT	-	-	-	√ [1]	√	√	√
D	DINT	-	-	-	√ [1]	√	√	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S1: Source operand 1.

S2: Source operand 2.

D: The destination operand.

Function Description

When the energy flow is valid, S1 is multiplied by S2, and the operation result is assigned to D.

Application Example

In case of M0=ON, D0 (1000) is multiplied by D1 (2000), and the result is assigned to (D10, D11) to obtain (D10, D11)=2000000.

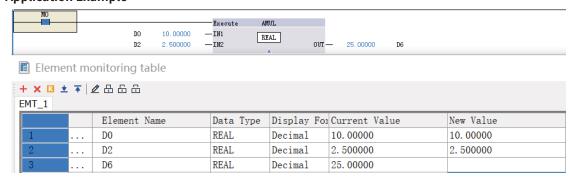
In case of M0=ON, the value (83000) of (D0, D1) is multiplied by the value (2000) of (D2, D3), and the result is assigned to (D10, D11) to obtain (D10, D11)=1660000000.

3.8.5 AMUL: Multiplication Commands

Comm	nand list	AMUL (AMUL (S1) (S2) (D)		Applicable model	TS	TS600 series		
16-Bit c	ommand			AMUL: N	Multiplication	Commands			
32-Bit c	ommand				AMUL: Mult	iplication Com	mands		
			Bit		W	ord			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S1	INT/DINT/ WORD/DW ORD/REAL	-	-	-	√ [1]	-	√	√	
S2	INT/DINT/ WORD/DW ORD/REAL	-	-	-	√ [1]	√	√	✓	
D	INT/DINT/ WORD/DW ORD/REAL	-	-	-	√ [2]	√	√	✓	

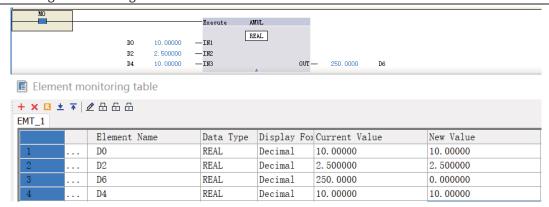
Remark:

- [1] The constant, D, V, and R elements are supported.
- [2] The D and R elements are supported.


Operand Description

- S1: Source operand 1.
- S2: Source operand 2. (The number of source operands can be added according to the actual needs.)
- D: The destination operand.

Function Description


When the energy flow is valid, if there are only S1 and S2, S1 is multiplied by S2, and the operation result is assigned to D.

Application Example

In case of M0=ON, the value (10.0) of (D0, D1) is multiplied by the value (2.5) of (D2, D3), and the result is assigned to (D6,D7) to obtain 25.0.

In case of M0=ON, the value (10.0) of (D0, D1) is multiplied by the value (2.5) of (D2, D3), and then multiplied by the value (10.0) of (D4, D5), and the result is assigned to (D6, D7) to obtain 250.0.

3.8.6 DIV: Integer/Long Integer Division Commands

Comm	and list	DIV (S	S1) (S	(D)	Applicable model	TS	TS600 series		
16-Bit co	ommand			DI	V: Integer div	ision			
32-Bit co	ommand			DDIV:	Long integer	devision			
			Bit		W	ord			
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		T, C, S	Dx.y	variable	С	variable			
S1	INT/DINT	-	-	-	√ [1]	✓	✓	√	
S2	INT/DINT	-	-	-	√ [1]	✓	✓	√	
D	DINT, Array*2	-	ı	1	√ [1]	√	>	-	

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

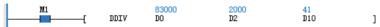
S1: Source operand 1.

S2: Source operand 2.

D: The destination operand.

Function Description

When the energy flow is valid, S1 is divided by S2, and the operation result is assigned to D. For the 16-bit command, D includes two units, where the first unit stores the quotient value and the second unit stores the remainder value; for the 32-bit command, D includes four units, where the first two units store the quotient value and the last two units store the remainder value.


Precautions

When the divisor is set to 0, the system reports an error about the divisor being 0.

Application Example

In case of M0=ON, D0 (2500) is divided by D1 (1000), and the result is assigned to (D10, D11). D10=2, and D11=500.

In case of M1=ON, the value (83000) of (D0, D1) is divided by the value (2000) of (D2, D3), and the result is assigned to (D10, D11) and (D12, D13). (D10, D11)=41, and (D12, D13)=1000°.

3.8.7 SQT: Commands for Arithmetic Square Root of Integer/Long Integer

Comm	and list	SQT (S1) (S	S2) (D)	Applicable model	TS6	00 series	
16-Bit co	ommand		SQT: Arithmetic square root of integer					
32-Bit co	ommand		D:	SQT: Arithme	tic square root	of long intege	r	
			Bit		Wo	ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	INT/DINT	-	-	ı	√ [1]	✓	√	✓
D	INT/DINT	-	-	-	√ [1]	√	√	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- When the energy flow is valid, the square root of S is extracted, and the operation result is assigned to D.
- 2. When the operation result is equal to 0, the zero flag bit (SM18) is set; when decimals are truncated from the operation result, the borrow flag bit (SM19) is set.

Application Example

In case of M0=ON, the square root of D0 (1000) is extracted, and the result is assigned to D10 to obtain D10=31.

In case of M1=ON, the square root of the value (83000) of (D0, D1) is extracted, and the result is assigned to (D10, D11) to obtain (D10, D11)=288.

3.8.8 INC: Commands for Integer/Long Integer Increment by 1

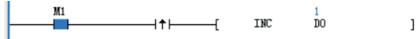
Comm	and list	I	INC (D) Applicable model TS60		00 series			
16-Bit co	ommand			INC: In	nteger increment by 1			
32-Bit co	ommand			DINC: Lon	g integer inc			
			Bit		Word			
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
D	INT/DINT	-	-	-	√ [1]	√	√	-

Remark:

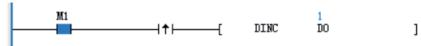
[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

D: The destination operand.


Function Description

When the energy flow is valid, D increases by 1.


Precautions

This command is a cyclic addition command. For the 16-bit command, the value range is -32768–32767. For the 32-bit command, the value range is -2147483648–2147483647.

Application Example

In case of M1=ON, D0=0 increases by 1. After execution, D0=1 is obtained.

In case of M1=ON, (D0, D1)=0 increases by 1. After execution, (D0, D1)=1 is obtained.

3.8.9 DEC: Commands for Integer/Long Integer Decrement by 1

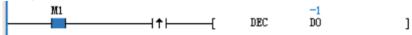
Comma	and list	DEC (D)			Applicable model	TS6	600 series	
16-Bit co	mmand			DEC: I	nteger decren	nent by 1		
32-Bit co	mmand			DDEC: Lo	ng integer decrement by 1			
			Bit		Word			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
D	INT/DIN T	-	-	-	√ [1]	√	√	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

D: The destination operand.


Function Description

When the energy flow is valid, D decreases by 1.

Precautions

This command is a cyclic subtraction command. For the 16-bit command, the value range is -32768–32767. For the 32-bit command, the value range is -2147483648–2147483647.

Application Example

In case of M1=ON, D0=0 decreases by 1. After execution, D0=-1 is obtained.

In case of M1=ON, (D0, D1)=0 increases by 1; after execution, (D0, D1)=-1 is obtained.

3.8.10 VABS: Commands for Absolute Value of Integer/Long Integer

Comma	and list	VABS (S) (D)		(D)	Applicable model	TS6	TS600 series		
16-Bit co	mmand			VABS: A	bsolute value	of integer			
32-Bit co	mmand		DVABS: A			solute value of long integer			
			Bit		Word				
Operand	Type	X, Y, M,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		LM, T, C, S	DA.y	variable	С	variable			
S	INT/DINT	-	-	-	√ [1]	✓	✓	✓	
D	INT/DINT	-	-	-	√ [1]	√	√	-	

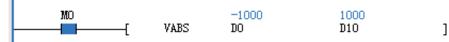
Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S: The source operand.

D: The destination operand.


Function Description

When the energy flow is valid, the absolute value of S is taken, and the operation result is assigned to D.

Precautions

This command is a cyclic subtraction command. For the 16-bit command, the value range is -32768–32767. For the 32-bit command, the value range is -2147483648–2147483647.

Application Example

In case of M0=ON, the absolute value of D0 (-1000) is taken, and the result is assigned to D10 to obtain D10=1000.

In case of M1=ON, the absolute value of the value (-100000) of (D0, D1) is taken, and the result is assigned to (D10, D11) to obtain (D10, D11)=100000.

3.8.11 NEG: Integer/Long Integer Negation Commands

Comm	and list	NEG	(S)	(D)	Applicable model	TS	600 series	
16-Bit co	ommand			NEC	G: Integer negation			
32-Bit co	ommand		DNEG			Long integer negation		
			Bit		Word			
Operand	Туре	X, Y, M,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	С	variable		
S	INT/DINT	-	1	-	√ [1]	√	√	√
D	INT/DINT	-	-	-	√ [1]	√	√	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, S is negated, and the operation result is assigned to D.

Precautions

- In the 16-bit command, the range of S should be -32767–32767; when the value of S is -32768, an error about the illegal operand is reported, and the command does not generate any action.
- In the 32-bit command, the range of S should be -2147483647-2147483647; when the value of S is -2147483648, an error about the illegal operand is reported, and the command does not generate any action.

Application Example

In case of M1=ON, D0 (1000) is negated, and the result is assigned to D10 to obtain D10=-1000.

In case of M1=ON, (D0, D1) (100000) is negated, and the result is assigned to (D10, D11) to obtain (D10, D11)=-100000.

3.8.12 SUM: Integer/Long Integer Accumulation Commands

Comm	and list	SUM ((S1) (S2) (D)	Applicable model	TS	TS600 series	
16-Bit c	ommand			SUM:	Integer accur	nulation		
32-Bit c	ommand			DSUM: Lo	ong integer ac	cumulation		
			Bit		W	ord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	INT/DINT, Array*S2	-	-	-	√ [1]	√	√	-
S2	WORD	-	-	-	√	√	√	✓
D	DINT	-	-	-	√ [2]	√	√	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

[2] The T and Z elements are not supported.

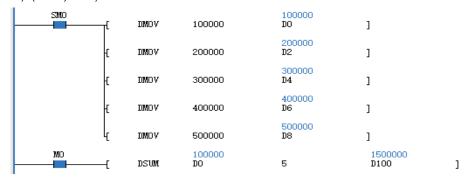
Operand Description

- S1: The source operand, which indicates the starting unit of accumulation.
- S2: The source operand, which indicates the number of accumulated data.
- D: The destination operand, which indicates the accumulation result.

Function Description


When the energy flow is valid, the contents of the S2 units (or $S2 \times 2$ units for the 32-bit command) starting from the starting unit S1 are accumulated, and the result after accumulation operation is assigned to the D unit.

Precautions



- Ensure 0≤S2≤255, otherwise an operand error is reported.
- The carry flag bit SM20 and the borrow flag bit SM19 are constantly 0, since D is a 32-bit data. The zero flag bit is determined according to the result of final accumulation.

Application Example

In case of M0=ON, the data of the 5 units starting from D0 are accumulated, and the result is assigned to (D100, D101). (D100, D101)=D0+······+D4=15000.

In case of M0=ON, the long integers of the 5×2 units starting from D0 are accumulated, and the result is assigned to (D100, D101). (D100,D101)=(D0,D1)+ \cdots +(D8,D9)=1500000.

3.8.13 MEAN: Commands for Mean Value of Integers/Long Integers

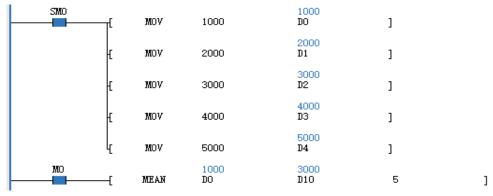
Comm	and list	MEAN	(S1)	(D) (S2)	Applicable model	TS	600 series	
16-Bit co	ommand			MEAN:	Mean value of	integers		
32-Bit co	ommand		DMEAN: Mean value			ong integers		
			Bit		Wo	ord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	INT/DINT, Array*S2	-	-	-	√ [1]	√	√	✓
D	INT/DINT	-	1	-	√ [2]	√	√	-
S2	WORD	-	-	-	√ [3]	√	√	√

Remark:

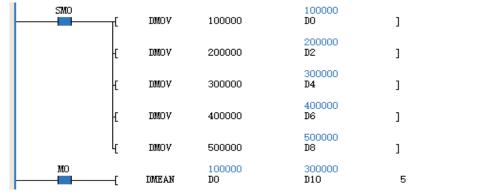
- [1] For the 16-bit command, the D, C, T, and R elements are supported. For the 32-bit command, the D, C, and R elements are supported.
- [2] The D, C, and R elements are supported.
- [3] The D and R elements are supported.

Operand Description

- S1: The number of the starting word element, which saves the desired average value data.
- D: The number of the word element, which saves the obtained average value data.
- S2: The average number of data (1-64).


Function Description

The average value of the S2 16-bit data starting from S1 is saved to D, and the remainder is truncated.


Precautions

This command resets the borrow flag bit (SM19) and the carry flag bit (SM20), while the zero flag bit (SM18) is determined according to the result of the final average.

Application Example

In case of M0=ON, the average value of the data in the 5 units starting from D0 is calculated, and the result is assigned to D10 to obtain D10=3000.

In case of M0=ON, the average value of the data in the 5×2 units starting from D0 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=300000.

3.9 Arithmetic Operation Command for Floating-Point Numbers

3.9.1 Command list

Command Category	Name	Function
	RADD	Floating-point number addition
	RSUB	Floating-point number subtraction
	RMUL	Floating-point number multiplication
Arithmetic Operation	RDIV	Floating-point number division
Command for	RSQT	Arithmetic square root of floating-point number
Floating-Point Numbers	RVABS	Absolute value of floating-point number
Ŭ .	RNEG	Floating-point number negation
	SIN	Sine operation of floating-point number
	COS	Cosine operation of floating-point number

Command Category	Name	Function
	TAN	Tangent operation of floating-point number
	POWER	Power operation of floating-point number
	LN	Natural logarithm operation of floating-point number
	EXP	Natural number power operation of floating-point number
	RSUM	Accumulation operation of floating-point number
	RMEAN	Mean operation of floating-point numbers
	ASIN	Anti-sine operation of floating-point number
	ACOS	Anti-cosine operation of floating-point number
	ATAN	Anti-tangent operation of floating-point number
	SINH	Hyperbolic sine operation of floating-point number
	COSH	Hyperbolic cosine operation of floating-point number
	TANH	Hyperbolic tangent operation of floating-point number
	LOG	Common logarithm operation of floating-point number
	RAD	Angle-to-radian conversion of floating-point number
	DEG	Radian-to-angle conversion of floating-point number

3.9.2 RADD: Floating-Point Number Addition Commands

Commar	nd list	RADD (S	S1) (S	S2) (D)	Applicable model	TS6	600 series	
16-Bit con	nmand		-					
32-Bit con	nmand		RADD: Floating-point number addition					
			Bit		W	ord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	REAL	-	-	-	√ [1]	✓	√	✓
S2	REAL	-	-	-	√ [1]	√	√	√
D	REAL	-	-	-	√ [1]	✓	✓	-

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S1: Source operand 1.

S2: Source operand 2.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, S1 is added to S2, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 1.701412e + 038 or less than -1.701412e + 038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of M0=ON, the value (-10000.2) of (D0, D1) is added to the value (2000.5) of (D2, D3), and the result is assigned to (D10, D11) to obtain (D10, D11)=-7999.7.

3.9.3 RSUB: Floating-Point Number Subtraction Commands

Comma	nd list	RSUB (S1) (S	S2) (D)	Applicable model	TS6	600 series	
16-Bit co	mmand				-			
32-Bit co	mmand		RSUB: Floating-point number subtraction					
			Bit Word					
Operand	Type	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S1	REAL	1	-	-	√ [1]	✓	√	✓
S2	REAL	-	-	-	√ [1]	✓	√	✓
D	REAL	-	-	-	√ [1]	√	√	-

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S1: Source operand 1

S2: Source operand 2

D: The destination operand

Function Description

- 1. When the energy flow is valid, S2 is subtracted from S1, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 1.701412e + 038 or less than -1.701412e + 038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of M0=ON, the value (2000.5) of (D2, D3) is subtracted from the value (-10000.2) of (D0, D1), and the result is assigned to (D10, D11) to obtain (D10, D11)=-12000.7.

3.9.4 RMUL: Floating-Point Number Multiplication Commands

Commai	nd list	RMUL (S1) (S	52) (D)	Applicable model	TS6	600 series	
16-Bit cor	nmand				-			
32-Bit cor	nmand		RM	IUL: Floating-	point numbe	r multiplicatio	1	
			Bit		W	ord		
Operand	Type	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S1	REAL	-	-	-	√ [1]	✓	\	\
S2	REAL	-	-	-	√ [1]	√	\	\
D	REAL	-	-	-	√ [1]	✓	✓	-

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S1: Source operand 1.

S2: Source operand 2.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, S1 is multiplied by S2, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 1.701412e + 038 or less than -1.701412e + 038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of M0=ON, the value (-10000.2) of (D0, D1) is multiplied by the value (2000.5) of (D2, D3), and the result is assigned to (D10, D11) to obtain (D10,D11)=-20005400.0 (actually, the product should be -20005400.1, but 0.1 has been truncated for the sake of measurement accuracy).

3.9.5 RDIV: Floating-Point Number Division Commands

Comma	nd list	RDIV (S	51) (S	2) (D)	Applicable model	TS6	600 series		
16-Bit co	mmand		-						
32-Bit co	mmand			RDIV: Floatir	ng-point numb	er division			
			Bit		Wo	ord			
Operand	Type	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S1	REAL	-	-	-	√ [1]	✓	✓	✓	
S2	REAL	-	-	-	√ [1]	√	√	√	
D	REAL	-	-	-	√ [1]	√	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S1: Source operand 1.

S2: Source operand 2.

D: The destination operand.

Function Description

When the energy flow is valid, S1 is divided by S2, and the operation result is assigned to D. When the operation result (D) is greater than 1.701412e+038 or less than -1.701412e+038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Precautions

Ensure $S2 \neq 0$, otherwise an error about the divisor being 0 is reported and the division operation is not executed.

Application Example

In case of M0=ON, the value (-10000.2) of (D0, D1) is divided by the value (2000.5) of (D2, D3), and the result is assigned to and (D10, D11). (D10, D11)= -4.998850.

3.9.6 RSQT: Commands for Square Root of Floating-Point Number

Commar	nd list	RSQT (S	S1) (S	52) (D)	Applicable model	TS6	00 series		
16-Bit cor	nmand		-						
32-Bit cor	nmand		RSQT: Square root of floating-point number						
			Bit		Wo	ord			
Operand	Туре	X, Y, M, LM, T,	2	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S	REAL	-	-	-	√ [1]	√ [1]	√	√	
D	REAL	-	-	-	√ [1]	√ [1]	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the square root of S is extracted, and the operation result is assigned to D.
- 2. When the operation result (D) is equal to 0, the zero flag bit SM18 is set.

Precautions

Ensure $S \ge 0$, otherwise an operand error is reported and the square root operation is not executed.

Application Example

In case of M0=ON, the square root of the value (10000.2) of (D0, D1) is extracted, and the result is assigned to (D10, D11) to obtain (D10, D11)=100.0010.

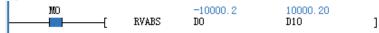
3.9.7 RVABS: Commands for Absolute Value of Floating-Point Number

Commar	nd list	RVABS	(S)	(D)	Applicable model	TS6	600 series		
16-Bit con	nmand		-						
32-Bit con	nmand		RVA	BS: Absolute	value of floatir	ng-point numb	er		
			Bit		Wo	ord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S	REAL	-	-	-	√ [1]	√	√	√	
D	REAL	-	-	-	√ [1]	√	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description


- S: The source operand.
- D: The destination operand.

Function Description

When the energy flow is valid, the absolute value of S is taken, and the operation result is assigned to D.

Application Example

In case of M0=ON, the absolute value of the value (-10000.2) of (D0, D1) is taken, and the result is assigned to (D10, D11) to obtain (D10, D11)=10000.2.

3.9.8 RNEG: Floating-Point Number Negation Commands

Commar	nd list	RNEG	(S)	(D)	Applicable model	TS6	00 series	
16-Bit con	nmand							
32-Bit con	nmand		RNEG: Floating-point number negation					
			Bit		W	ord		
Operand	Туре	X, Y, M, LM, T,	Dyv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S	REAL	-	-	-	√ [1]	✓	✓	✓
D	REAL	-	-	-	√ [1]	√	√	-

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, S is negated, and the operation result is assigned to D.

Application Example

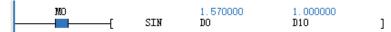
In case of M0=ON, (D0, D1) (10000.2) is negated, and the result is assigned to (D10, D11) to obtain (D10, D11)=-10000.2.

3.9.9 SIN: Commands for Sine Operation of Floating-Point Number

Commai	nd list	SIN	(S)	(D)	Applicable model	TS6	600 series	
16-Bit cor	nmand		-					
32-Bit cor	nmand		SIN	l: Sine operati	on of floating	-point numbe	r	
			Bit		W	ord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S	REAL	-	-	-	√ [1]	√	√	√
D	REAL	-	-	-	√ [1]	√	√	-

Remark:

[1] The D, V, and R elements are supported.


Operand Description

- S: The source operand.
- D: The destination operand.

Function Description

When the energy flow is valid, the SIN value of S is taken, and the operation result is assigned to D.

Application Example

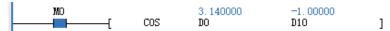
In case of M0=ON, the SIN value of (D0, D1)=1.570000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=1.000000.

3.9.10 COS: Commands for Cosine Operation of Floating-Point Number

Commar	nd list	cos	(S)	(D)	Applicable model	TS6	600 series	
16-Bit cor	nmand				-			
32-Bit cor	nmand		COS	: Cosine oper	ation of floatin	ng-point numb	er	
			Bit		Wo	ord		
Operand	Туре	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S	REAL	-	-	-	√ [1]	√	√	√
D	REAL	-	-	-	√ [1]	✓	✓	-

Remark:

[1] The D, V, and R elements are supported.


Operand Description

- S: The source operand.
- D: The destination operand.

Function Description

- 1. When the energy flow is valid, the COS value of S (taking a radian as the unit) is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of M0=ON, the COS value of (D0, D1)=3.140000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=-1.00000.

3.9.11 RSUM: Commands for Accumulation Operation of Floating-Point Number

Comma	nd list	RSUM	(S)	(D)	Applicable model	TS6	600 series		
16-Bit co	mmand		-						
32-Bit co	mmand	R	RSUM: Accumulation operation of floating-point number						
			Bit Word						
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S1	REAL	-	1	-	√ [1]	✓	√	-	
S2	WORD	-	-	-	√ [1]	✓	✓	√	
D	REAL	-	-	-	√ [1]	✓	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, the contents of the $S2 \times 2$ units starting from the starting unit (S1) are accumulated as per the floating-point data, and the result after operation is assigned to D.

Precautions

- Ensure 0≤S2≤255, otherwise an operand error is reported.
- If an overflow occurs, the accumulation operation is not executed any more.

Application Example

In case of M0=ON, the floating-point numbers of the 5×2 units starting from D0 are accumulated, and the result is assigned to (D100, D101). (D100, D101)=(D0, D1)+·····+(D8, D9)=150001.5.

3.9.12 TAN: Commands for Tangent Operation of Floating-Point Number

Comma	nd list	TAN	(S)	(D)	Applicable model	Т	S600 series	
16-Bit cor	mmand				-			
32-Bit cor	mmand		TAN:	Tangent ope	ration of flo	ating-point nu	umber	
			Bit Word					
Operand	Туре	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S	REAL	-	ı	-	√ [1]	✓	✓	✓
D	REAL	-	-	-	√ [1]	✓	✓	-

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the TAN value of S (taking a radian as the unit) is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 1.701412e + 038 or less than -1.701412e + 038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of M0=ON, the TAN value of (D0, D1)=1.57 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=1255.848398.

3.9.13 POWER: Commands for Power Operation of Floating-Point Number

Comma	nd list	POWER	(S)	(D)	Applicable model	TS600 series			
16-Bit cor	nmand		-						
32-Bit cor	mmand		POWER: Power operation of floating-point number						
		Bit			Wo	rd			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S1	REAL	-	-	-	√ [1]	✓	√	✓	
S2	REAL	-	-	-	√ [1]	√	√	√	
D	REAL	-	-	-	√ [1]	√	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the S2-nd power of S1 is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 1.701412e + 038 or less than -1.701412e + 038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Precautions

- In case of S1=0 and S2≤0, an operand error is reported and the operation is not executed.
- In case of S1<0 and the mantissa of S2 not being 0, an operand error is reported and the operation is not executed.

Application Example

In case of M0=ON, the (D2, D3)-th power of (D0, D1) (namely the 3rd power of 55.0) is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=166375.0.

3.9.14 LN: Commands for Natural Logarithm Operation of Floating-Point Number

Comman	d list	LN	(S)	(D)	Applicable model	TS	TS600 series		
16-Bit com	nmand				-				
32-Bit com	nmand	LN	LN: Natural logarithm operation of floating-point number						
		Bit			Word				
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S	REAL	-	-	-	√ [1]	√	√	√	
D	REAL	-	-	-	√ [1]	✓	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the LN value of S is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 1.701412e + 038 or less than -1.701412e + 038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of M0=ON, the LN value of (D0, D1)=1000.000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=6.907755.

3.9.15 EXP: Commands for Natural Number Power Operation of Floating-Point Number

Commai	nd list	EXP	(S)	(D)	Applicable model	TS600 series			
16-Bit cor	mmand				-				
32-Bit cor	mmand	EXP:	EXP: Natural number power operation of floating-point number						
			Bit		V	Vord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S	REAL	-	ı	-	√ [1]	✓	√	✓	
D	REAL	-	-	-	√ [1]	√	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the EXP value of S is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is greater than 1.701412e + 038 or less than -1.701412e + 038, the carry flag bit (SM20) is set. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of M0=ON, the EXP value of (D0, D1)=10.00000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=22026.464844.

3.9.16 RMEAN: Commands for Mean Operation of Floating-Point Number

Comma	Command list RMEAN (S1) (D) (S2) Applicable model TS600 series				600 series				
16-Bit co	mmand		-						
32-Bit co	mmand	RMEAN: Mean value of long integers							
		Bit			W	/ord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S1	REAL	-	-	-	√ [1]	✓	✓	-	
D	REAL	-	1	-	√ [1]	✓	\	-	
S2	WORD	-	-	-	√ [2]	√	-	✓	

Remark:

[1]The D, V, and R elements are supported.

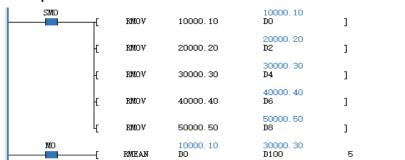
[2] The D and R elements are supported.

Operand Description

S1: The number of the starting word element, which saves the desired average value data.

D: The number of the word element, which saves the obtained average value data.

S2: The average number of data (1-64).


Function Description

The average value of the S2 16-bit data starting from S1 is saved to D, and the remainder is truncated.

Precautions

- Ensure 0≤S2≤255, otherwise an operand error is reported.
- The carry flag bit and the borrow flag bit are constantly 0, since D is a 32-bit data. The zero flag bit is determined according to the result of final accumulation.

Application Example

In case of M0=ON, the average value of the data in the 5×2 units starting from D0 is calculated, and the result is assigned to (D100, D101) to obtain (D100, D101)=30000.30.

3.9.17 ASIN: Commands for Anti-Sine Operation of Floating-Point Number

Comma	nd list	ASIN	(S)	(D)	Applicable model	TS6	00 series	
16-Bit co	mmand	-						
32-Bit co	mmand		ASIN: Anti-sine operation of floating-point number					
		Bit			V	Vord		
Operand	Type	X, Y, M, LM, T,	D	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S	REAL	-	ı	-	√ [1]	✓	\	✓
D	REAL	-	-	-	√ [1]	√	√	-

Remark:

[1] The D, V, and R elements are supported.

Operand Description

- S: The source operand.
- D: The destination operand.

Function Description

- 1. When the energy flow is valid, the SIN-1 value of S is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is equal to 0, the zero flag bit (SM18) is set.

Precautions

In case of S>1 or S<-1, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.

Application Example

In case of SM0=ON, the SIN-1 value of (D0, D1)=0.500000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=0.523599.

3.9.18 ACOS: Commands for Anti-Cosine Operation of Floating-Point Number

Comma	nd list	ACOS	(S)	(D)	Applicable model	TS	TS600 series	
16-Bit co	mmand	-						
32-Bit co	mmand		ACOS: Anti-cosine operation of floating-point number					
		Bit			W	ord .		
Operand	Туре	X, Y, M, LM, T,	D	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S	REAL	-	-	-	√ [1]	✓	✓	✓
D	REAL	-	-	-	√ [1]	√	√	-

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the COS-1 value of S is calculated, and the operation result is assigned to
- 2. When the operation result (D) is equal to 0, the zero flag bit (SM180) is set.

Precautions

In case of S>1 or S<-1, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.

Application Example

In case of SM0=ON, the COS-1 value of (D0, D1)=0.500000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=1.047198.

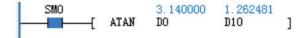
3.9.19 ATAN: Commands for Anti-Tangent Operation of Floating-Point Number

Comma	nd list	ATAN	(S)	(D)	Applicable model	TS600 series			
16-Bit co	mmand				-	-			
32-Bit co	mmand	F	ATAN: Anti-tangent operation of floating-point number						
			Bit		Word				
Operand	Type	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S	REAL	-	-	-	√ [1]	√	√	√	
D	REAL	-	-	-	√ [1]	√	√	-	

Remark:

[1] The D, V, and R elements are supported.

Operand Description


S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the TAN-1 value of S is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is equal to 0, the zero flag bit (SM180) is set.

Application Example

In case of SM0=ON, the TAN-1 value of (D0, D1)=3.140000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=1.262481.

3.9.20 SINH: Commands for Hyperbolic Sine Operation of Floating-Point Number

Comma	nd list	SINH	(S)	(D)	Applicable model	TS600 series		
16-Bit cor	mmand		-					
32-Bit cor	mmand		SINH: Anti-sine operation of floating-point number					
		Bit			V	/ord		
Operand	Type	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S	REAL	-	1	-	√ [1]	✓	√	✓
D	REAL	-	-	-	√ [1]	✓	√	-

Remark:

[1] Only the D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the SIN value of S is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is equal to 0, the zero flag bit (SM18) is set.

Precautions

In case of S>1 or S<-1, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.

Application Example

In case of M1=ON, the SINH value of (D0, D1)=0.500000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=0.521095.

3.9.21 COSH: Commands for Hyperbolic Cosine Operation of Floating-Point

Number

Commai	nd list	COSH	(S)	(D)	Applicable model	LS600 series		
16-Bit cor	nmand	-						
32-Bit cor	nmand	COS	COSH: Hyperbolic cosine operation of floating-point number					
			Bit		V	Vord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S	REAL	-	-	-	√ [1]	√	√	√
D	REAL	-	-	-	√ [1]	✓	√	-

Remark:

[1] Only the D, V, and R elements are supported.

Operand Description

- S: The source operand.
- D: The destination operand.

Function Description

- 1. When the energy flow is valid, the COSH value of S is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is equal to 0, the zero flag bit (SM180) is set.

Precautions

In case of S>1 or S<-1, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.

Application Example

In case of M1=ON, the COSH value of (D0, D1)=0.500000 is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=1.127626.

3.9.22 TANH: Commands for Hyperbolic Tangent Operation of Floating-Point Number

Commai	nd list	TANH	(S)	(D)	Applicable model	TS6	00 series		
16-Bit cor	mmand				-				
32-Bit cor	mmand	Т	TANH: Anti-tangent operation of floating-point number						
		Bit			W	ord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S	REAL	-	-	-	√ [1]	√	√	√	
D	REAL	-	-	-	√ [1]	✓	√	-	

Remark:

[1] Only the D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the TANH value of S is calculated, and the operation result is assigned to D.
- 2. When the operation result (D) is equal to 0, the zero flag bit (SM180) is set.

Application Example

In case of M1=ON, the TANH value of (D0, D1) is calculated, and the result is assigned to (D10, D11) to obtain (D10, D11)=0.462117.

3.9.23 LOG: Commands for Common Logarithm Operation of Floating-Point Number

Commar	nd list	LOG	(S)	(D)	Applicable model	TS600 series		
16-Bit con	nmand		-					
32-Bit con	nmand	LOC	LOG: Common logarithm operation of floating-point number					
			Bit		W	ord		
Operand	Туре	X, Y, M, LM, T,		Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S	REAL	-	-	-	√ [1]	√	√	√
D	REAL	-	-	-	√ [1]	✓	✓	-

Remark:

[1] Only the D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the LOG value of S is calculated, and the operation result is assigned to D. LOG is a common logarithm operation with 10 as the base.
- 2. When the operation result (D) overflows, the carry (overflow) flag bit (SM20) is set; when the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

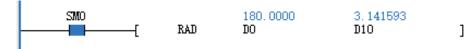
In case of SM0=ON, the result is assigned to D10 (D11) to obtain D10 (D11)=0.477121.

3.9.24 RAD: Commands for Angle-to-Radian Conversion of Floating-Point Number

Commai	nd list	RAD	(S)	(D)	Applicable model	TS600 series			
16-Bit cor	mmand				-				
32-Bit cor	mmand	R/	RAD: Angle-to-radian conversion of floating-point number						
			Bit		W	ord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S	REAL	-	-	-	√ [1]	✓	✓	✓	
D	REAL	-	-	-	√ [1]	✓	√	-	

Remark:

[1] Only the D, V, and R elements are supported.


Operand Description

- S: The source operand.
- D: The destination operand.

Function Description

- 1. When the energy flow is valid, the angle value of the floating-point number in the S unit is converted into a radian value, and the result is assigned to D.
- 2. When the operation result is equal to 0, the zero flag bit (SM18) is set.

Application Example

In case of SM0=ON, the result is assigned to D10 (D11) to obtain D10 (D11)=3.141593.

3.9.25 DEG: Commands for Radian-to-Angle Conversion of Floating-Point Number

Comma	nd list	DEG	(S)	(D)	Applicable model	TS600 series			
16-Bit co	mmand				-				
32-Bit co	mmand	DE	DEG: Radian-to-angle conversion of floating-point number						
			Bit		W	ord ord			
Operand	Type	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S	REAL	-	-	-	√ [1]	✓	✓	✓	
D	REAL	-	-	-	√ [1]	√	√	-	

Remark:

[1] Only the D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

- 1. When the energy flow is valid, the radian value of the floating-point number in the S unit is converted into an angle value, and the result is assigned to D.
- 2. When the operation result is equal to 0, the zero flag bit (SM18) is set; when the operation result overflows, the carry (overflow) flag bit (SM20) is set.

Application Example

In case of SM0=ON, the value (3.000000) of D0 (D1) is converted into an angle value, and the result is assigned to D10 (D11) to obtain D10 (D11)=171.8873.

3.10 Word Logic Operation Command

3.10.1 Command list

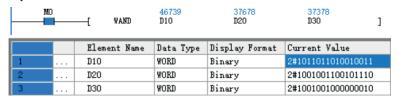
Command Category	Name	Function
	*WAND	Word/doubleword AND operation
Wand Lasis One wation Common d	*WOR	Word/doubleword OR operation
Word Logic Operation Command	*WXOR	Word/doubleword XOR operation
	*WINV	Word/doubleword negation operation

3.10.2 WAND: Commands for Logical AND Operation of Word/Doubleword Data

Comm	and list	*WAND	model					
16-Bit co	ommand		V	WAND: Logical	AND operation	on of word dat	a	
32-Bit co	ommand		DWA	ND: Logical AN	ND operation	of doubleword	data	
			Bit		W	ord		
Operand	Type	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
S1	WORD/	_	_	_	√ [1]	./	√	./
31	DWORD	_	_	_	V	V	V	V
S2	WORD/				√ [1]	./	√	
32	DWORD	_	_	_	V (-1	V	V	V
D	WORD/				√ [1]	/		
U	DWORD	-	-	-	A (-1)	V	✓	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.


Operand Description

- S1: The source operand, which indicates the address of the data or data storage word soft element that participates in the AND operation.
- S2: The source operand, which indicates the address of the data or data storage word soft element that participates in the AND operation.
- D: The destination operand, which indicates the address of the data storage word soft element of the operation result.

Function Description

- 1. When the command is driven, the bitwise logical AND operation is executed on S1 and S2, and the operation result is assigned to D.
- 2. The rule of logical AND operation: If any data is 0, the result is 0. For example: $1 \cdot 1=1$ $1 \cdot 0=0$ $0 \cdot 1=0$ $0 \cdot 0=0$.

Application Example

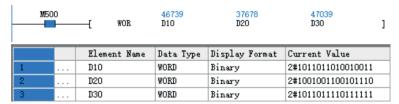
In case of M0=ON, the bitwise logical AND operation is executed on D0=2#1011011010010011 (46739) and D1=2#1001001100101110 (37678), and the result is assigned to D10 to obtain D10=2#1001001000000010 (37378).

3.10.3 WOR: Commands for Logical OR Operation of Word/Doubleword Data

Command list		*WOR ((S1)	(S2) (D)	Applicable model	TS6	600 series	
16-Bit co	16-Bit command WOR: Logical OR operation of word data							
32-Bit co	ommand		DW	OR: Logical O	R operation of	f doubleword c	lata	
			Bit		Wo	ord		
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
S1	WORD/				√ [1]	,	,	,
31	DWORD	-	_	-	V 1-3	√	V	√
S2	WORD/				√ [1]	_	✓	√
32	DWORD	-	-	_	√ [±]	V	V	V
D	WORD/				√ [1]	,	,	
U	DWORD	-	•	_	V (±1	√	V	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.


Operand Description

- S1: The source operand, which indicates the address of the data or data storage word soft element that participates in the OR operation.
- S2: The source operand, which indicates the address of the data or data storage word soft element that participates in the OR operation.
- D: The destination operand, which indicates the address of the data storage word soft element of the operation result.

Function Description

- 1. When the command is driven, the bitwise logical OR operation is executed on S1 and S2, and the operation result is assigned to D.
- 2. The rule of logical OR operation: If any data is 1, the result is 1. For example: 1+1=1 1+0=1 0+1=1 0+0=0.

Application Example

In case of M500=ON, the bitwise logical OR operation is executed on D10=2#1011011010010011 (46739) and D20=2#1001001100101110 (37678), and the result is assigned to D30 to obtain D30=2#1011011110111111 (47039).

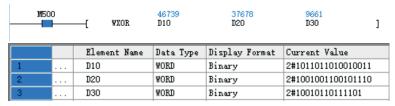
3.10.4 WXOR: Commands for Logical XOR Operation of Word/Doubleword Data

Comma	and list	*WXOR (S1)	(S2) (D)	Applicable model	TS600 series			
16-Bit co	mmand		WXOR: Logical XOR operation of word data						
32-Bit co	mmand		DXW	OR: Logical X0	OR operation	of doubleword	data		
			Bit		W	ord			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S1	WORD/ DWORD	-	-	-	√ [1]	√	√	√	
S2	WORD/ DWORD	-	-	-	√ [1]	√	√	✓	
D	WORD/ DWORD	-	-	-	√ [1]	✓	√	-	

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description


- S1: The source operand, which indicates the address of the data or data storage word soft element that participates in the XOR operation.
- S2: The source operand, which indicates the address of the data or data storage word soft element that participates in the XOR operation.
- D: The destination operand, which indicates the address of the data storage word soft element of the operation result.

Function Description

- 1. When the command is driven, the bitwise logical XOR operation is executed on S1 and S2, and the operation result is assigned to D.
- 2. The rules of logical XOR operation: If two data are the same, the result is 0; if two data are different, the result is 1.

For example: 1^1=0 1^0=1 0^1=1 0^0=0.

Application Example

In case of M500=ON, the bitwise logic XOR operation is executed on D10=2#1011011010010011 (46739) and D20=2#1001001100101110 (37678), and the result is assigned to D30 to obtain D30=2#00100101111101 (9661).

3.10.5 WINV: Commands for Inversion Operation of Word/Doubleword Data

Comma	ınd list	*WINV	(S)	(D)	Applicable model	1 S600 series		
16-Bit co	mmand	WINV: Logical inversion operation of word data						
32-Bit co	mmand		DWINV:	Logical inve	ersion operat	tion of doublew	ord data	
		Bit			Word			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD/ DWORD	-	-	-	√ [1]	√	√	✓
D	WORD/ DWORD	-	-	-	√ [1]	√	√	-

Remark:

[1] For 32-bit commands, the T and Z elements are not supported.

Operand Description

S: The source operand, which indicates the address of the data or data storage word soft element that participates in the inversion operation.

D: The destination operand, which indicates the address of the data storage word soft element of the operation result.

Function Description

- 1. When the command is driven, the bitwise logical inversion operation is executed on S, and the operation result is assigned to D.
- 2. The rules of logical inversion operation: If any data is 1, the result is 0; if any data is 0, the result is 1. For example: -1=0 -0=1.

Application Example

In case of M503=ON, the bitwise logical inversion operation is executed on D10=(46739), and the result is assigned to D20 to obtain D20=(18796).

3.11 Bit shift rotation command

3.11.1 Command list

Command Category	Name	Function
	*ROR	16-bit/32-bit cyclic shift right
	*ROL	16-bit/32-bit cyclic shift left
	*RCR	16-bit/32-bit cyclic shift right with carry
Dit shift votation command	*RCL	16-Bit/32-bit cyclic shift left with carry
Bit shift rotation command	*SHR	16-bit/32-bit shift right
	*SHL	16-bit/32-bit shift left
	SFTR	Bit string shift right
	SFTL	Bit string shift left

3.11.2 ROR: Commands for 16-Bit/32-Bit Cyclic Shift Right

Command list		*ROR	(S)	(D) (n)	Applicable model	TS600 series		
16-Bit co	ommand			ROR: 1	L6-bit cyclic s	hift right		
32-Bit co	ommand			DROR:	32-bit cyclic	shift right		
			Bit		W	/ord		
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S	WORD/ DWORD	-	-	-	√ [1]	✓	✓	√
D	WORD/ DWORD	-	-	-	√ [1]	✓	✓	-
n	WORD	-	-	-	✓	✓	√	√

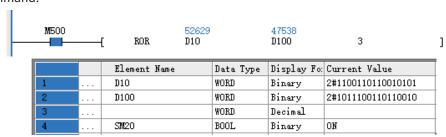
Remark:

[1] For the 32-bit command DROR, the T and Z elements are not supported.

Operand Description

- S: The source operand, which indicates the address of the data or data storage word soft element to be shifted to right.
- D: The destination operand, which indicates the address of the data storage word soft element after being shifted to right.
- n: The number of digits shifted for a single time, which ranges between 0 and 32767.

Function Description


When the command is driven, the data of S is cyclically shifted to right for n digits, and the result is assigned to D. For the 32-bit command, the data consisting of S and (S+1) is cyclically shifted to right for n digits, the result is assigned to D and (D+1), and the final digit of the shift is stored in the carry flag bit SM20.

Precautions

When the value of n is greater than 32767, the system reports an operand error and the command does not run.

Application Example

ROR Command:

In case of M500=ON, D10=2#1100110110010101 (52629) is shifted to right for 3 digits, the result is assigned to D100, and the final digit of the shift is stored in the carry flag bit to obtain D100=2#1011100110110010 (47538) and SM20=ON.

DROR Command:

	Element Name	Data Type	Display Format	Current Value
1	 D10	DWORD	Binary	2#10110011100110001001110010101100
2	 D110	DWORD	Binary	2#1011001011001110011000100111001
3		WORD	Decimal	
4	 SM20	BOOL	Binary	OFF

In case of M501=ON, (D10, D11)=2#101100111001100110011010101010 (3013123244) is cyclically shifted to right for 7 digits, the result is assigned to (D110, D111), and the final digit of the shift is stored in the carry flag bit to obtain (D110,D111)=2#0101100101110011100110011001 (1499935033) and SM20=OFF.

3.11.3 ROL: Commands for 16-Bit/32-Bit Cyclic Shift Left

Command list		*ROL	(S)	(D) (n)	Applicable model	TS600 series				
16-Bit command ROL: 16-bit cyclic shift left						shift left				
32-Bit co	mmand			DRO	L: 32-bit cycli	c shift left				
			Bit		W	ord ord				
Operand	Type	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant		
		T, C, S	Dx.y	variable	T, C	variable				
S	WORD/				√ [1]	√	√			
3	DWORD	_	_	_	V 13	V	V	V		
D	WORD/				√ [1]	,	,			
D	DWORD	-	_	-	V 1-3	√	V	-		
n	WORD	-	-	-	✓	✓	✓	✓		

Remark:

[1] For the 32-bit command DROL, the T and Z elements are not supported.

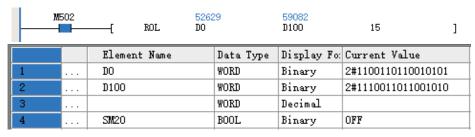
Operand Description

S: The source operand, which indicates the address of the data or data storage word soft element to be shifted to left.

D: The destination operand, which indicates the address of the data storage word soft element after being shifted to left.

n: The number of digits shifted for a single time, which ranges between 0 and 32767.

Function Description

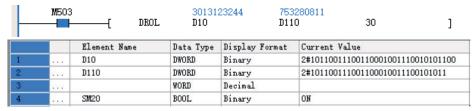

When the command is driven, the data of S is cyclically shifted to left for n digits, and the result is assigned to D. For the 32-bit command, the data consisting of S and (S+1) is cyclically shifted to left for n digits, the result is assigned to D and (D+1), and the final digit of the shift is stored in the carry flag bit (SM20).

Precautions

When the value of n is greater than 32767, the system reports an operand error and the command does not run.

Application Example

ROL Command:



In case of M502=ON, D0=2#1100110110010101 (52629) is cyclically shifted to left for 15 digits, the result is

assigned to D100, and the final digit of the shift is stored in the carry flag bit to obtain D100=2#1110011011001010 (59082) and SM20=OFF.

DROL Command:

3.11.4 RCR: Commands for 16-Bit/32-Bit Cyclic Shift Right with Carry

Comma	nd list	*RCR (S) (D) (n) Applicable model TS600 series						
16-Bit co	mmand			RCR: 16-bit	cyclic shift rig	ght with carry		
32-Bit co	mmand	DRCR: 32-bit cyclic shift right with carry						
		Bit			W	ord		
Operand	Туре	X, Y, M, LM,	Dyv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
S	WORD/				√ [1]	./	./	
3	DWORD		_	_	V	V	V	V
D	WORD/				√ [1]	,	,	
	DWORD	<u>-</u>	_	-	A 1-3	V	V	-
n	WORD	-	-	-	✓	✓	✓	✓

Remark:

[1] For the 32-bit command DRCR, the T and Z elements are not supported.

Operand Description

- S: The source operand, which indicates the address of the data or data storage word soft element to be shifted to right.
- D: The destination operand, which indicates the address of the data storage word soft element after being shifted to right.
- n: The number of digits shifted for a single time, which ranges between 0 and 32767.

Function Description

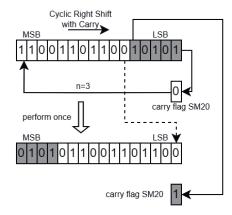
When the command is driven, the data of S together with the carry (SM20) is cyclically shifted to right for n digits, and the result is assigned to D. For the 32-bit command, the data consisting of S and (S+1) together with the carry (SM20) is cyclically shifted to right for n digits, and the result is assigned to D and (D+1).

Precautions

When the value of n is greater than 32767, the system reports an operand error and the command does not run.

Application Example

RCR Command:


Before execution:

	Element Name	Data Type	Display Format	Current Value
1	 DO	WORD	Binary	2#1100110110010101
2	 D100	WORD	Binary	2#0
3		WORD	Decimal	
4	 SM20	BOOL	Binary	OFF

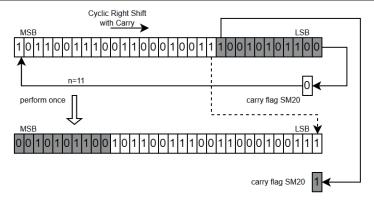
After execution:

	Element Name	Data Type	Display Format	Current Value
1	 DO	WORD	Binary	2#1100110110010101
2	 D100	WORD	Binary	2#101011001101100
3		WORD	Decimal	
4	 SM20	BOOL	Binary	OFF

In case of M504=ON, D0=2#1100110110010101 (52629) together with the carry (SM20=OFF) is cyclically shifted to right for 5 digits, and the result is assigned to D100 to obtain D100=2#0101011001101100 (22124) and SM20=ON. See the figure below for the process.

DRCR Command:

Before execution:


	Element Name	Data Type	Display Format	Current Value
1	 D10	DWORD	Binary	2#10110011100110001001110010101100
2	 D110	DWORD	Binary	2#0
3		WORD	Decimal	
4	 SM20	BOOL	Binary	OFF
5		WORD	Decimal	

After execution:

	Element Name	Data Type	Display Format	Current Value
1	 D10	DWORD	Binary	2#10110011100110001001110010101100
2	 D110	DWORD	Binary	2#101011001101100111001100010011
3		WORD	Decimal	
4	 SM20	BOOL	Binary	ON
5		WORD	Decimal	

In case of M505=ON, (D0, D1)=2#10110011100110011001010101010 (3013123244) together with the carry (SM20=OFF) is cyclically shifted to right for 11 digits, and the result is assigned to (D110, D111) to obtain (D110, D111)=2#001010110001011001110011001001011 (722891539) and SM20=ON. See the figure below for the process.

3.11.5 RCL: Commands for 16-Bit/32-Bit Cyclic Shift Left with Carry

Comma	and list	*RCL (S	5) ([O) (n)	Applicable model	TS600 series			
16-Bit co	mmand		RCL: 16-bit cyclic shift left with carry						
32-Bit co	mmand			DRCL: 32-b	oit cyclic shift	left with carry			
		Bit			W	ord			
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		T, C, S	Dx.y	variable	С	variable			
c	WORD/				√ [1]	,	,	,	
3	DWORD	-	-	-	V 1−1	V	V	V	
D	WORD/				√ [1]	,	,		
D	DWORD	-	-	-	V 1−1	V	V	-	
n	WORD	-	-	-	√	√	√	✓	

Remark:

[1] For the 32-bit command DRCL, the T and Z elements are not supported.

Operand Description

- S: The source operand, which indicates the address of the data or data storage word soft element to be shifted to left.
- D: The destination operand, which indicates the address of the data storage word soft element after being shifted to left.
- n: The number of digits shifted for a single time, which ranges between 0 and 32767.

Function Description

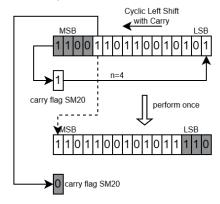
When the command is driven, the data of S together with the carry (SM20) is cyclically shifted to left for n digits, and the result is assigned to D. For the 32-bit command, the data consisting of S and (S+1) together with the carry (SM20) is cyclically shifted to left for n digits, and the result is assigned to D and (D+1).

Precautions

When the value of n is greater than 32767, the system reports an operand error and the command does not

Application Example

RCL Command:


Before execution:

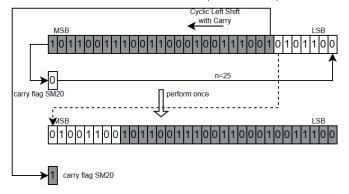
	Element Name	Data Type	Display Format	Current Value
1	 DO	WORD	Binary	2#1100110110010101
2	 D100	WORD	Binary	2#0
3		WORD	Decimal	
4	 SM20	BOOL	Binary	ON

After execution:

	Element Name	Data Type	Display Format	Current Value
1	 DO .	WORD	Binary	2#1100110110010101
2	 D100	WORD	Binary	2#11011001010111110
3		WORD	Decimal	
4	 SM20	BOOL	Binary	OFF

In case of M506=ON, D0=2#1100110110010101 (52629) together with the carry (SM20=ON) is cyclically shifted to left for 4 digits, and the result is assigned to D100 to obtain D100=2#1101100101011110 (55646) and SM20=OFF. See the figure below for the process.

DRCL Command:


Before execution:

	Element Name	Data Type	Display Format	Current Value
1	 D10	DWORD	Binary	2#10110011100110001001110010101100
2	 D110	DWORD	Binary	2#0
3	 	WORD	Decimal	
4	 SM20	BOOL	Binary	OFF

After execution:

		Element Name	Data Type	Display Format	Current Value
1		D10	DWORD	Binary	2#101100111001100010011100101011100
2		D110	DWORD	Binary	2#1011000101100111001100010011100
3			WORD	Decimal	
4	1.2.2	SM20	BOOL	Binary	ON

In case of M507=ON, (D10, D11)=2#10110011100110011001100101100 (3013123244) together with the carry (SM20=OFF) is cyclically shifted to left for 25 digits, and the result is assigned to (D110, D111) to obtain (D110, D111)=2#00101100010111001110011000100111100 (1488165020) and SM20=ON.

3.11.6 SHR: Commands for 16-Bit/32-Bit Shift Right

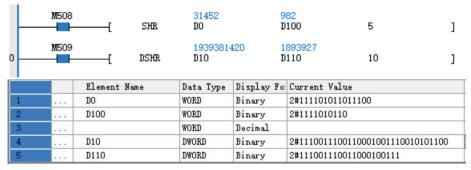
Comma	nd list	*SHR	*SHR (S) (D) (n) Applicable model TS600 series					
16-Bit co	mmand			SI	HR: 16-bit sh	ift right		
32-Bit co	mmand			DS	HR: 32-bit sh	nift right		
			Bit		V	/ord		
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S		variable	T, C	variable		
S	WORD/ DWORD	-	-	-	√ [1]	✓	✓	✓
D	WORD/ DWORD	-	-	-	√ [1]	√	√	-
n	WORD/ DWORD	-	-	-	√	√	✓	√

Remark:

[1] For the 32-bit command DSHR, the T and Z elements are not supported.

Operand Description

- S: The source operand, which indicates the address of the data or data storage word soft element to be shifted to right.
- D: The destination operand, which indicates the address of the data storage word soft element after being shifted to right.
- n: The number of digits shifted for a single time, which ranges between 0 and 32767.


Function Description

When the command is driven, the data of S is shifted to right for n digits, and the result is assigned to D. For the 32-bit command, the data consisting of S and (S+1) together with the carry is shifted to right for n digits, and the result is assigned to D and (D+1). At the same time, the position after shift is padded with 0.

Precautions

When the value of n is greater than 32767, the system reports an operand error and the command does not run.

Application Example

In case of M508=ON, D0=2#0111101011011100 (31452) is shifted to right for 5 digits, and the result is assigned to D100 to obtain D100=2#0000001111010110 (982).

In case of M509=ON, (D10, D11)=2#0111001110011001001101100 (1939381420) is shifted to right for 10 digits, and the result is assigned to (D110, D111) to obtain (D110, D111)=2#0000000000111001110011000100111 (1893927).

3.11.7 SHL: Commands for 16-Bit/32-Bit Shift Left

Comma	and list	*SHL	*SHL (S) (D) (n) Applicable model TS600 series						
16-Bit co	mmand			SI	HL: 16-bit sh	ift left			
32-Bit co	mmand			DS	HL: 32-bit sh	nift left			
			Bit		V	Vord			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S	WORD/ DWORD	-	-	-	√ [1]	√	√	✓	
D	WORD/ DWORD	-	-	-	√ [1]	√	√	-	
n	WORD/ DWORD	-	-	-	✓	✓	√	✓	

Remark:

[1] For the 32-bit command DSHL, the T and Z elements are not supported.

Operand Description

- S: The source operand, which indicates the address of the data or data storage word soft element to be shifted to left.
- D: The destination operand, which indicates the address of the data storage word soft element after being shifted to left.
- n: The number of digits shifted for a single time, which ranges between 0 and 32767.

Function Description

When the command is driven, the data of S is shifted to left for n digits, and the result is assigned to D. For the 32-bit command, the data consisting of S and (S+1) together with the carry is shifted to left for n digits, and the result is assigned to D and (D+1). At the same time, the position after shift is padded with 0.

Precautions

When the value of n is greater than 32767, the system reports an operand error and the command does not run.

Application Example

In case of M510=ON, D0=2#0111101011011100 (31452) is shifted to left for 7 digits, and the result is assigned to D100 to obtain D100=2#0110111000000000 (28160).

3.11.8 SFTR: Command for Bit String Shift Right

Comm	and list	*SFTR (S) (D) (n1) Applicable model TS600 series						
16-Bit co	ommand			SFTR	: Bit string s	hift right		
32-Bit co	ommand				-			
			Bit		١	Nord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	BOOL, Array*n2	√	-	√	-	-	√	-
D	BOOL, Array*n1	√ [1]	-	√	-	-	✓	-
n1	WORD	-	-	-	√	√	✓	✓
n2	WORD	-	-	_	√	√	√	√

Remark:

[1] The X element is not supported.

Operand Description

- S: The source operand, which indicates the starting address of the bit element to shift the data in.
- D: The destination operand, which indicates the starting address of the bit element shifting the data.
- n1: The number of bit elements shifting the data, which ranges between 1 and 256.
- n2: The number of bit elements to shift the data in, which ranges between 1 and n1.

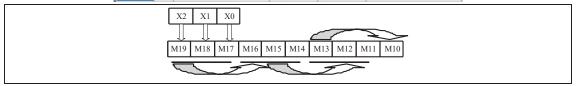
Function Description

When the command is driven, the contents of the n1 units starting from the D unit are shifted to the right for n2 units, and the rightmost n2 data are discarded. At the same time, the contents of the n2 units starting from the S unit are shifted into the left end of the word string.

Precautions

- Please note the left-right order. For this command, larger element numbers are arranged to left, while smaller element numbers are arranged to right.
- In case of n1>256 or n2>n1, the system reports an operand error and this command is not executed.

Application Example


Before execution:

	Element Name	Data Type	Display Fo:	Current Value
1	 YO	BOOL	Binary	ON
2	 ¥1	BOOL	Binary	OFF
3	 ¥2	BOOL	Binary	ON
4		WORD	Decimal	
5	 M10	BOOL	Binary	OFF
6	 MT1 1	BOOL	Binary	ON
7	 M12	BOOL	Binary	ON
8	 M13	BOOL	Binary	OFF
9	 M14	BOOL	Binary	OFF
10	 M15	BOOL	Binary	ON
11	 M16	BOOL	Binary	OFF
12	 MC1 7	BOOL	Binary	OFF
13	 M18	BOOL	Binary	OFF
14	 M19	BOOL	Binary	ON

After execution:

		Element Name	Data Type	Display Fo:	Current Value
1	21202	YO	BOOL	Binary	ON
2		¥1	BOOL	Binary	OFF
3		¥2	BOOL	Binary	ON
4			WORD	Decimal	
5		M10	BOOL	Binary	OFF
6		M11	BOOL	Binary	OFF
7		M12	BOOL	Binary	ON
8		M13	BOOL	Binary	OFF
9		M14	BOOL	Binary	OFF
10	***	M15	BOOL	Binary	OFF
11	222	M16	BOOL	Binary	ON
12		M17	BOOL	Binary	ON
13		M18	BOOL	Binary	OFF
14		M19	BOOL	Binary	ON

In case of M512=ON, the contents (taking a bit as the unit) of the 10 units starting from the M10 unit are shifted to the right for 3 units, and the rightmost M10 to M12 units are discarded. At the same time, the contents of the 3 units starting from the Y0 unit are shifted into the left end of the bit string:

Before execution: Y0=1, Y1=0, and Y2=1. M10=0, M11=1, M12=1, M13=0, M14=0, M15=1, M16=0, M17=0, M18=0, and M19=1;

After execution: The contents of Y0 to Y2 remain unchanged. M10=0, M11=0, M12=1, M13=0, M14=0, M15=0, M16=1, M17=1, M18=0, and M19=1.

3.11.9 SFTL: Commands for Bit String Shift Left

Command list		*SFTL (S) (D) (n1) (n2)			Applicable model	TS600 series				
16-Bit co	ommand	SFTL: Bit string shift left								
32-Bit co	ommand		-							
			Bit		W	/ord				
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant		
S	BOOL, Array*n2	√	1	√	-	-	√	-		
D	BOOL, Array*n1	√ [1]	-	√	-	-	√	-		
n1	WORD	-	-	-	√	√	√	√		
n2	WORD	-	-	-	√	✓	✓	✓		

Remark:

[1] The X element is not supported.

Operand Description

- S: The source operand, which indicates the starting address of the bit element to shift the data in.
- D: The destination operand, which indicates the starting address of the bit element shifting the data.
- n1: The number of bit elements shifting the data, which ranges between 1 and 256.
- n2: The number of bit elements to shift the data in, which ranges between 1 and n1.

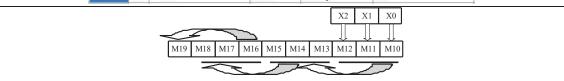
Function Description

When the command is driven, the contents of the n1 units starting from the D unit are shifted to the left for n2 units, and the leftmost n2 data are discarded. At the same time, the contents of the n2 units starting from the S unit are shifted into the right end of the word string.

Precautions

- Please note the left-right order. For this command, larger element numbers are arranged to left, while smaller element numbers are arranged to right.
- In case of n1>256 or n2>n1, the system reports an operand error and this command is not executed.

Application Example



Before execution:

	Element Name	Data Type	Display Format	Current Value
1	 YO	BOOL	Binary	ON
2	 ¥1	BOOL	Binary	OFF
3	 ¥2	BOOL	Binary	ON
4		WORD	Decimal	
5	 M10	BOOL	Binary	OFF
6	 M11	BOOL	Binary	ON
7	 M12	BOOL	Binary	ON
8	 M13	BOOL	Binary	OFF
9	 M14	BOOL	Binary	OFF
10	 M15	BOOL	Binary	ON
11	 M16	BOOL	Binary	OFF
12	 M17	BOOL	Binary	OFF
13	 M18	BOOL	Binary	OFF
14	 M19	BOOL	Binary	ON

After execution:

	Element Name	Data Type	Display Format	Current Value
1	 YO	BOOL	Binary	ON
2	 ¥1	BOOL	Binary	OFF
3	 ¥2	BOOL	Binary	ON
4		WORD	Decimal	
5	 M10	BOOL	Binary	ON
6	 M11	BOOL	Binary	OFF
7	 M12	BOOL	Binary	ON
8	 M13	BOOL	Binary	OFF
9	 M14	BOOL	Binary	ON
10	 M15	BOOL	Binary	ON
11	 M16	BOOL	Binary	OFF
12	 M17	BOOL	Binary	OFF
13	 M18	BOOL	Binary	ON
14	 M19	BOOL	Binary	OFF

In case of M513=ON, the contents (taking a bit as the unit) of the 10 units starting from the M10 unit are shifted to the left for 3 units, and the leftmost M10 to M12 units are discarded. At the same time, the contents of the 3 units starting from the Y0 unit are shifted into the right end of the bit string:

Before execution: Y0=1, Y1=0, and Y2=1. M10=0, M11=1, M12=1, M13=0, M14=0, M15=1, M16=0, M17=0, M18=0, and M19=1;

After execution: The contents of Y0 to Y2 remain unchanged. M10=1, M11=0, M12=1, M13=0, M14=1, M15=1, M16=0, M17=0, M18=1, and M19=0.

3.12 Enhanced Bit Processing Command

3.12.1 Command list

Command Category	Name	Function
	ZRST	Batch bit reset
	ZSET	Batch bit set
Enhanced Bit Processing	DECO	Decode
Command	ENCO	Encode
	*BITS	ON bit statistics in word/doubleword
	BON	ON bit judgment in word

3.12.2 ZRST: Commands for Batch Bit Reset

Commar	nd list	ZRST (D) (S) Applicable model TS600 series							
16-Bit con	nmand			ZRS	T: Batch bit r	eset			
32-Bit con	nmand		-						
		Bit			Word				
Operand	Туре	X, Y, M, LM, T,		Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
D	BOOL	√ [1]	1	-	1	-	\	-	
S	WORD	-	-	-	√	✓	√	√	

Remark:

[1] The X element is not supported.

Operand Description

D: The destination operand.

S: The source operand.

Function Description

When the energy flow is valid, the S consecutive bit element units starting from the D unit are reset to zero.

Precautions

- When the cleared bit element is C, the counter value in the C element is also reset to zero.
- When the cleared bit element is T, the timing value in the T element is also reset to zero.

Application Example

In case of SM0=ON, all data of the 10 units starting from M10 (which are M10, M11, M12, ..., and M19) are reset to zero.

3.12.3 ZSET: Commands for Batch Bit Set

Comma	nd list	ZSET	(D)	(S)	Applicable model	I S600 series			
16-Bit cor	mmand		ZSET: Batch bit set						
32-Bit cor	nmand		-						
	Туре	Bit			V	/ord			
Operand		X, Y, M, LM, T,	D.,	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
D	BOOL	√ [1]		-	-	-	√	-	
S	WORD	-	-	-	✓	√	√	✓	

Remark:

[1] The X element is not supported.

Operand Description

D: The destination operand.

S: The source operand.

Function Description

When the energy flow is valid, the S consecutive bit element units starting from the D unit are set to 1.

Application Example

In case of SM0=ON, all data of the 10 units starting from M10 (which are M10, M11, M12, ..., and M19) are set to 1.

3.12.4 DECO: Decode Commands

Comma	nd list	d list DECO (D) (S) Appl				TS600 series			
16-Bit co	mmand		DECO: Decode						
32-Bit co	mmand		-						
	Туре	Bit			V	/ord			
Operand		X, Y, M, LM, T,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S		variable	T, C	variable			
S	WORD	-	-	-	✓	✓	√	✓	
D	INT	-	-	-	√	√	√	_	

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, the S-th bit in the word element D is set to 1 and other bits are reset to 0.

Precautions

- The effective range of S is 0–15.
- When S is greater than 15 or less than 0 and the energy flow is valid, the value of D is not changed, but a command operand value error is reported.

Application Example

When the energy flow is valid, the 2nd bit in D9 is set to 1 and other bits are reset to 0.

3.12.5 ENCO: Encode Commands

Commai	nd list	ENCO	ENCO (S) (D)			TS600 series		
16-Bit cor	mmand		ENCO: Encode					
32-Bit cor	nmand		-					
		Bit			Wo			
Operand	Туре	X, Y, M, LM, T,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S		variable	С	variable		
S	INT	-	-	-	√	√	√	√
D	INT	-	-	-	✓	✓	✓	-

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, the bit number with "1" in the word element S is written into D.

Precautions

When 1 appears at multiple bits in S, the smallest bit number is written into D. See the figure below.

Application Example

When the energy flow is valid, operand 1 is 2#0010, and the first bit is "1", so the result is 1 and written into D0.

3.12.6 BITS: Commands for ON Bit Statistics in Word/Doubleword

Command list		BITS	(S)	(D)	Applicable model	TS600 series		5
16-Bit co	16-Bit command BITS: O					cs in word		
32-Bit co	mmand	DBITS: ON bit statistics in doubleword						
	Туре	Bit			W	/ord		
Operand		X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S		variable	T, C	variable		
S	WORD/ DWORD	-	-	-	√ [1]	✓	✓	<
D	INT	-	-	-	√	√	√	-

Remark:

[1] For 32-bit commands, the Z and T elements are not supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, the number of bits with "1" in the doubleword S is counted, and the statistical result is stored in D.

Application Example

When the energy flow is valid, S in the BITS command is a constant, namely 16#F0F0, and 8 bits are "1" (ON state), so the statistical result is 8 and stored in D (D1).

When the energy flow is valid, S in the DBITS command is a constant, namely 16#FF0FF, and 16 bits are "1" (ON state), so the statistical result is 16 and stored in D (D10).

3.12.7 BON: Commands for ON Bit Judgment in Word

Comma	nd list	BON (S1) (D) (S2)	Applicable model	TS600 series				
16-Bit co	mmand			BON: Of	N bit judgmei	nt in word				
32-Bit co	mmand		-							
		Bit			V	/ord				
Operand	Туре	X, Y, M, LM, T,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant		
		C, S	DX.y	variable	T, C	variable				
S1	INT	-	-	-	\checkmark	✓	✓	✓		
D	BOOL	√ [1]	1	-	√ [1]	✓	-	-		
S2	WORD	-	-	-	√ [2]	√	-	-		

Remark:

[1] The X, C, and T elements are not supported.

[2] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

Function Description

When the energy flow is valid, the state of the S2-nd bit in the word S1 is judged, and the result is output to D.

Application Example

When the energy flow is valid, S1 in the BON command is a constant, namely D0, and the state of the 5th bit is (ON) and output to D (Y0).

3.13 Word Contact Command

3.13.1 Command list

Command Category	Name	Function
	BLD	Normally open contact of word bit data
	BLDI	Normally closed contact of word bit data
	BAND	Serial connection to normally open contact of AND word bit data
	BANI	Serial connection to normally closed contact of AND word bit data
	BOR	Serial connection to normally open contact of OR word bit data
	BORI	Serial connection to normally closed contact of OR word bit data
	LD*&	Logical AND operation of word/doubleword LD contact
	LD*	Logical OR operation of word/doubleword LD contact
Word Contact	LD*^	Logical XOR operation of word/doubleword LD contact
Command	AND*&	Logical AND operation of word/doubleword AND contact
	AND*	Logical OR operation of word/doubleword AND contact
	AND*^	Logical XOR operation of word/doubleword AND contact
	OR*&	Logical AND operation of word/doubleword OR contact
	OR*	Logical OR operation of word/doubleword OR contact
	OR*^	Logical XOR operation of word/doubleword OR contact
	BOUT	Word bit data coil output
	BSET	Word bit data coil set
	BRST	Word bit data coil reset

3.13.2 BLD&BLDI: Commands for Contact of Word Bit Data

Command list		BLD* (S1) (S2) Applicable model TS600 series							
16-Bit cor	nmand		BLD: Commands for contact of word bit data						
32-Bit command -									
16-Bit cor	nmand	E	BLDI: Co	mmands for o	contact of w	ord bit data inv	version		
32-Bit cor	nmand				-				
			Bit		W	/ord			
Operand	Туре	X, Y, M, LM, T,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S1	WORD	-	-	-	√	√	√	-	
S2	WORD	-	-	-	√	√	✓	√	

Operand Description

S1: The source operand.

S2: The specified bit, which ranges between 0 and 15, otherwise an operand error is reported.

Function Description

- 1. BLD: The state of the S2-nd bit in the content of the S1 unit is taken to drive the subsequent segment operation.
- 2. BLDI: The logical NOT of the state of the S2-nd bit in the content of the S1 unit is taken to drive the subsequent segment operation.

Application Example

The logical NOT (OFF) of the BIT5 state (ON) of D0 (1000: 2#0000001111101000) is taken to determines the output state of the subsequent segment element Y0.

The logical NOT (OFF) of the BIT5 state (ON) of D0 (1000: 2#0000001111101000) is taken to determines the output state of the subsequent segment element Y0.

3.13.3 BAND&BANI: Commands for Contact of Serial Word Bit Data

Command list		BAN*	(S1)	(S2)	Applicable model	TS	6600 series	
16-Bit cor	nmand		BAND:	Commands f	or contact of	serial word bi	t data	
32-Bit cor	mmand -							
16-Bit command BANI: Commands for contact of serial word bit data inversion								
32-Bit cor	mmand				-			
			Bit		W	ord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S1	WORD	-	-	-	✓	✓	✓	-
S2	WORD	-	-	-	√	√	√	√

Operand Description

S1: The source operand.

S2: The specified bit, which ranges between 0 and 15, otherwise an operand error is reported.

Function Description

- 1. BAND: The state of the S2-nd bit in the content of the S1 unit is taken and connected in series with other nodes to drive the subsequent segment operation.
- 2. BANI: The logical NOT of the state of the S2-nd bit in the content of the S1 unit is taken and connected in series with other nodes to drive the subsequent segment operation.

Application Example

The BIT5 state (ON) of D0 (1000: 2#0000001111101000) is taken and connected in series with other nodes (X0=ON) to determine the output state of the subsequent segment element Y0.

The logical NOT (OFF) of the BIT5 state (ON) of D0 (1000: 2#0000001111101000) is taken and connected in series with other nodes (X0=ON) to determine the output state of the subsequent segment element Y0.

3.13.4 BOR&BORI: Commands for Contact of Parallel Word Bit Data

Command list BOR* (S1) (S2) Applicable model		TS6	00 series					
16-Bit co	mmand		BOR: C	ommands for	contact of pa	arallel word bit	data	
32-Bit co	mmand	nd -						
16-Bit command BORI: Commands for contact of parallel word bit data inversion								
32-Bit co	mmand				-			
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM, T,	D.,	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S1	WORD	-	-	-	✓	√	√	-
S2	WORD	-	-	-	√	√	√	√

Operand Description

S1: The source operand.

S2: The specified bit, which ranges between 0 and 15, otherwise an operand error is reported.

Function Description

- 1. BOR: The state of the S2-nd bit in the content of the S1 unit is taken and connected in parallel with other nodes to drive the subsequent segment operation.
- 2. BORI: The logical NOT of the state of the S2-nd bit in the content of the S1 unit is taken and connected in parallel with other nodes to drive the subsequent segment operation.

Application Example

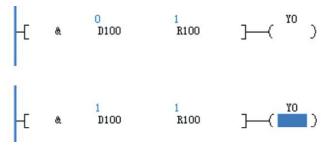
The BIT5 state (ON) of D0 (1000: 2#0000001111101000) is taken and connected in parallel with other nodes (X0=ON) to determine the output state of the subsequent segment element Y0.

The logical NOT (X0= OFF) of the BIT5 state (ON) of D0 (1000: 2#0000001111101000) is taken and connected in parallel with other nodes (X0=ON) to determine the output state of the subsequent segment element Y0.

3.13.5 LD*: LD Logic Operation Commands

Comm	and list	LD*	(S1)	(S2)	Applicabl e model	TS6	600 series		
16-Bit c	ommand	mmand LD&: Logical AND operation of word LD contact							
32-Bit c	ommand		LDD&:	Logical AND c	peration o	f doubleword LD) contact		
16-Bit c	ommand		LI	D : Logical OR	operation	of word LD cont	act		
32-Bit c	ommand		LDD :	Logical OR op	eration of doubleword LD contact				
16-Bit c	ommand		LD	^: Logical XO	R operatior	of word LD con	tact		
32-Bit c	ommand		LDD^:	Logical XOR o	peration of doubleword LD contact				
			Bit			Word			
Operand	Туре	X, Y, M,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		LM, T, C, S	Dx.y	variable	T, C	variable			
S1	INT/DINT	-	-	-	✓	✓	✓	✓	
S2	INT/DINT	-	-	-	√	√	√	√	

Operand Description


- S1: Source operand, which indicates logical judgment data 1.
- S2: Source operand, which indicates logical judgment data 2.

Function Description

The command performs a logical operation ("AND, &", "NOT, |", or "XOR, ^") on the contents of S1 and S2. If the result is not 0, the command is on-state; if the result is 0, the command is off-state.

16-Bit command	32-Bit command	On-state condition	Off-state condition		
LD&	LDD&	S1&S2≠0	S1&S2=0		
LD	LDD	S1 S2≠0	S1 S2=0		
LD^	LDD^	S1^S2≠0	S1^S2=0		

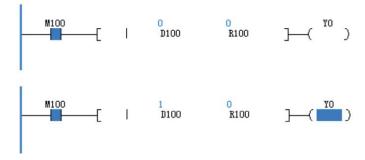
Application Example

3.13.6 AND*: AND Logic Operation Commands

Comma	and list	AND*	(S1)	(S2)	Applicable model	TS	600 series	
16-Bit co	ommand		AND	&: Logical AN	D operation o	of word AND co	ontact	
32-Bit co	ommand	Al	NDD &:	Logical AND o	peration of c	loubleword AN	ID contact	
16-Bit co	ommand		AND) : Logical OR	operation of	word AND cor	ntact	
32-Bit co	ommand	A	ANDD :	Logical OR op	peration of doubleword AND contact			
16-Bit co	ommand		AND ^: Logical XOR operation of word AND contact					
32-Bit co	ommand	Α	NDD ^:	Logical XOR o	peration of doubleword AND contact			
			Bit		W	ord		
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S1	INT/DINT	-	-	-	✓	✓	✓	✓
S2	INT/DINT	-	-	-	√	√	√	√

Operand Description

- S1: Source operand, which indicates logical judgment data 1.
- S2: Source operand, which indicates logical judgment data 2.


Function Description

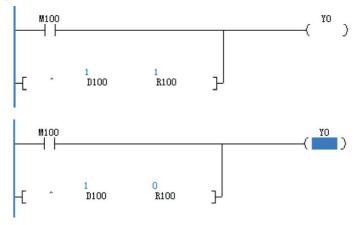
The command performs a logical operation ("AND, &", "NOT, |", or "XOR, ^") on the contents of S1 and S2. If the result is not 0, the command is on-state; if the result is 0, the command is off-state.

16-Bit command	32-Bit command	On-state condition	Off-state condition		
AND&	ANDD&	S1&S2≠0	S1&S2=0		
AND	ANDD	S1 S2≠0	S1 S2=0		
AND^	ANDD^	S1^S2≠0	S1^S2=0		

Application Example

3.13.7 OR*: OR Logic Operation Command

Comma	and list	d list OR '		(S2)	Applicable model	TS	600 series		
16-Bit co	mmand		OR	&: Logical AN	D operation	of word OR cor	ntact		
32-Bit co	mmand		ORD &:	Logical AND o	peration of	doubleword Of	R contact		
16-Bit co	mmand		OF	R : Logical OR	operation o	f word OR cont	tact		
32-Bit co	mmand		ORD :	Logical OR op	ogical OR operation of doubleword OR contact				
16-Bit co	mmand	OR ^: Logical XOR operation of word OR contact							
32-Bit co	mmand		ORD^: I	_ogical XOR o	peration of c	ration of doubleword OR contact			
			Bit		W	/ord			
Operand	Туре	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		T, C, S	Dx.y	variable	T, C	variable			
S1	INT/DINT	-	-	-	√	√	√	✓	
S2	INT/DINT	-	-	-	√	√	✓	√	


Operand Description

- S1: Source operand, which indicates logical judgment data 1.
- S2: Source operand, which indicates logical judgment data 2.

Function Description

The command performs a logical operation ("AND, &", "NOT, |", or "XOR, ^") on the contents of S1 and S2. If the result is not 0, the command is on-state; if the result is 0, the command is off-state.

16-Bit command	32-Bit command	On-state condition	Off-state condition		
OR&	ORD&	S1&S2≠0	S1&S2=0		
OR	ORD	S1 S2≠0	S1 S2=0		
OR^	ORD^	S1^S2≠0	S1^S2=0		

3.13.8 BOUT: Commands for Word Bit Data Coil Output

Comma	nd list	BOUT	(D)	(S)	Applicable model	TS600 series		
16-Bit cor	mmand	BOUT: Word bit data coil output						
32-Bit cor	nmand -							
	Туре	Bit		Word				
Operand		X, Y, M, LM, T,	-	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
D	WORD	-	-	-	√	√	✓	-
S	WORD	-	-	-	√	√	√	✓

Operand Description

- D: The source operand.
- S: The specified bit, which ranges between 0 and 15, otherwise an operand error is reported.

Function Description

The current energy flow state is assigned to the S bit of D.

The current energy flow state (M0=ON) is assigned to bit4 of D0(1000:2#0000001111101000). After execution: D0=1016 (2#0000001111111000).

3.13.9 BSET: Commands for Word Bit Data Coil Set

Comma	nd list	BSET	(D)	(S)	Applicable model	TS600 series		
16-Bit command BSET: Word bit data coil set								
32-Bit co	mmand		-					
	Туре	Bit		Word				
Operand		X, Y, M, LM, T,		Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
D	WORD	-	-	-	√	√	√	-
S	WORD	-	-	-	√	√	√	√

Operand Description

- D: The source operand.
- S: The specified bit, which ranges between 0 and 15, otherwise an operand error is reported.

Function Description

The command sets the S bit of the D element.

Application Example

When the energy flow is valid, the command sets bit 15 of D0(1000:2#0000001111101000). After execution: D0=33768 (2#1000001111101000).

3.13.10 BRST: Commands for Word Bit Data Coil Reset

Comma	nd list	BRST	(D)	(S)	Applicable model	TS600 series			
16-Bit co	nmand			BRST: W	ord bit data o	coil reset			
32-Bit co	mmand	-							
	Туре	Bit			Word				
Operand		X, Y, M, LM, T,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		X, Y, M, LM, T, C, S		variable	С	variable			
D	WORD	-	-	-	√	✓	✓	-	
S	WORD	-	ı	-	✓	✓	✓	√	

Operand Description

D: The source operand.

S: The specified bit, which ranges between 0 and 15, otherwise an operand error is reported.

Function Description

The command resets the S bit of the D element.

Application Example

When the energy flow is valid, the command resets bit 8 of D0(1000:2#0000001111101000). After execution: D0=744 (2#0000001011101000).

3.14 Contact Comparison Command

3.14.1 Command list

Command Category	Name	Function
	LD*=	Integer/long integer LD contact comparison equal to
	LD*>	Integer/long integer LD contact comparison greater than
	LD*<	Integer/long integer LD contact comparison less than
	LD*<>	Integer/long integer LD contact comparison not equal to
	LD*>=	Integer/long integer LD contact comparison greater than or equal to
	LD*<=	Integer/long integer LD contact comparison less than or equal to
	AND*=	Integer/long integer AND contact comparison equal to
	AND*>	Integer/long integer AND contact comparison greater than
	AND*<	Integer/long integer AND contact comparison less than
	AND*<>	Integer/long integer AND contact comparison not equal to
Contact	AND*>=	Integer/long integer AND contact comparison greater than or equal to
Comparison	AND*<=	Integer/long integer AND contact comparison less than or equal to
Command	OR*=	Integer/long integer OR contact comparison equal to
Command	OR*>	Integer/long integer OR contact comparison greater than
	OR*<	Integer/long integer OR contact comparison less than
	OR*<>	Integer/long integer OR contact comparison not equal to
	OR*>=	Integer/long integer OR contact comparison greater than or equal to
	OR*<=	Integer/long integer OR contact comparison less than or equal to
	LDR=	Floating-point number LD contact comparison equal to
	LDR>	Floating-point number LD contact comparison greater than
	LDR<	Floating-point number LD contact comparison less than
	LDR<>	Floating-point number LD contact comparison not equal to
	LDR>=	Floating-point number LD contact comparison greater than or equal
	LDR<=	Floating-point number LD contact comparison less than or equal

Command Category	Name	Function
	ANDR=	Floating-point number AND contact comparison equal to
	ANDR>	Floating-point number AND contact comparison greater than
	ANDR<	Floating-point number AND contact comparison less than
	ANDR<>	Floating-point number AND contact comparison not equal to
	ANDR>=	Floating-point number AND contact comparison greater than or equal to
	ANDR<=	Floating-point number AND contact comparison less than or equal to
	ORR=	Floating-point number OR contact comparison equal to
	ORR<	Floating-point number OR contact comparison greater than
	ORR>	Floating-point number OR contact comparison less than
	ORR<>	Floating-point number OR contact comparison not equal to
	ORR>=	Floating-point number OR contact comparison greater than or equal to
	ORR<=	Floating-point number OR contact comparison less than or equal to
	CMP	Integer comparison set
	LCMP	Long integer comparison set
	RCMP	Floating-point number comparison set
	*ZCP	Word/doubleword data region comparison set
	RZCP	Floating-point number region comparison set

3.14.2 LD (=, <, >, <=, <=): Commands for Integer/Long Integer LD Contact Comparison

Comma	and list	LD*	(S1)	(S2)	Applicable model	TS	6600 series	;
16-Bit co	mmand		LD) =: Integer LD	contact con	nparison equa	l to	
32-Bit co	mmand		LDD =	: Long intege	r LD contact	comparison e	qual to	
16-Bit co	mmand		LD	<: Integer LD	contact con	nparison less t	han	
32-Bit co	mmand		LDD <	: Long integer	LD contact	comparison le	ss than	
16-Bit co	mmand		LD >	: Integer LD c	ontact comp	arison greater	than	
32-Bit co	mmand		LDD >: Long integer LD contact comparison greater than					
16-Bit co	mmand		LD <>: Integer LD contact comparison not equal to					
32-Bit co	mmand	L	DD <>:	Long integer	LD contact c	omparison no	t equal to	
16-Bit co	mmand	LD	>=: Inte	ger LD contac	ct compariso	n greater than	or equal t	to
32-Bit co	mmand	LDD >=	:: Long i	nteger LD co	ntact compa	rison greater t	han or equ	ual to
16-Bit co	mmand	L	D <=: In	teger LD cont	act comparis	son less than c	r equal to	
32-Bit co	mmand	LDD ·	<=: Lon	g integer LD c	ontact comp	arison less tha	an or equa	l to
			Bit		W	ord		
Operand	Type	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S1	INT/DINT	-	-	-	√ [1]	√	√	√
S2	INT/DINT	-	-	-	√ [1]	√	√	√

Remark

[1] For 32-bit commands, the Z and T elements are not supported.

Operand Description

S1: Comparison parameter 1.

S2: Comparison parameter 2.

Function Description

The command performs a 16-bit/32-bit BIN comparison between the contents of the S1 and S2 units and uses the comparison result to drive the subsequent segment operation.

Application Example

16-bit command:

3.14.3 AND (=, <, >, <=, <=): Commands for Integer/Long Integer AND Contact Comparison

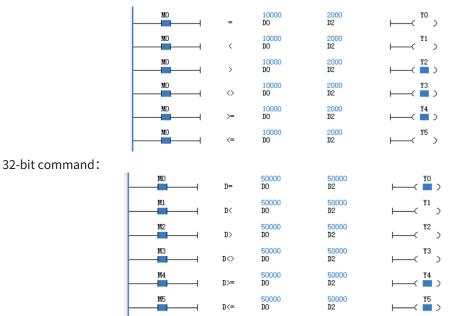
Comm	and list	AND*	(S1)	(S2)	Applicable model	TS	600 series	
16-Bit co	ommand		AN	D=: Integer Al	ND contact co	mparison equ	al to	
32-Bit co	ommand		ANDD=	: Long intege	r AND contact	comparison e	equal to	
16-Bit co	ommand		ANI	ا<: Integer ۸۸	ID contact co	mparison less	than	
32-Bit co	ommand		ANDD<	: Long intege	r AND contact	comparison le	ess than	
16-Bit co	ommand		AND>	: Integer AND	contact com	parison greate	r than	
32-Bit co	ommand	Α	ANDD>: Long integer AND contact comparison greater than					
16-Bit co	it command AND<>: Integer AND contact comparison not equal to							
32-Bit co	ommand	Al	ND <d>:</d>	Long integer	AND contact of	comparison no	ot equal to	
16-Bit co	ommand	AND	>=: Inte	ger AND cont	act comparis	on greater tha	n or equal	to
32-Bit co	ommand	ANDD>=	:: Long	integer AND c	ontact compa	arison greater	than or eq	ual to
16-Bit co	ommand	AN	ID<=: In	teger AND co	ntact compar	ison less than	or equal to)
32-Bit co	ommand	ANDD	<=: Lon	g integer AND	contact com	parison less th	an or equa	al to
			Bit		Wo	ord		
Operand	Type	X, Y, M,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	С	variable		
S1	INT/DINT	-	-	-	√ [1]	✓	√	✓
S2	INT/DINT	-	-	-	√ [1]	√	√	√

Remark:

[1] For 32-bit commands, the Z and T elements are not supported.

Operand Description

S1: Comparison parameter 1.


S2: Comparison parameter 2.

Function Description

The command performs a 16-bit/32-bit BIN comparison between the contents of the S1 and S2 units and connects the comparison result in series with other nodes to drive the subsequent segment operation.

Application Example

16-bit command:

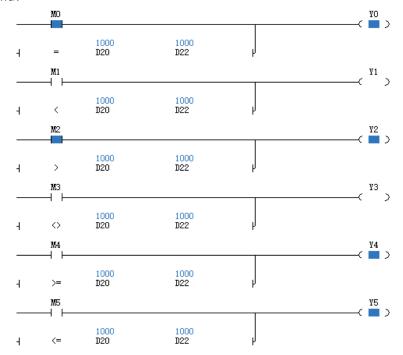
3.14.4 OR (=, <, >, <>, >=, <=): Commands for Integer/Long Integer OR Contact Comparison

Comm	and list	OR*	(S1)	(S2)	Applicable model	TS6	600 series		
16-Bit co	ommand		0	R=: Integer C	R contact c	omparison equa	ıl to		
32-Bit co	ommand		ORD=	: Long integ	er OR conta	ct comparison e	qual to		
16-Bit co	ommand		Ol	R<: Integer O	R contact co	omparison less t	han		
32-Bit co	ommand		ORD<	: Long intege	er OR contac	t comparison le	ss than		
16-Bit co	ommand		OR>	: Integer OR	contact con	nparison greate	r than		
32-Bit co	ommand		ORD>: Long integer OR contact comparison greater than						
16-Bit co	ommand	OR<>: Integer OR contact comparison not equal to							
32-Bit co	ommand	(ORD<>:	Long intege	r OR contact	comparison no	t equal to		
16-Bit co	ommand	OR	>=: Inte	ger OR cont	act compari	son greater thar	or equal t	to	
32-Bit co	ommand	ORD>=	: Long	integer OR c	ontact comp	oarison greater t	han or equ	ual to	
16-Bit co	ommand	C)R<=: In	teger OR cor	ntact compa	rison less than o	or equal to		
32-Bit co	ommand	ORD	<=: Lon	g integer OR	contact con	nparison less th	an or equa	l to	
			Bit		١	Vord			
Operand	Type	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		T, C, S	Dx.y	variable	T, C	variable			
S1	INT/DINT	-	-	-	√ [1]	√	√	√	
S2	INT/DINT	-	-	-	√ [1]	√	√	√	

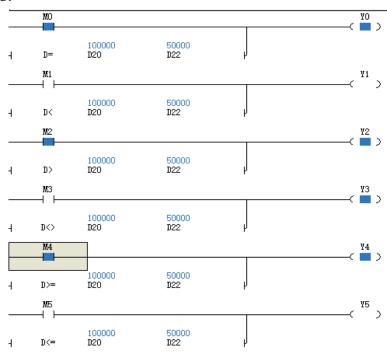
Remark:

[1] For 32-bit commands, the Z, C, and T elements are not supported.

Operand Description


- S1: Comparison parameter 1.
- S2: Comparison parameter 2.

Function Description


The command performs a 16-bit/32-bit BIN comparison between the contents of the S1 and S2 units and connects the comparison result in parallel with other nodes to drive the subsequent segment operation.

Application Example

16-bit command:

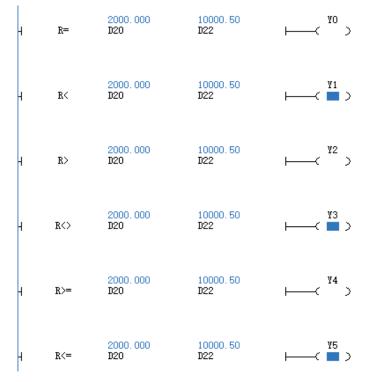
32-bit command:

3.14.5 LDR (=, <, >, <=, <=): Commands for Floating-Point Number LD Contact Comparison

Comma	nd list	LDR	(S1)	(S2)	Applicable model	TS600 series		
32-Bit co	mmand	LDR	=: Float	ing-point nui	mber LD con	tact compariso	n equal to	
32-Bit co	mmand	LDR	LDR <: Floating-point number LD contact comparison less than					
32-Bit co	mmand	LDR >:	LDR >: Floating-point number LD contact comparison greater than					
32-Bit co	mmand	LDR <>: Floating-point number LD contact comparison not equal to						to
32-Bit co	mmand	LDR >=: Float	ting-poi	int number LI	contact cor	nparison great	er than or	equal to
32-Bit co	mmand	LDR <=: Flo	ating-p	oint number	LD contact c	omparison less	than or e	qual to
			Bit		W	/ord		
Operand	Type	X, Y, M, LM, T,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	DX.y	variable	T, C	variable		
S1	REAL	-	-	-	√ [1]	✓	✓	√
S2	REAL	-	-	-	√ [1]	√	√	√

Remark:

[1] For 32-bit commands, the Z, C, and T elements are not supported.


Operand Description

S1: Comparison parameter 1.

S2: Comparison parameter 2.

Function Description

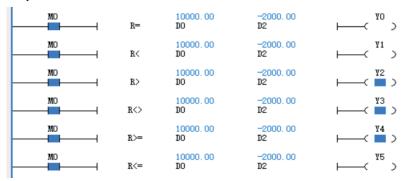
The command performs a floating-point number comparison between the contents of the S1 and S2 units and uses the comparison result to drive the subsequent segment operation.

3.14.6 ANDR (=, <, >, <>, >=, <=): Commands for Floating-point Number AND Contact Comparison

Commar	nd list	ANDR	(S1)	(S2)	Applicable model	TS600 series		
32-Bit con	nmand	ANDR	=: Float	ing-point nu	ımber AND cor	ntact compariso	on equal to)
32-Bit con	nmand	ANDR	ANDR<: Floating-point number AND contact comparison less than					
32-Bit con	nmand	ANDR>:	ANDR>: Floating-point number AND contact comparison greater than					
32-Bit con	nmand	ANDR<>	ANDR<>: Floating-point number AND contact comparison not equal to					
32-Bit con	nmand	ANDR>=: Float	ing-poi	nt number A	ND contact co	mparison grea	ter than o	equal to
32-Bit con	nmand	ANDR<=: Flo	ating-p	oint number	AND contact of	comparison les	s than or e	qual to
			Bit		We	ord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	REAL	-	-	-	√ [1]	√	√	√
S2	REAL	-	-	-	√ [1]	√	√	√

Remark:

[1] For 32-bit commands, the Z, C, and T elements are not supported.


Operand Description

S1: Comparison parameter 1.

S2: Comparison parameter 2.

Function Description

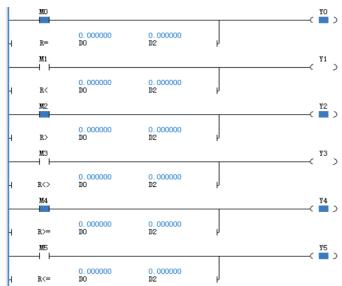
The command performs a floating-point number comparison between the contents of the S1 and S2 units and connects the comparison result in series with other nodes to drive the subsequent segment operation.

3.14.7 ORR (=, <, >, <=, <=): Commands for Floating-Point Number OR Contact Comparison

Commar	nd list	ORR	(S1)	(S2)	Applicable model	TS600 series		
32-Bit con	nmand	ORR	=: Float	ing-point nu	mber OR cont	act compariso	n equal to	
32-Bit con	nmand	ORR	ORR<: Floating-point number OR contact comparison less than					
32-Bit con	nmand	ORR>:	ORR>: Floating-point number OR contact comparison greater than					
32-Bit con	nmand	ORR<>	ORR<>: Floating-point number OR contact comparison not equal to					
32-Bit con	nmand	ORR>=: Float	ing-poi	nt number O	R contact cor	nparison greate	er than or o	equal to
32-Bit con	nmand	ORR<=: Flo	ating-p	oint number	OR contact co	omparison less	than or ec	ual to
			Bit		W	ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	REAL	-	-	-	√ [1]	√	√	√
S2	REAL	-	-	-	√ [1]	√	√	√

Remark:

[1] For 32-bit commands, the Z, C, and T elements are not supported.


Operand Description

S1: Comparison parameter 1.

S2: Comparison parameter 2.

Function Description

The command performs a floating-point number comparison between the contents of the S1 and S2 units and connects the comparison result in parallel with other nodes to drive the subsequent segment operation.

3.14.8 CMP: Integer Comparison Set

Commai	nd list	СМР	(D)	(S)	Applicable model	TS600 series		
16-Bit cor	nmand		CMP: Integer comparison set					
32-Bit cor	nmand	-						
			Bit		Wo	ord		
Operand	Type	X, Y, M, LM, T,	-	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S1	INT	-	-	-	\checkmark	✓	✓	✓
S2	INT	-	-	-	✓	√	✓	√
D	BOOL	√ [1]	-	√	-	-	-	-

Remark:

[1] The Y, M, and S elements are supported.

Operand Description

- S1: The number of the data or soft element becoming the comparison value.
- S2: The number of the data or soft element becoming the comparison source.
- D: The number of the starting element outputting the result.

Function Description

When the energy flow is valid, the command is executed to compare S1 with S2. Depending on the comparison result (less than, equal to, or greater than), the command sets one of (D), (D+1), and (D+2) to ON.

Application Example

3.14.9 LCMP: Long Integer Comparison Set

Commar	nd list	LCMP (S	51) (S	2) (D)	Applicable model	TS600 series		
16-Bit con	nmand		-					
32-Bit con	nmand		LCMP: Long integer comparison set					
			Bit			Vord		
Operand	Туре	X, Y, M, LM, T,	_	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S1	DINT	-	-	-	√	✓	✓	✓
S2	DINT	-	-	-	√	✓	√	√
D	BOOL	√ [1]	-	✓	-	-	-	-

Remark:

[1] The Y, M, and S elements are supported.

Operand Description

- S1: Comparison value 1.
- S2: Comparison value 2.
- D: The number of the starting element outputting the result.

Function Description

When the energy flow is valid, the command is executed to compare S1 with S2. Depending on the comparison result (less than, equal to, or greater than), the command sets one of (D), (D+1), and (D+2) to ON.

Application Example

3.14.10 RCMP: Floating-Point Number Comparison Set

Commai	nd list	RCMP	(D)	(S)	Applicable model	TS600 series			
16-Bit cor	nmand		-						
32-Bit cor	nmand		RCMP: Floating-point number comparison set						
	Туре		Bit		Word				
Operand		X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S1	REAL	-	-	-	√ [1]	✓	√	✓	
S2	REAL	-	-	-	√ [1]	√	√	√	
D	BOOL	√ [2]	-	√	-	-	-	-	

Remark:

- [1] The D and R elements are supported.
- [2] The Y, M, and S elements are supported.

Operand Description

- S1: Comparison value 1.
- S2: Comparison value 2.
- D: The number of the starting element outputting the result.

Function Description

When the energy flow is valid, the command is executed to compare S1 with S2. Depending on the comparison result (less than, equal to, or greater than), the command sets one of (D), (D+1), and (D+2) to ON.

Application Example

3.14.11 ZCP: Word/Doubleword Data Region Comparison Set

Comma	and list	*ZCP (S:	1) (S2)	(S) (D)	Applicable model	TS6	600 series	
16-Bit co	mmand		ZCP: Word data region comparison set					
32-Bit co	mmand		DZ	CP: Doublewo	rd data regio	n comparison	set	
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM,	D.,	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S1	INT/DINT	-	-	-	√ [1]	✓	✓	✓
S2	INT/DINT	ı	1	-	√ [1]	✓	√	✓
S	INT/DINT	-	-	-	√ [1]	√		√
D	BOOL	√ [2]	1	✓	-	✓	-	-

Remark:

- [1] The D and R elements are supported.
- [2] The Y, M, and S elements are supported.

Operand Description

- S1: The lower limit value of region comparison.
- S2: The upper limit value of region comparison.
- S: The comparison variable.
- D: The comparison result.

Function Description

When the energy flow is valid, the command performs an algebraic comparison operation based on signed numbers, takes S1 and S2 as a region, takes the value of S at the position within the region as the result, and stores the result in the 3 consecutive bit variables with D as the starting address.

Application Example

	Element Name	Data Type	Display Fo:	Current Value
1	 MO	BOOL	Binary	OFF
2	 MT1	BOOL	Binary	ON
1 2 3	 M2	BOOL	Binary	OFF

In case of M10=ON, S=250 is between S1 and S2, so M1=ON is obtained.

M11	-{ DZCP	100	300	250 DO	OFF MO]
	Element	Name	Data Type	Display Fo:	Current Value	
1	 MO		BOOL	Binary	OFF	
2	 M1		BOOL	Binary	ON	
3	 M2		BOOL	Binary	OFF	

In case of M10=ON, S=250 is between S1 and S2, so M1=ON is obtained.

3.14.12 RZCP: Commands for Floating-Point Number Region Comparison Set

Commai	nd list	RZCP (S1)	CP (S1) (S2) (S3) (D) Applicable model		TS600 series			
16-Bit cor	nmand				-			
32-Bit command RZCP: Floating-point number region comparison s						n set		
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM, T	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S1	REAL	-	-	-	√ [1]	✓	√	✓
S2	REAL	-	-	-	√ [1]	✓	√	✓
S3	REAL	-	-	-	√ [1]	√	_	√
D	BOOL	√ [2]	-	√	-	√	-	_

Remark:

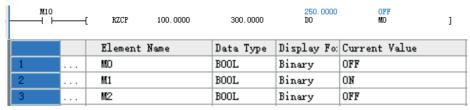
[1] The D and R elements are supported.

[2] The Y, M, and S elements are supported.

Operand Description

S1: The lower limit value of region comparison.

S2: The upper limit value of region comparison.


S3: The comparison variable.

D: The comparison result.

Function Description

When the energy flow is valid, the command performs an algebraic comparison operation based on signed numbers, takes S1 and S2 as a region, takes the value of S3 at the position within the region as the result, and stores the result in the 3 consecutive bit variables with D as the starting address.

Application Example

In case of M10=ON, S3=250.0000 is between S1 and S2, so M1=ON is obtained.

3.15 Numerical Conversion Command

3.15.1 Command list

Command Category	Name	Function					
	DTI	Conversion from long integer to integer					
Numaniani	ITD	Conversion from integer to long integer					
Numerical Conversion	*FLT	Conversion from Integer/long integer to floating-point number					
Conversion	*INT	Conversion from floating-point number to Integer/long integer					
Command	*BCD	Conversion from word/doubleword data to 16-bit/32-bit BCD code					
	*BIN	Conversion from 16-bit/32-bit BCD code to word/doubleword data					

Command Category	Name	Function
	*GRY	Conversion from word/doubleword to 16-bit/32-bit Gray code
	*GBIN	Conversion from 16-bit/32-bit Gray code to word/doubleword data
	SEG	Conversion from word data to 7-segment code
	ITA	Conversion from 16-bit hexadecimal number to ASCII code
	ATI	Conversion from ASCII code to 16-bit hexadecimal number
	LCNV	Engineering conversion
	RLCNV	Floating-point number engineering conversion
	DABIN	Conversion from decimal ASCII code to integer/long integer
	BINDA	Conversion from integer/long integer to decimal ASCII code

3.15.2 DTI: Commands for Conversion from Long Integer to Integer

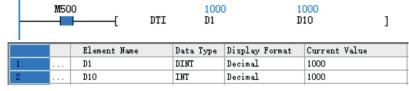
Command list		DTI	(S)	(D)	Applicable model	TS600 series			
16-Bit cor	mmand		-						
32-Bit cor	mmand		DTI: Conversion from long integer to integer						
	Туре		Bit		V	Vord			
Operand		X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S	DINT	-	-	-	√ [1]	√	✓	√	
D	INT	-	-	-	✓	✓	√	-	

Remark:

[1] The Z and T elements are not supported.

Operand Description

- S: The source operand, which indicates a long integer data element.
- D: The destination operand, which indicates an integer data element.


Function Description

When the command is driven, the 32-bit data of the S element is converted into the 16-bit data, and the result is stored in the D element.

Precautions

In case of S>32767 or S<-32768, the system reports an operand error, this conversion operation is not executed, and the data of the D element remains unchanged.

Application Example

In case of M500=ON, (D1, D2)=1000 is converted from a long integer to an integer, and the result is assigned to obtain D10, D10=1000.

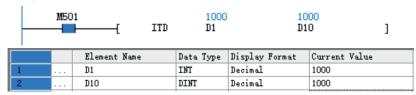
3.15.3 ITD: Commands for Conversion from Integer to Long Integer

Command list		ITD	(S)	(D)	Applicable model	TS6	600 series		
16-Bit con	nmand		-						
32-Bit con	nmand		ITD: Conversion from integer to long integer						
	Туре		Bit		Word				
Operand		X, Y, M, LM, T,		Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S	INT	-	-	-	√	√	√	√	
D	DINT	-	-	-	√ [1]	√	√	-	

Remark:

[1] The Z and T elements are not supported.

Operand Description


S: The source operand, which indicates an integer data element.

D: The destination operand, which indicates a long integer data element.

Function Description

When the command is driven, the 16-bit integer data of the S element is converted into the 32-bit data, and the result is stored in the D element.

Application Example

In case of M501=ON, D1=1000 is converted from an integer to a long integer, and the result is assigned to (D10, D11) to obtain (D10, D11)=1000.

3.15.4 FLT: Commands for Conversion from Integer/Long Integer to Floating-Point Number

Command list		*FLT	(S)	(D)	Applicable model	TS600 series		
16-Bit co	ommand		FLT: Conversion from integer to floating-point number					
32-Bit co	ommand	DF	DFLT: Conversion from long integer to floating-point number					
	Туре	Bit			W	ord		
Operand		X, Y, M, LM,	<u> </u>	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
S	INT/DINT	-	-	-	√ [1]	✓	✓	✓
D	REAL	-	-	-	√ [2]	√	√	-

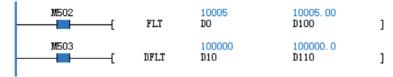
Remark:

[1] For the 32-bit command DFLT, the Z and T elements are not supported.

[2]Only the D, V, and R elements are supported.

Operand Description

- S: The source operand, which indicates an integer/long integer data element to be converted.
- D: The destination operand, which indicates a storage word soft element of the floating-point number data.


Function Description

- 1. When the command is driven, the 16-bit/32-bit integer data of the S element is converted into a floating-point number, and the result is stored in the D element.
- 2. The inverse command of this command is INT (which converts floating-point numbers into integer data).

Precautions

In case of S>32767 or S<-32768, the system reports an operand error, this conversion operation is not executed, and the data of the D element remains unchanged.

Application Example

In case of M502=ON, D0=10005 is converted from an integer to a floating-point number, and the result is assigned to (D1000, D101) to obtain (D100, D101)=10005.0.

In case of M503=ON, (D10, D11)=100000 is converted from a long integer to a floating-point number, and the result is assigned to (D110, D111) to obtain (D110, D111)=100000.0.

3.15.5 INT: Commands for Conversion from Floating-Point Number to

Integer/Long Integer

Comm	and list	*INT	(S)	(D)	Applicable model	TS600 series			
16-Bit c	ommand		INT: Conversion from floating-point number to integer						
32-Bit c	ommand	DI	DINT: Conversion from floating-point number to long integer						
		Bit			W	ord ord			
Operand	Туре	X, Y, M, LM,	Dvvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		X, Y, M, LM, T, C, S	Dx.y	variable	С	variable			
S	REAL	-	-	-	√ [1]	✓	✓	√	
D	INT/DINT	-	-	-	√ [2]	√	√	-	

Remark:

[1]Only the D, V, and R elements are supported.

[2] For the 32-bit command DFLT, the Z and T elements are not supported.

Operand Description

S: The source operand, which indicates a floating-point number element to be converted.

D: The destination operand, which indicates an integer element stored after conversion

Function Description

- 1. When the command is driven, the 32-bit floating-point number data of the S element is rounded, the decimal part is discarded, and the 16-bit/32-bit data is stored in the D element.
- 2. When the conversion result is equal to 0, the zero flag bit (SM18) is set.
- 3. When decimals are truncated from the result, the borrow flag bit (SM19) is set.
- 4. When the result exceeds the range of the integer/long integer data, the borrow flag bit (SM20) is set.

5. Specifically, the range of the integer data is -32768–32767, and the range of the long integer data is -2147483648–2147483647.

Precautions

- INT command: In case of S>32767 or S<-32768, the system reports an illegal operand error, and the command is not executed.
- DINT command: In case of S>2147483647 or S<-2147483648, the system reports an illegal operand error, and the command is not executed.

Application Example

In case of M504=ON, (D0, D1)=10000.5 is converted from a floating-point number to an integer, and the result is assigned to D100 to obtain D100=10000.

In case of M505=ON, (D10, D11)=100000.5 is converted from a floating-point number to a long integer, and the result is assigned to (D110, D111) to obtain (D110, D111)=100000.

3.15.6 BCD: Commands for Conversion from Word/Doubleword Data to 16-Bit/32-Bit BCD Code

Command list		*BCD (S) (D) Applicable model TS60		600 series				
16-Bit co	mmand		BCD:	Conversion f	from word dat	ta to 16-bit BCD	code	
32-Bit co	mmand	DI	BCD: Co	nversion from	m doubleword	d data to 32-bit	BCD code	!
		Bit			W	ord		
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	DX.y	variable	С	variable		
S	WORD/ DWORD	-	-	-	√ [1]	√	✓	√
D	WORD/ DWORD	-	-	-	√ [1]	√	√	-

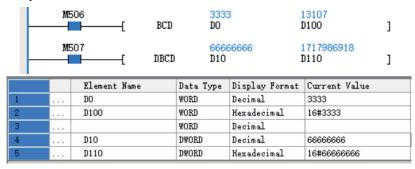
Remark

[1] For the 32-bit command DBCD, the Z and T elements are not supported.

Operand Description

S: The source operand, which indicates the storage word soft element of the data to be converted.

D: The destination operand, which indicates the storage word soft element of the BCD code data after conversion.


Function Description

When the command is driven, the 16-bit/32-bit data of S is converted into the BCD code, and the result is stored in the 16-bit/32-bit register of the D element. The command is usually used to format the data before displaying it.

Precautions

- BCD command: The value range of S is 0–9999. In case of S>9999 or S<0, the system reports an operand error.
- DBCD command: The value range of S is 0–999999999. In case of S>99999999 or S<0, the system reports an operand error.

In case of M506=ON, D0=0x0D05 (3333) is converted from an integer into a 16-bit BCD code, and the result is assigned to D100 to obtain D100=0x3333 (13107).

In case of M507=ON, (D10, D11)=0x3F940AA (66666666) is converted from a long integer to a 32-bit BCD code, and the result is assigned to (D110, D111) to obtain (D110, D111)=0x666666666 (1717986918).

3.15.7 BIN: Commands for Conversion from 16-Bit/32-Bit BCD Code to

Word/Doubleword Data

Comma	and list	*BIN	(S)	(D)	Applicable model	TS	600 series	
16-Bit co	mmand		BIN: 0	Conversion fro	om 16-bit Bo	CD code to wor	d data	
32-Bit co	mmand	DI	3IN: Cor	nversion from	32-bit BCD	code to double	word data	
			Bit		V	Vord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD/ DWORD	-	1	-	√ [1]	✓	√	✓
D	WORD/ DWORD	-	-	-	√ [1]	√	√	-

Remark:

[1] For the 32-bit command DBIN, the Z and T elements are not supported.

Operand Description

- S: The source operand, which indicates the address of the BCD data or data storage word soft element.
- D: The destination operand, which indicates the address of the data storage word soft element after conversion.

Function Description

When the command is driven, the 16-bit/32-bit BCD code data of the S element is converted into the integer data, and the result is stored in the D element. The command is usually used to process the data read from an external port into the integer data that can be directly used for calculation.

Precautions

When the data format of S does is not consistent with the BCD code format, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.

Application Example

	Element Name	Data Type	Display Format	Current Value
1	 DO	WORD	Hexadecimal	16#5555
2	 D100	WORD	Decimal	5555
3		WORD	Decimal	
4	 D10	DWORD	Hexadecimal	16#99999999
5	 D110	DWORD	Decimal	99999999

In case of M508=ON, D0=0x5555 (21845) is converted from a 16-bit BCD code into an integer, and the result is assigned to D100 to obtain D100=0x15B3 (5555).

In case of M509=ON, (D10, D11)=0x999999999 (2576980377) is converted from a 32-bit BCD code to a long integer, and the result is assigned to (D110, D111) to obtain (D110, D111)=0x5F5E0FF (999999999).

3.15.8 GRY: Commands for Conversion from Word/Doubleword Data to 16-Bit/32-Bit Gray Code

Comma	nd list	*GRY	(S)	(D)	Applicable model	TS6	00 series	
16-Bit co	mmand		GF	RY: Conversion	n from word c	lata to Gray cod	le	
32-Bit co	mmand		DGRY:	Conversion fr	om doublewo	ord data to Gray	/ code	
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD/ DWORD	-	-	-	√ [1]	✓	√	✓
D	WORD/ DWORD	-	-	-	√ [1]	√	✓	-

Remark:

[1] For the 32-bit command DGRY, the Z and T elements are not supported.

Operand Description

- S: The source operand, which indicates the address of the data or data storage word soft element.
- D: The destination operand, which indicates the address of the data storage word soft element for the gray code after conversion.

Function Description

When the command is driven, the 16-bit/32-bit data of S is converted into a Gray code, and the result is stored in the 16-bit/32-bit register of the D element.

Application Example

	Element Name	Data Type	Display Format	Current Value
1	 DO .	WORD	Hexadecimal	16#aaaa
2	 D100	WORD	Hexadecimal	16#ffff
3		WORD	Decimal	
4	 D10	DWORD	Hexadecimal	16#88888888
5	 D110	DWORD	Hexadecimal	16#ccccccc

In case of M510=ON, D0=0xAAAA (43690) is converted from an integer into a 16-bit Gray code, and the result is assigned to D100 to obtain D100=0xFFFF (65535).

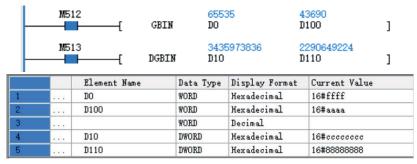
In case of M511=ON, (D10, D11)=0x88888888 (2290649224) is converted from a long integer to a 32-bit Gray code, and the result is assigned to (D110, D111) to obtain (D110, D111)=0xCCCCCCC (3435973836).

3.15.9 GBIN: Commands for Conversion from 16-Bit/32-Bit Gray Code to Word/Doubleword Data

Comma	and list	GBIN	(S)	(D)	Applicable model	TS	6600 series	
16-Bit co	mmand		GBIN	N: Conversior	n from 16-bit	Gray code to w	ord data	
32-Bit co	mmand	DG	BIN: C	Conversion fr	om 32-bit Gr	ay code to dou	bleword data	а
			Bit		V	/ord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
		1, 0, 3		variable	1, 0	variable		
S	WORD/ DWORD	-	-	-	√ [1]	√	✓	✓
D	WORD/ DWORD	-	-	-	√ [1]	√	✓	-

Remark:

[1] For the 32-bit command DGRY, the Z and T elements are not supported.


Operand Description

- S: The source operand, which indicates the address of the Gray data or data storage word soft element.
- D: The destination operand, which indicates the address of the data storage word soft element after conversion.

Function Description

When the command is driven, the 16-bit/32-bit Gray code data of the S element is converted into the integer data, and the result is stored in the 16-bit/32-bit register of the D element.

Application Example

In case of M512=ON, D0=0xFFFF (65535) is converted from a 16-bit Gray code into an integer, and the result is assigned to D100 to obtain D100=0xAAAA (43690).

In case of M513=ON, (D10, D11)=0xCCCCCCC (3435973836) is converted from a 32-bit Gray code to a long integer, and the result is assigned to (D110, D111) to obtain (D110, D111)=0x888888888 (2290649224).

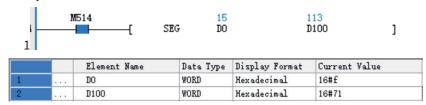
3.15.10 SEG: Commands for Conversion from Word Data to 7-Segment Code

Comma	nd list	SEG	(S)	(D)	Applicable	model	TS600 seri	es
16-Bit cor	mmand		SEG: 0	Conversion fro	om word dat	ta to 7-segment	code	
32-Bit cor	nmand				-			
			Bit		V	Vord		
Operand	Туре	X, Y, M, LM, T,	6	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S	WORD	-		-	√	√	√	√
D	WORD	-	-	-	√	√	√	_

Operand Description

S: The source operand, which indicates the address of the data or data storage word soft element to be converted; S is \leq 15.

D: The destination operand, which indicates the address of the data storage word soft element for the 7-segment code after conversion.


Function Description

When the command is driven, the 16-bit/32-bit data of the S element is converted into the 7-segment code data, and the result is stored in the 16-bit/32-bit register of the D element.

Precautions

In case of or S>15, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.

Application Example

In case of M514=ON, D0=0x0F (15) is converted from an integer into a 7-segment code, and the result is assigned to D100 to obtain D100=0x71 (113).

3.15.11 ITA: Commands for Conversion from 16-Bit Hexadecimal Number to ASCII Code

Comma	nd list	ITA (S) (D) (n) Applicable model TS600 ser		00 series				
16-Bit co	mmand	ITA:	Conve	rsion from 16-	bit hexadeci	mal number to <i>i</i>	ASCII code	j
32-Bit co	mmand				-			
			Bit		V	/ord		
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S	WORD/				/	,	,	
3	Array*n	-	-	_	V	V	V	-
D	WORD/				/	,	,	
D	Array*n	-	_	_	V	V	V	-
n	WORD	-	_	-	√	√	√	√

Operand Description

S: The source operand, which indicates the address of the hexadecimal data or data storage word soft element to be converted.

D: The destination operand, which indicates the address of the data storage word soft element for the ASCII code after conversion.

n: The number of ASCII code elements, which ranges between 1 and 256.

Function Description

- 1. When the command is driven, the hexadecimal numbers starting from the S element are converted into n ASCII codes, and the results are stored in the starting element of D.
- 2. After conversion, the results are stored in a small end format.
- 3. In case of SM32=OFF, each D element stores two ASCII code data in high and low bytes; in case of SM32=ON, each D element stores one ASCII code data in low bytes.

	Element Name	Data Type	Display Format	Current Value
1	 D10	WORD	Hexadecimal	16#9876
2		WORD	Hexadecimal	
3	 D100	INT	Hexadecimal	16#3736
4	 D101	INT	Hexadecimal	16#3938
5	 D102	INT	Hexadecimal	16#0
6	 D103	INT	Hexadecimal	16#0
7		WORD	Decimal	
8	 D110	INT	Hexadecimal	16#36
9	 D111	INT	Hexadecimal	16#37
10	 D112	INT	Hexadecimal	16#38
11	 D113	INT	Hexadecimal	16#39

In case of SM32=OFF and M515=OFF, the ITA conversion is executed, and the results are: D100=0x3736, and D101=0x3938.

In case of SM32=ON and M516=ON, the ITA conversion is executed, and the results are: D110=0x36, D111=0x37, D112=0x38, D113=0x39.

3.15.12 ATI: Commands for Conversion from ASCII Code to 16-Bit Hexadecimal Number

Comma	and list	ATI (S	S) (D) (n)	Applicable model	TS6	00 series	
16-Bit co	mmand	ATI:	Conve	rsion from AS	SCII code to 16	6-bit hexadecim	al numbe	r
32-Bit co	mmand				-			
			Bit		W	/ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD/ Array*n	-	-	-	√	✓	√	√
D	WORD/ Array*n	-	1	-	√	✓	√	-
n	WORD	-	-	-	√	√	√	√

Operand Description

S: The source operand, which indicates the address of the hexadecimal data or data storage word soft element to be converted. The value range of S is 0x30–0x39 or 0x41–0x46 (in case of FLG=OFF, both high and low bytes of S must meet the range).

D: The destination operand, which indicates the address of the data storage word soft element for the ASCII code after conversion.

n: The number of ASCII code elements, which ranges between 1 and 256.

Function Description

- 1. When the command is driven, the hexadecimal numbers starting from the S element are converted into n ASCII codes, and the results are stored in the starting element of D.
- 2. After conversion, the results are stored in a small end format.

3. In case of SM32=OFF, each S element stores two ASCII code data in high and low bytes; in case of SM32=ON, each S element stores one ASCII code data in low bytes.

Precautions

- When the value of S is not within 0x30–0x39 or 0x41–0x46, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.
- When the value of n is not within 1–256, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.
- When S is a constant, in case of SM32=OFF and n>2, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.
- When S is a constant, in case of SM32=ON and n>1, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.

Application Example

		Element Name	Data Type	Display Fo:	Current Value
1		DO	WORD	Hexadecima	16#3938
2		D1	WORD	Hexadecima	16#3736
3		D2	WORD	Hexadecima	16#3534
4		D3	WORD	Hexadecima	16#3332
5	200		WORD	Decimal	
6		D100	WORD	Hexadecima	16#7698
7			WORD	Decimal	
8		D110	WORD	Hexadecima	16#2468

Source data: D0=0x3938, D1=0x3736, D2=0x3534, and D3=0x3332.

In case of SM32=OFF and M517=ON, the ATI conversion is executed, and the result is: D100=0x8967.

In case of SM32=ON and M518=ON, the ATI conversion is executed, and the result is: D110=0x8642.

3.15.13 LCNV: Engineering Conversion Commands

Comma	and list	LCNV (S1) ((n)	S2) (D)	Applicable model	TS600 series		
16-Bit co	mmand			LCNV:	Engineering co	onversion		
32-Bit co	mmand				-			
			Bit		Wo	ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	INT/ Array*n	-	-	-	√ [1]	✓	-	-
S2	INT/ Array*4	-	-	-	√ [1]	✓	-	-
D	WORD/ DWORD	-	-	-	√ [1]	✓	-	-
n	WORD	-	-	-	√ ^[1]	√	-	✓

Remark:

[1] Only the D, R, and V soft elements are supported.

Operand Description

- S1: The source operand, which indicates the starting address of the data storage word soft element to be converted.
- S2: The destination operand, which indicates the starting address of the conversion table.
- D: The destination operand, which indicates the starting address of the data storage word soft element after conversion.
- n: The number of data to be converted, which ranges between 1 and 64.

Function Description

- When using the analog input module to read external analog signals, you can use this command to convert the original analog reading value into the corresponding engineering reading value.
- 2. When using temperature or analog modules for temperature or analog measurement applications, if there are deviations between the temperatures or engineering readings measured by the PLC and the results measured by the standard thermometer or related standard instruments, you can use this command for the linear correction as the actual measurement correction.

Conversion Instructions

Fill in the conversion table with the following four parameters: low-point measurement value V_{ML} , high-point measurement value V_{MH} , and corresponding low-point standard value V_{SL} and high-point standard value V_{SH} ; when performing linear conversion, the source data is calculated through the following formula to generate the corresponding target standard value, where S_n is the original input data and D_n is the conversion result data. See below for the conversion formula:

$$A = (V_{SL} - V_{SH})/(V_{ML} - V_{MH}) * 10000$$


$$B = V_{SL} - (V_{ML} * A/10000)$$

$$D_n = (S_n * A/10000) + B$$

Precautions

- When the value of the conversion number n is not within 1–64, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.
- When the low-point measurement value is greater than the high-point measurement value, or the low-point standard value is greater than the high-point standard value, the system reports an upper-lower limit warning, the upper and lower limit values are exchanged, but this will not affect the continuous running of the program.
- If the output D is greater than 32767, the result is 32767; if it is less than -32768, the result is -32768.

Application Example

	Element Name	Data Type	Display Format	Current Value
1	 DO	INT	Decimal	282
2	 D1	INT	Decimal	3530
3	 D2	INT	Decimal	1906
4	 D3	INT	Decimal	0
5	 D4	INT	Decimal	5000
6	 D5	INT	Decimal	-115
7		WORD	Decimal	
8	 D10	INT	Decimal	282
9	 D11	INT	Decimal	3530
10	 D12	INT	Decimal	260
11	 D13	INT	Decimal	3650
12		WORD	Decimal	
13	 D100	INT	Decimal	260
14	 D101	INT	Decimal	3650
15	 D102	INT	Decimal	1955
16	 D103	INT	Decimal	-34
17	 D104	INT	Decimal	5184
18	 D105	INT	Decimal	-154

In case of M519=ON, the LCNV conversion is executed, and the following results are generated depending on the data storage methods:

D100=260; D101=3650; D102=1955; D103=-34; D104=5184; D105=-154

3.15.14 RLCNV: Floating-Point Engineering Conversion Commands

Comm	Command list RLCNV (S1) (S2) (D) Applicable model TS600 series							
16-Bit co	ommand		RI	_CNV: Floatin	g-point engi	neering convers	sion	
32-Bit co	ommand				-			
			Bit		W	/ord		
Operand	Type	X, Y, M,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		LM, T, C, S	DX.y	variable	T, C	variable		
S1	REAL/				√ [1]	_		
31	Array*n	_	1	_	V	V	_	
S2	REAL/				√ [1]	,		
32	Array*4	1	1	_	V 1-1	√	-	
7	REAL/				√ [1]	,		
D Array*n \(\sqrt{11} \)						-		
n	WORD/				√ [1]	./		./
n	DWORD	-	1	-	V [2]	√	_	√

Remark:

[1] Only the D, R, and V soft elements are supported.

Operand Description

- S1: The source operand, which indicates the starting address of the data storage word soft element to be converted.
- S2: The destination operand, which indicates the starting address of the conversion table.
- D: The destination operand, which indicates the starting address of the data storage word soft element after conversion.
- n: The number of data to be converted, which ranges between 1 and 64.

Function Description

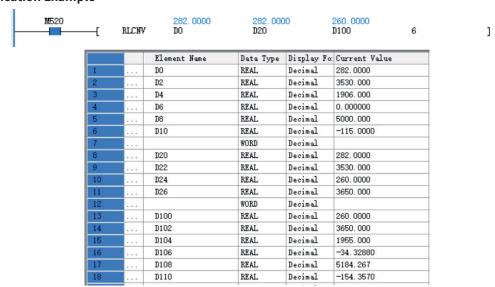
1. When using the analog input module to read external analog signals, you can use this command to convert the original analog reading value into the corresponding engineering reading value.

2. When using temperature or analog modules for temperature or analog measurement applications, if there are deviations between the temperatures or engineering readings measured by the PLC and the results measured by the standard thermometer or related standard instruments, you can use this command for the linear correction as the actual measurement correction.

Conversion Instructions

Fill in the conversion table with the following four parameters: low-point measurement value V_{ML} , high-point measurement value V_{MH} , and corresponding low-point standard value V_{SL} and high-point standard value V_{SH} ; when performing linear conversion, the source data is calculated through the following formula to generate the corresponding target standard value, where S_n is the original input data and D_n is the conversion result data. See below for the conversion formula:

$$A = (V_{SL} - V_{SH})/(V_{ML} - V_{MH}) * 10000$$


$$B = V_{SL} - (V_{ML} * A/10000)$$

$$D_n = (S_n * A/10000) + B$$

Function Description

- 1. When the value of the conversion number n is not within 1–64, the system reports an operand error, the conversion is not executed, and the content of D remains unchanged.
- 2. When the low-point measurement value is greater than the high-point measurement value, or the low-point standard value is greater than the high-point standard value, the system reports an upper-lower limit warning, the upper and lower limit values are exchanged, but this will not affect the continuous running of the program.
- 3. If the output D is greater than 32767, the result is 32767; if it is less than -32768, the result is -32768.

Application Example

In case of M520=ON, the RLCNV conversion is executed, and the following results are generated depending on the data storage methods:

D200(D201)=260; D202(D203)=3650; D204(D205)=1955; D206(D207)=-34.3288; D208(D209)=5184.267; D210(D211)=-154.357

3.15.15 DABIN: Commands for Conversion from Decimal ASCII Code to

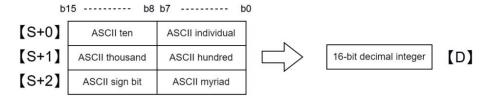
Integer/Long Integer

Comm	and list	*DABIN	l (S)	(D)	Applicable model TS600 series			
16-Bit c	ommand		DABIN: Conversion from decimal ASCII code to integer					
32-Bit c	ommand	DI	DABIN:	Conversion f	rom decima	l ASCII code to lo	ong integer	
			Bit		١	Word		
Operand	Туре	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
	WORD,							
c	Array*3/				,	,	,	
3	DWORD,	-	_	-	√	V	√	-
	Array*6							
D	INT/DINT	-	-	-	√ [1]	✓	✓	-

Remark:

[1] For 32-bit commands, the Z and T soft elements are not supported.

Operand Description


S: The source operand, which indicates the starting number of the soft element for the data (ASCII code) to be converted into an integer.

D: The destination operand, which indicates the number of the soft element storing the conversion result.

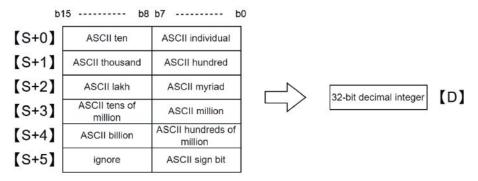
Function Description

1. For the 16-bit command:

The decimal ASCII code data (0x30-0x39) in S-S+2 is converted into the 16-bit integer data, and the result is stored in D, as shown in the figure below.

The value range of S-S+2 is 0-65535.

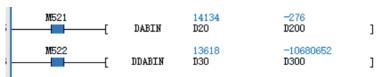
The symbol bit (lowest byte) of the data to be converted is "0x20 (space)" indicating a positive number, or "0x2D (-)" indicating a negative number.


The ASCII code of each bit ranges between 0x30 and 0x39.

If the ASCII code of each bit is "0x20 (space)" or "0x00 (NULL)", the result is treated as "0x30".

2. For the 32-bit command:

The decimal ASCII code data (30H–39H) in S–S+5 is converted into the 32-bit integer data, and the result is stored in D, as shown in the figure below.


The value range of S-S+5 is 0-4, 294, 967, 295.

The ASCII code of each bit ranges between "0x30" and "0x39".

If the ASCII code of each bit is "0x20 (space)" or "0x00 (NULL)", the result is treated as "0x30".

Application Example

- 1. When the symbol bit is a value other than "0x20 (space)" or "0x2D (-)", the system reports an ASCII conversion error, and the command is not executed.
- 2. When the ASCII code of the data bit is a value other than "0x30–0x39", "0x20 (space)", or "0x00 (NULL)", the system reports an ASCII conversion error, and the command is not executed.
- 3. When the converted data exceeds the value range of 16-bit or 32-bit signed integers, the system reports an operand error, and the command is not executed.
- 4. If the 16-bit command [S+2] or 32-bit command [S+5] exceeds the range value of the corresponding soft element, the system reports an error stating that the soft element address is out of range, and the command is not executed.

	Element Name	Data Type	Display Format	Current Value
1	 D20	WORD	Hexadecimal	16#3736
2	 D21	WORD	Hexadecimal	16#2032
3	 D22	WORD	Hexadecimal	16#2d20
4		WORD	Decimal	
5	 D200	INT	Decimal	-276
6		WORD	Decimal	
7	 D30	WORD	Hexadecimal	16#3532
8	 D31	WORD	Hexadecimal	16#3036
9	 D32	WORD	Hexadecimal	16#3638
10	 D33	WORD	Hexadecimal	16#3130
11	 D34	WORD	Hexadecimal	16#3030
12	 D35	WORD	Hexadecimal	16#2d
13		WORD	Decimal	
14	 D300	DINT	Decimal	-10680652

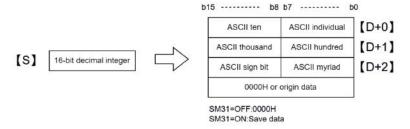
3.15.16 BINDA: Commands for Conversion from Integer/Long Integer to Decimal ASCII Code

Comm	and list	*BINDA	*BINDA (S) (D) Applicable model TS600 series					
16-Bit c	ommand		BINDA	A: Conversion	from integer	to decimal ASC	CII code	
32-Bit c	ommand	D	BINDA:	Conversion f	om long inte	ger to decimal.	ASCII code	!
			Bit		٧	/ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	INT/ DINT	-	-	-	√ [1]			√
D	WORD, Array*3/ DWORD, Array*6	-	-	-	√	√	✓	-

Remark:

[1] For 32-bit commands, the Z and T soft elements are not supported.

Operand Description


S: The source operand, which indicates the number of the soft element for the integer data to be converted into an ASCII code.

D: The destination operand, which indicates the starting number of the soft element storing the conversion result.

Function Description

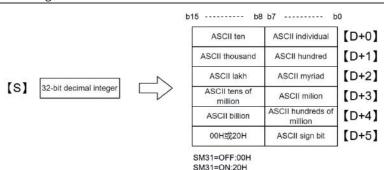
1. For the 16-bit command:

The 16-bit integer data of S is converted into the ASCII code (0x30–0x39) in a decimal bitwise manner, the result is stored in the soft element starting from D.

The value range of S is 0-65535.

See below for the operation results:

When the 16-bit data is a positive number, the symbol bit stores "0x20 (space)"; when the 16-bit data is a negative number, the symbol bit stores "0x2D (-)".


The ASCII code of each bit ranges between 0x30 and 0x39.

The value of [D+3] is determined according to the state of FLG, which is either ON or OFF.

2. For the 32-bit command:

The 32-bit integer data is converted into the ASCII code (0x30–0x39) in a decimal bitwise manner, the result is stored in the soft element starting from D.

The value range of the 32-bit integer data [S+1, S] is 0-4, 294, 967, 295.

See below for the operation results:

When the 32-bit data is a positive number, the symbol bit stores "0x20 (space)"; when the 16-bit data is a negative number, the symbol bit stores "0x2D (-)".

The value of [D+5] is determined according to the state of FLG, which is either ON or OFF.

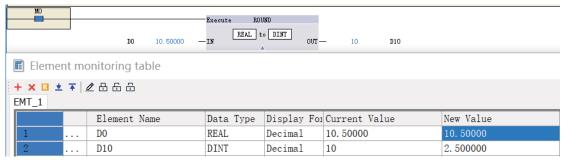
Application Example

3.15.17 ROUND: Rounding command

Comr	mand list *BINDA (S) (D) Applicable model TS600 series							
16-Bit	command	BINDA: Conversion from integer to decimal ASCII code						
32-Bit	command	D	BINDA:	Conversion f	rom long inte	eger to decimal	ASCII code	
			Bit		W	/ord		
Operand	Туре	X, Y, M,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	С	variable		
S	REAL	-	1	ı	√ [1]	✓	-	✓
	REAL/INT/D							
D	INT/WORD/	-	-	-	√ [1]	✓	✓	-
	DWORD							

Remark:

[1] The D and R soft elements are supported.


Operand Description

- S: The source operand, floating-point input.
- D: The destination operand, output after rounding or intercepting.

Function Description

Converts a real number to an integer, with the fractional part of the real number rounded to the nearest integer, or rounded to an even number if that real number is exactly half of two consecutive integers (e.g., 10.5). For example, ROUND(10.5)=10, ROUND(11.5)=12;

Application Example

3.16 Batch Data Processing Command

3.16.1 Command list

Command Category	Name	Function				
	*BKADD	Addition operation of word/doubleword data block				
	*BKSUB	Subtraction operation of word/doubleword data block				
	*BKCMP=	Set word/doubleword data block comparison equal to				
	*BKCMP>	Set word/doubleword data block comparison greater than				
	*BKCMP<	Set word/doubleword data block comparison less than				
	*BKCMP<>	Set word/doubleword data block comparison not equal to				
	*DVCMD> -	Set word/doubleword data block comparison greater than				
	*BKCMP>=	or equal to				
	*BKCMP<=	Set word/doubleword data block comparison less than or				
	BKCMP<-	equal to				
Datah Data Duagasian	BKITD	Batch conversion from integers to long integers				
Batch Data Processing	BKDTI	Batch conversion from long integers to integers				
Command	*BKFLT	Batch conversion from integers/long integers to				
	BNFLI	floating-point numbers				
	*BKINT	Batch conversion from floating-point numbers to				
	DKINI	integer/long integers				
	BKWBIT	Assign word element to bit element combination				
	BKBITW	Assign bit element combination to word element				
	*BKAND	AND operation of word/doubleword data block				
	*BKOR	OR operation of word/doubleword data block				
	*BKXNR	XNOR operation of word/doubleword data block				
	*BKXOR	XOR operation of word/doubleword data block				
	*BKINV	Inversion operation of word/doubleword data block				

3.16.2 BKADD: Commands for Addition Operation of Word/Doubleword Data Block

Comm	and list	*BKADD	(S1) (n)	(S2) (D)	Applicable model	TS600 series			
16-Bit co	ommand	BKADD: Addition operation of word data block							
32-Bit co	ommand		DBKA	DD: Addition	operation of o	doubleword dat	ta block		
			Bit		W	ord ord			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S1	INT/DINT, Array*n	-	-	-	√ [1]	√	√	-	
S2	INT/DINT, Array*n	-	-	-	√ [1]	✓ ✓ ✓ ✓			
D	INT/DINT, Array*n	-	-	-	√ [1]	· · · · ·			
n	WORD	-	-	-	√ [2]	<u> </u>	-	√	

Remark:

- [1] The Z element is not supported.
- [2] The D, V, and R elements are supported.

Operand Description

- S1: The source operand, which indicates the starting number of the soft element for the data executing the addition operation.
- S2: The source operand, which indicates the constant executing the addition operation or the starting number of the soft element for the data executing the addition operation.
- D: The destination operand, which indicates the starting number of the soft element storing the operation result.
- n: The source operand, which indicates the number of data.

Precautions

When the operation result overflows, the carry flag bit is not set to ON.

Function Description

- 1. When the energy flow is valid, the command is executed, which performs the addition operation on the 16-bit data of the n points starting from S1 and the 16-bit data (BIN) of the n points starting from S2 and then stores the operation results in the n points starting from D.
- 2. You can directly specify a 16-bit constant in S2. When S2 is a constant, the command adds the 16-bit data of the n points starting from S1 to S2 sequentially and then stores the operation results in the n points starting from D.

Application Example

In case of M1=ON, the contents of the 5 units starting from D10 are added to the contents of the 5 units starting from D100 sequentially, and the results are stores in the 5 units starting from D1000. D1000=D10+D100, D1001=D11+D101,, D1004=D14+D104.

]

In case of M1=ON, the contents of the 3 units starting from D0 are added to the contents of the 3 units starting from D10 sequentially, and the results are stores in the 3 units starting from D100. D100=D0+D10, D101=D1+D11, D102=D12+D12.

3.16.3 BKSUB: Commands for Subtraction Operation of Word/Doubleword Data Block

Command list		*BKSUB (S1) (S2) (D) (n)			Applicable model	TS600 series		
16-Bit co	ommand	BKSUB: Subtraction operation of word data block						
32-Bit co	ommand	DE	3KSUB:	Subtraction	operation of	doubleword da	ata block	
			Bit		W	ord		
Operand	Туре	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
S1	INT/DINT,				√ [1]	,	,	
31	Array*n	-	_	-	V 1-3	V	V	-
S2	INT/DINT,				√ [1]	,	,	,
32	Array*n	-	-	-	V (2)	V	V	V
D	INT/DINT,				√ [1]	,	,	
Array*n		-	_	-	V (±)	V	V	-
n	WORD	-	-	-	√ [2]	√	-	√

Remark:

- [1] The Z element is not supported.
- [2] The D, V, and R elements are supported.

Operand Description

- S1: The source operand, which indicates the starting number of the soft element for the data executing the subtraction operation.
- S2: The source operand, which indicates the constant executing the subtraction operation or the starting number of the soft element for the data executing the subtraction operation.
- D: The destination operand, which indicates the starting number of the soft element storing the operation result.
- $n: The \ source \ operand, \ which \ indicates \ the \ number \ of \ data.$

Function Description

- 1. When the energy flow is valid, the command is executed, which performs the subtraction operation on the 16-bit data of the n points starting from S1 and the 16-bit data (BIN) of the n points starting from S2 and then stores the operation results in the n points starting from D.
- 2. You can directly specify a 16-bit constant in S2. When S2 is a constant, the command subtracts S2 from the 16-bit data of the n points starting from S1 sequentially and then stores the operation results in the n points starting from D.

Precautions

When the operation result overflows, the carry flag bit is not set to ON.

In case of M0=ON, the contents of the 5 units starting from D100 are subtracted from the contents of the 5 units starting from D10 sequentially, and the results are stores in the 5 units starting from D1000. D1000=D10-D100, D1001=D11-D101,, D1004=D14-D104.

In case of M0=ON, the contents of the 5 doubleword units starting from D100 are subtracted from the contents of the 5 doubleword units starting from D10 sequentially, and the results are stores in the 5 units starting from D1000.

3.16.4 BKCMP =, >, <, <>, <=, >=: Commands for Word/Doubleword Data Block Comparison Set

Command list		*BKCMP	*BKCMP (S1) (S2) (D) Applicable model TS600 series				600 series		
16-Bit c	ommand	nd BKCMP =, >, <, <>, <=, >=: Word data block comparison set							
32-Bit c	ommand	DBK	CMP=,	>, <, <>, <=, >=	: Doublewo	rd data block co	omparisor	set	
			Bit		V	Vord			
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S1	INT/DINT, Array*n	-	-	-	√ [1]	√	√	√	
S2	INT/DINT, Array*n	-	-	-	√ [1]	✓ ✓ -			
D	BOOL, Array*n	√	-	√	-				
n	WORD	-	-	-	√ [2]	✓	-	✓	

Remark:

- [1] The Z element is not supported.
- [2] The D, V, and R elements are supported.

Operand Description

- S1: The source operand, which indicates the starting number of the soft element comparing or storing the value data.
- S2: The source operand, which indicates the starting number of the soft element storing the comparison source data.
- D: The destination operand, which indicates the starting number of the soft element storing the comparison result.
- n: The source operand, which indicates the number of data.

Precautions

When the operation result overflows, the carry flag bit is not set to ON.

Function Description

1. The command compares the 16-bit data of the n points starting from S1 and the 16-bit data (BIN) of the n points starting from S2 and then stores the operation results in the n points starting from D.

- 2. You can directly specify a 16-bit constant in S1. When S1 is a constant, the command compares S1 with the 16-bit data of the n points starting from S2 sequentially and then stores the operation results in the n points starting from D.
- 3. When all the comparison results in the n point starting from D are ON, the comparison set flag bit (SM35) of the data block is set.

	Element Name	Data Type	Display Fo:	Current Value
1	 DO	WORD	Decimal	10
2	 D1	WORD	Decimal	11
3	 D2	WORD	Decimal	12
4	 D3	WORD	Decimal	13
5	 D4	WORD	Decimal	14
6	 D5	WORD	Decimal	15
7	 D10	WORD	Decimal	10
8	 D11	WORD	Decimal	11
9	 D12	WORD	Decimal	12
10	 D13	WORD	Decimal	13
11	 D14	WORD	Decimal	14
12	 D15	WORD	Decimal	15
13	 MO	BOOL	Binary	ON
14	 M1	BOOL	Binary	ON
15	 M2	BOOL	Binary	ON
16	 MC3	BOOL	Binary	ON
17	 M4	BOOL	Binary	ON

In case of M100=ON, the contents of the 5 units starting from D0 are compared with the contents of the 5 units starting from D10, and the results are stores in the 5 units starting from M0. In addition, when all the comparison results are ON, SM35 is set to ON.

3.16.5 BKITD: Commands for Batch Conversion from Integers to Long Integers

Command list		BKITD	(S)	(D) (n)	Applicable model	TS600 series		
16-Bit command -								
32-Bit co	mmand		BKITD:	: Batch conve	ersion from in	tegers to long i	ntegers	
			Bit		W	ord		
Operand	Туре	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
S	INT,				,	,	√	,
3	Array*n	-	-	-	V	V	V	V
D	DINT,				√ [1]	,	,	
Array*n V ⁽²⁾		-						
n	WORD	-	-	-	√ [1]	√	-	√

Remark:

[1] The D, V, and R elements are supported.

Operand Description

S: The source operand.

D: The destination operand.

n: The source operand, which indicates the number of conversions.

Function Description

When the energy flow is valid, the n integers (16-bit data) starting from the S element are converted into long integers (32-bit data), and the results are assigned to the n long integer (32-bit) elements starting from the D element.

In case of M0=ON, D0=1000, D1=1000, and D2=1000 are converted from integers into long integers, and the results are assigned to (D10, D11), (D12, D13), and (D14, D15).

3.16.6 BKDTI: Commands for Batch Conversion from Long Integers to Integers

Γ (command list Γ BKD) Γ (S) (D) (n) Γ				Applicable model	I S600 series				
16-Bit co	ommand		-						
32-Bit co	ommand		BKDTI	: Batch conve	ersion from l	ong integers to	integers		
			Bit		V	/ord			
Operand	Туре	X, Y, M,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		LM, T, C, S	Dx.y	variable	T, C	variable			
S	DINT,	_	_	_	√ [1]	./	./	✓	
	Array*n	_		_	V	V	V	V	
D	INT,				,	,	,		
D	Array*n	-	-	-	V V -				
n	WORD	-	-	-	√ [1]	√	-	√	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

- S: The source operand.
- D: The destination operand.
- n: The source operand, which indicates the number of conversions.

Function Description

When the energy flow is valid, the n long integers (32-bit data) starting from S are converted into integers (16-bit data), and the results are assigned to the n integer (16-bit) elements starting from D.

Precautions

When the n long integers starting from S are greater than 32767 or the n long integers starting from S are less than -32768, the system reports an operand error, this conversion operation is not executed, and the data of the D element remains unchanged.

Application Example

In case of M0=ON, (D0, D1)=1000, (D2, D3)=1000, and (D4, D5)=1000 are converted from long integers into integers, and the results are assigned to D10, D11, and D12.

3.16.7 BKFLT: Commands for Batch Conversion from Integers/Long Integers to Floating-Point Numbers

Command list		*BKFLT	(S)	(D) (n)	Applicable model	TS600 series					
16-Bit co	mmand	BKFLT: Bato	BKFLT: Batch conversion from integers/long integers to floating-point numbers								
32-Bit co	mmand				-						
		Bit			W	ord					
Operand	Type	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant			
		T, C, S		variable	С	variable					
S	INT, Array*n	-	1	-	√	✓	√	✓			
D	REAL, Array*n	-	-	-	√ [1]	✓	√	-			
n	WORD	-	-	-	√ [1]	✓	-	√			

Remark:

[1] The D, V, and R elements are supported.

Operand Description

- S: The source operand.
- D: The destination operand.
- n: The source operand, which indicates the number of conversions.

Function Description

When the energy flow is valid, the n long integers (16-bit data) starting from S are converted into floating-point numbers (32-bit data), and the results are assigned to the n 32-bit data starting from D.

Application Example

In case of M0=ON, D0=10000 and D1=10000 are converted from integers into floating-point numbers, and the results are assigned to obtain (D10, D11)=10000.00 and (D12, D13)=10000.00.

3.16.8 BKINT: Batch Conversion from Floating-Point Numbers to Integers/Long integers

Comma	ınd list	BKINT	(S)	(D) (n)	Applicable model	TS600 series			
16-Bit co	mmand	BKIN	T: Batc	h conversior	n from floating	g-point numbe	rs to integ	ers	
32-Bit co	mmand								
			Bit		W	ord			
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant	
S	REAL, Array*n	-	1	-	√ [1]	✓	✓	✓	
D	INT, Array*n	-	-	-	√	√	√	-	
n	WORD	-	-	-	√ [1]	√	-	√	

Remark:

[1] The D, V, and R elements are supported.

Operand Description

- S: The source operand.
- D: The destination operand.
- n: The source operand, which indicates the number of conversions.

Function Description

- 1. When the energy flow is valid, the n floating-point numbers (32-bit data) starting from S are converted into integers (16-bit data), and the results are assigned to the n 16-bit data starting from D.
- 2. This command affects the zero flag bits and borrow flag bits. When the conversion results are 0, the zero flag bits are set. When decimals are truncated from the results, the borrow flag bits are set. When the results exceed the range of the long integer data, the carry (overflow) flag bits are set.

Precautions

- BKINT command: When the n integers starting from S are greater than 32767 or the n integers starting from S are less than -32768, the system reports an illegal operand error, and the command is not executed.
- DBKINT command: When the n long integers starting from S are greater than 2147483647 or the n long integers starting from S are less than -2147483648, the system reports an illegal operand error, and the command is not executed.

Application Example

In case of M0=ON, (D0, D1)=10000.50 and (D2, D3)=10000.50 are converted from floating-point numbers into integers, and the results are assigned to obtain D10=10000 and D11=10000.

3.16.9 BKWBIT: Commands to Assign Word Element to Bit Element Combination

Comma	and list	BKWBIT	(S)	(D) (n)	Applicable model	TS600 series		
16-Bit co	ommand	E	3KWBIT	: Assign word	d element to b	it element com	bination	
32-Bit co	ommand				-			
			Bit		W	ord		
Operand	Туре	X, Y, M,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	С	variable		
S	INT,				√ [1]		./	√
3	Array*n	-	-	_	V	√	V	V
D	BOOL,	√ [2]	√	,				
D	Array*n	V 1-3	V	V	-	-	-	-
n	WORD	-	-	-	√ [3]	✓	-	✓

Remark:

- [1] The Z element is not supported.
- [2] The X element is not supported.
- [3] The D, V, and R elements are supported.

Operand Description

- S: The source data, or the combination value to be assigned to the bit element.
- D: The bit element, or the starting bit element.
- n: The number of bit elements, or the quantity of bit elements.

Function Description

The command converts the binary numbers in S into the bit state and assigns the results to the n bits starting from D.

Application Example

In case of MO=ON, D0=2#1111, and the result is assigned to M70, M71, M72, and M73, which therefore all become ON.

3.16.10 BKBITW: Commands to Assign Bit Element Combination to Word Element

Comma	and list	BKWBIT	(S)	(D) (n)	Applicable model	TS600 series			
16-Bit co	mmand	E	3KWBIT	: Assign bit el	lement combi	ination to word	l element		
32-Bit co	mmand				-				
			Bit		W	ord			
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		T, C, S	DX.y	variable	С	variable			
S	BOOL,	√	√	√	-	-	√	-	
	Array*n								
D	INT,	_	_	_	√ [1]	_/	√	_/	
	Array*n				V	V	٧	V	
n	WORD	-	-	-	√ [2]	✓	-	✓	

Remark:

- [1] The Z element is not supported.
- [2] The D, V, and R elements are supported.

Operand Description

- S: The bit element, or the starting bit element.
- D: The destination operand, which indicates the value of the bit element combination.
- n: The number of bit elements, or the quantity of bit elements.

Function Description

The command converts the n bits starting from S into binary numbers and assigns the results to D.

Application Example

In case of M0=ON, M0, M1, M2, and M3 are all ON, and D0=15 is obtained.

3.16.11 BKAND: Commands for AND Operation of Word/Doubleword Data Block

Comma	mand list *BKAND (S1) (S2) (D) (n) Applicable model TS600 series										
16-Bit co	ommand		BKAND: AND operation of batch word data blocks								
32-Bit co	ommand		DBKAI	ND: AND opera	tion of batch o	doubleword da	ta blocks				
			Bit		W	ord					
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant			
S1	WORD/ DWORD, Array*n	-	-	-	√ [1]	√	√	√			
S2	WORD/ DWORD, Array*n	-	-	-	√ [1]	√	√	√			
D	WORD/ DWORD, Array*n	-	-	-	√ [1]	√	√	-			
n	WORD	-	-	-	√ [1]	√	-	√			

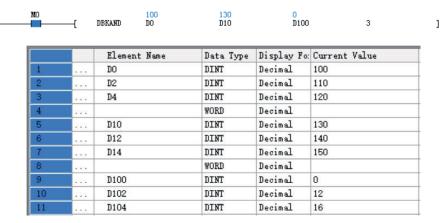
Remark:

[1] The D, V, and R elements are supported.

Operand Description

- S1: The source operand, which indicates the address of the data or data storage word soft element that participates in the AND operation.
- S2: The source operand, which indicates the address of the data or data storage word soft element that participates in the AND operation.
- D: The destination operand, which indicates the address of the data storage word soft element of the operation result.
- S3: The number of bit elements, or the quantity of comparisons.

Function Description


- 1. 16-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical AND operation on the n 16-bit data starting from S1 and the corresponding n 16-bit data (BIN) starting from S2 and then stores the operation results in the n 16-bit data starting from D.
- 2. 32-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical AND operation on the n 32-bit data starting from S1 and the corresponding n 32-bit data (BIN) starting from S2 and then stores the operation results in the n 32-bit data starting from D.
- 3. The rule of logical AND operation: If any data is 0, the result is 0. For example: $1 \cdot 1=1$ $1 \cdot 0=0$ $0 \cdot 1=0$ $0 \cdot 0=0$.

Application Example

		Element Name	Data Type	Display Fo:	Current Value
1		DO	WORD	Decimal	10
2		D1	WORD	Decimal	11
3		D2	WORD	Decimal	12
4			WORD	Decimal	
5		D10	WORD	Decimal	13
6		D11	WORD	Decimal	14
7	***	D12	WORD	Decimal	15
8			WORD	Decimal	
9		D100	WORD	Decimal	8
10		D101	WORD	Decimal	10
11		D102	WORD	Decimal	12

In case of M0=ON, the command performs the bitwise logical AND operation on D0, D1, and D2 and D10, D11, and D12 and stores the results to D100, D101, and D102.

In case of M0=ON, the command performs the bitwise logical AND operation on (D0, D1), (D2, D3), and (D4, D5) and (D10, D11), (D12, D13), and (D14, D15) and stores the results to (D100, D101), (D102, D103), and (D104, D105).

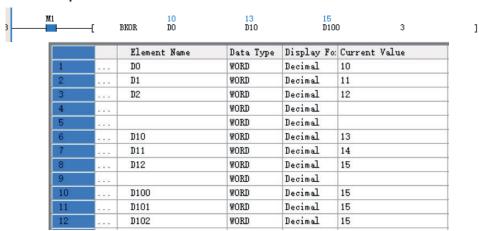
3.16.12 BKOR: Commands for OR Operation of Word/Doubleword Data Block

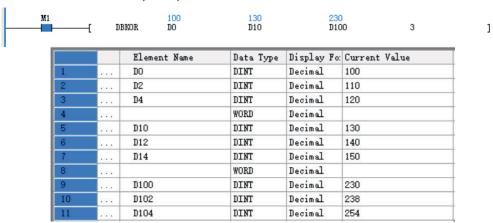
Comma	and list	*BKOR (S	1) (S2	2) (D) (n)	Applicable model	TS600 series						
16-Bit co	mmand		BKOR: OR operation of batch word data blocks									
32-Bit co	mmand		DBKC	R: OR operat	tion of batch d	oubleword dat	a blocks					
			Bit		Wo	ord						
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant				
		T, C, S	Dx.y	variable	С	variable						
S1	WORD/ DWORD, Array*n	-	-	-	√ [1]	√	√	✓				
S2	WORD/ DWORD, Array*n	-	-	-	√ [1]	√	√	√				
D	WORD/ DWORD, Array*n	-	-	-	√ [1]	√	√	-				
n	WORD	-	-	-	√ [1]	√	-	√				

Remark:

[1] The D, V, and R elements are supported.

Operand Description


- S1: The source operand, which indicates the address of the data or data storage word soft element that participates in the OR operation.
- S2: The source operand, which indicates the address of the data or data storage word soft element that participates in the OR operation.
- D: The destination operand, which indicates the address of the data storage word soft element of the operation result.
- n: The number of bit elements, or the quantity of comparisons.


Function Description

- 1. 16-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical OR operation on the n 16-bit data starting from S1 and the corresponding n 16-bit data (BIN) starting from S2 and then stores the operation results in the n 16-bit data starting from D.
- 2. 32-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical OR operation on the n 32-bit data starting from S1 and the corresponding n 32-bit data (BIN) starting from S2 and then stores the operation results in the n 32-bit data starting from D.
- 3. The rule of logical OR operation: If any data is 1, the result is 1. For example: 1+1=1 1+0=1 0+1=1 0+0=0.

Application Example

In case of M1=ON, the command performs the bitwise logical OR operation on D0, D1, and D2 and D10, D11, and D12 and stores the results to D100, D101, and D102.

In case of M1=ON, the command performs the bitwise logical OR operation on (D0, D1), (D2, D3), and (D4, D5) and (D10, D11), (D12, D13), and (D14, D15) and stores the results to (D100, D101), (D102, D103), and (D104, D105).

3.16.13 BKXNR: Commands for XNOR Operation of Word/Doubleword Data Block

Comma	and list	*BKXNR (S	S1) (S2	2) (D) (n)	Applicable model	TS600 series					
16-Bit co	mmand		BKXNR: XNOR operation of batch word data blocks								
32-Bit co	mmand	D	BKXNR:	XNOR operat	tion of batch	doubleword dat	ta blocks				
			Bit		W	/ord					
Operand	Туре	X, Y, M, LM,	2	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant			
		T, C, S	Dx.y	variable	С	variable					
	WORD/										
S1	DWORD,	-	-	-	√ [1]	✓	✓	✓			
	Array*n										
	WORD/										
S2	DWORD,	-	-	-	√ [1]	✓	✓	✓			
	Array*n										
	WORD/										
D	DWORD,	-	-	-	√ [1]	✓	✓	-			
	Array*n										
n	WORD	-	-	-	√ [1]	√	_	√			

Remark:

[1] The D, V, and R elements are supported.

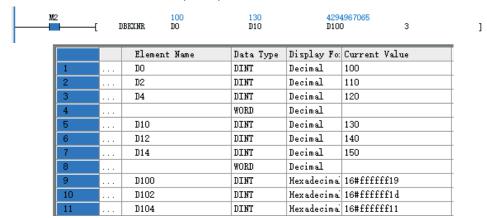
Operand Description

- S1: The source operand, which indicates the address of the data or data storage word soft element that participates in the XNOR operation.
- S2: The source operand, which indicates the address of the data or data storage word soft element that participates in the XNOR operation.
- D: The destination operand, which indicates the address of the data storage word soft element of the operation result.
- n: The number of bit elements, or the quantity of comparisons.

Function Description

- 1. 16-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical XNOR operation on the n 16-bit data starting from S1 and the corresponding n 16-bit data (BIN) starting from S2 and then stores the operation results in the n 16-bit data starting from D.
- 2. 32-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical XNOR operation on the n 32-bit data starting from S1 and the corresponding n 32-bit data (BIN) starting from S2 and then stores the operation results in the n 32-bit data starting from D.
- 3. The rules of logical XNOR operation: If two data are the same, the result is 0; if two data are different, the result is 0.

For example: $1 \odot 1 = 1$ $1 \odot 0 = 0$ $0 \odot 1 = 0$ $0 \odot 0 = 1$.


Application Example

		Element Name	Data Type	Display Fo:	Current Value
1		DO .	WORD	Decimal	10
2		D1	WORD	Decimal	11
3		D2	WORD	Decimal	12
4			WORD	Decimal	
5			WORD	Decimal	
6		D10	WORD	Decimal	13
7		D11	WORD	Decimal	14
8		D12	WORD	Decimal	15
9			WORD	Decimal	
10	****	D100	WORD	Decimal	65528
11		D101	WORD	Decimal	65530
12		D102	WORD	Decimal	65532

In case of M2=ON, the command performs the bitwise logical AND operation on D0, D1, and D2 and D10, D11, and D12 and stores the results to D100, D101, and D102.

In case of M2=ON, the command performs the bitwise logical AND operation on (D0, D1), (D2, D3), and (D4, D5) and (D10, D11), (D12, D13), and (D14, D15) and stores the results to (D100, D101), (D102, D103), and (D104, D105).

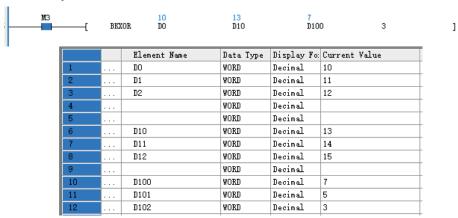
3.16.14 BKXOR: Commands for XOR Operation of Word/Doubleword Data Block

Comm	and list	d list *BKXOR (S1) (S2) (D) (n) Applicable model TS600 series										
16-Bit co	ommand		BKXOR: XOR operation of batch word data blocks									
32-Bit co	ommand	[BKXOF	R: XOR operat	ion of batch d	oubleword dat	a blocks					
			Bit		W	ord						
Operand	Type	X, Y, M, LM,		Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant				
		T, C, S	Dx.y	variable	С	variable						
	WORD/											
S1	DWORD,	-	-	-	√ [1]	✓	✓	✓				
	Array*n											
	WORD/											
S2	DWORD,	-	-	-	√ [1]	✓	✓	✓				
	Array*n											
	WORD /											
D	DWORD,	-	-	-	√ [1]	✓	✓	-				
	Array*n											
n	WORD	-	-	-	√ [1]	✓	-	√				

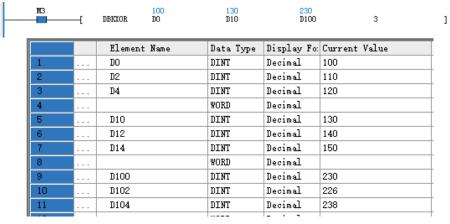
Remark:

[1] The D, V, and R elements are supported.

Operand Description


- S1: The source operand, which indicates the address of the data or data storage word soft element that participates in the XOR operation.
- S2: The source operand, which indicates the address of the data or data storage word soft element that participates in the XOR operation.
- D: The destination operand, which indicates the address of the data storage word soft element of the operation result.
- n: The number of bit elements, or the quantity of comparisons.

Function Description


- 1. 16-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical XOR operation on the n 16-bit data starting from S1 and the corresponding n 16-bit data (BIN) starting from S2 and then stores the operation results in the n 16-bit data starting from D.
- 2. 32-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical XOR operation on the n 32-bit data starting from S1 and the corresponding n 32-bit data (BIN) starting from S2 and then stores the operation results in the n 32-bit data starting from D.
- 3. The rules of logical XOR operation: If two data are the same, the result is 0; if two data are different, the result is 1.

For example: 1^1=0 1^0=1 0^1=1 0^0=0.

Application Example

In case of M3=ON, the command performs the bitwise logical XOR operation on D0, D1, and D2 and D10, D11, and D12 and stores the results to D100, D101, and D102.

In case of M3=ON, the command performs the bitwise logical XOR operation on (D0, D1), (D2, D3), and (D4, D5) and (D10, D11), (D12, D13), and (D14, D15) and stores the results to (D100, D101), (D102, D103), and (D104, D105).

3.16.15 BKINV: Commands for Inversion Operation of Word/Doubleword Data Block

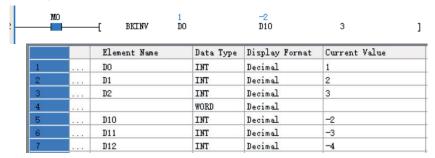
Comma	and list	*BKINV	(S)	(D) (n)	Applicable model	TS600 series		
16-Bit command BKINV: Inversion operation of batch word						tch word data	blocks	
32-Bit co	mmand	DB	KINV: In	version opera	ation of batch	doubleword c	lata blocks	
			Bit		W	ord		
Operand	Туре	X, Y, M, LM,	D	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
	WORD/							
S	DWORD,	-	-	-	$\sqrt{[1]}$	✓	✓	✓
	Array*n							
	WORD/							
D	DWORD,	-	-	-	√ [1]	✓	✓	-
	Array*n							
n	WORD	-	-	-	√ [1]	√	-	√

Remark:

[1] The D, V, and R elements are supported.

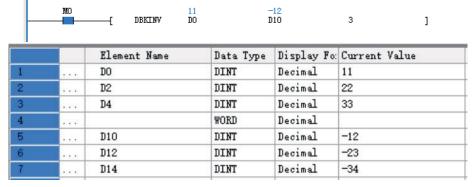
Operand Description

S: The source operand, which indicates the address of the data or data storage word soft element that participates in the inversion operation.


D: The destination operand, which indicates the address of the data storage word soft element of the operation result.

n: The number of bit elements, or the quantity of comparisons.

Function Description


- 1. 16-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical AND operation on the n 16-bit data starting from S and then stores the operation results in the n 16-bit data starting from D.
- 2. 32-bit command: When the energy flow is valid, the command is executed, which performs the bitwise logical AND operation on the n 32-bit data starting from S and then stores the operation results in the n 32-bit data starting from D.
- 3. The rules of logical inversion operation: If any data is 1, the result is 0; if any data is 0, the result is 1. For example: -1=0 -0=1.

Application Example

In case of M0=ON, the command performs the inversion operation on D0, D1, and D2 respectively and stores the results to D10, D11, and D12.

In case of M1=ON, the command performs the inversion operation on doublewords (D0, D1), (D2, D3), and (D4, D5) respectively and stores the results to (D10, D11), (D12, D13), and (D14, D15).

3.17 Data Table Command

3.17.1 Command list

Command Category	Name	Function
	LIMIT	Upper-lower limit control
	DBAND	Deadband control
Data Table Command	ZONE	Zone control
	*SCL	Coordinate determination of word/doubleword data
	SER	Data retrieval

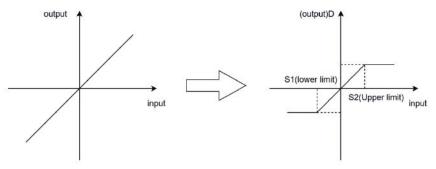
3.17.2 LIMIT: Commands for Upper-Lower Limit Control

Commai	nd list	model					600 series	
16-Bit cor	nmand		LIMIT: Upper-lower limit control					
32-Bit cor	nmand				-			
			Bit			ord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S1	INT	-	1	ı	√ [1]	✓	\	✓
S2	INT	-	-	-	√ [1]	✓	✓	✓
S3	INT	-	-	-	√ [1]	√	√	-
D	INT	-	-	-	√ [1]	√	✓	-

Remark:

[1] The Z element is not supported.

Operand Description


- S1: The lower limit value.
- S2: The upper limit value.
- S3: The input value to be controlled through the upper and lower limits.
- D: The starting number of the soft element that stores the output value controlled through the upper and lower limits.

Function Description

The command judges whether the input value specified by S3 is within the range of the upper and lower limits specified by S1 and S2:

In case of S3<S1, D=S1 is output; in case of S3>S2, D=S2 is output; in case of S1≤S3≤S2, D=S2 is output.

Precautions

In case of S1>S2, a parameter value error is reported and the command is not executed.

Application Example

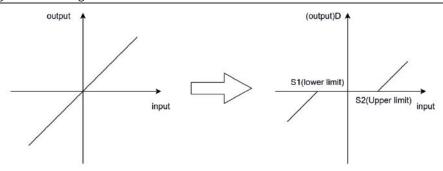
In case of M1=ON, the command performs limit control from D0 to D10 on the content of D100 unit and stores the result in D1000. $D0 \leq D100 \leq$

3.17.3 DBAND: Commands for Deadband Control

Commar	nd list	DBAND (S	DBAND (S1) (S2) (S3) (D) Applicable model TS600 s						
16-Bit con	nmand		DBAND: Deadband control						
32-Bit con	nmand				-				
			Bit		V	Vord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S1	INT	-	-	-	√ [1]	✓	✓	✓	
S2	INT	-	-	-	√ [1]	✓	✓	✓	
S3	INT	-	√	√	-				
D	INT	-	-	-	√ [1]	√	√	-	

Remark:

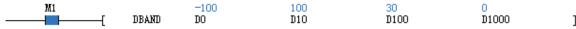
[1] The Z element is not supported.


Operand Description

- S1: The lower limit value of the deadband.
- S2: The upper limit value of the deadband.
- S3: The input value to be controlled through the deadband.
- D: The starting number of the soft element that stores the output value controlled through the deadband.

Function Description

The command judges whether the input value specified by S3 is within the range of the upper and lower limits specified by S1 and S2: In case of S3<S1, D=S3<S1 is output; in case of S3<S2, D=S3<S2 is output; in case of S1<S3<S2, D=0 is output.



Precautions

In case of S1>S2, a parameter value error is reported and the command is not executed.

Application Example

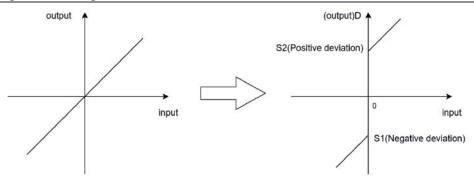
In case of M1=ON, the command performs deadband control from D0 to D10 on the content of D100 unit and stores the result in D1000. $D0 \le D100 \le D100$

3.17.4 ZONE: Commands for Zone Control

Comma	nd list	ZONE (S1	.) (S2)	(S3) (D)	Applicable model	TS600 series			
16-Bit cor	nmand		ZONE: Zone control						
32-Bit cor	nmand				-				
			Bit		W	ord			
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	С	variable			
S1	INT	-	-	-	√ [1]	✓	✓	✓	
S2	INT	-	1	ı	√ [1]	✓	✓	√	
S3	INT	-	-	-	√ [1]	√	√	-	
D	INT	-	-	-	√ [1]	√	√	-	

Remark:

[1] The Z element is not supported.


Operand Description

- S1: The negative deviation value added to the input value.
- S2: The positive deviation value added to the input value.
- S3: The input value to be controlled through the zone.
- D: The starting number of the soft element that stores the output value controlled through the zone.

Function Description

The command judges the input value specified by S3 plus the deviation value specified by S1 or S2: In case of S3<0, D=S3+S1 is output; in case of S3>0, D=S3+S2 is output; in case of S3=0, D=0 is output.

Precautions

In case of S1>S2, a parameter value error is reported and the command is not executed.

Application Example

In case of M1=ON, the command performs zone control from D0 to D10 on the content of D100 unit and stores the result in D1000. D100(30)>0, D1000=D100(30)+D10(100), D1000=130.

3.17.5 SCL: Commands for Coordinate Determination of Word/Doubleword Data

Com	mand list	*SCL	(S1) (S2) (D) Applicable model TS600 series					
16-Bit	command	SCL: Coordinate determination of word data						
32-Bit	command		DSCL: Coordinate determination of doubleword data					
			Bit			ord		
Operan	d Type	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T, C	Custom word	Indexing	Constant
		T, C, S	DA.y	variable	D, N, V, Z, 1, C	variable		
S1	INT/DINT	-	-	-	√ [1]	✓	✓	✓
S2	INT/DINT				√ [2]	✓	√	-
D	INT/DINT	-	-	-	√ [1]	√	√	-

Remark:

- [1] For the 16-bit command, the Z element is not supported; for the 32-bit command, the Z and T elements are not supported.
- [2] The D, V, and R elements are supported.

Operand Description

- S1: The number of the soft element performing coordinate determination on the input value or storing the input value. If it is less than x1, the system reports a parameter error.
- S2: The starting number of the soft element of the conversion table used for coordinate determination. If it is equal to or less than 1, the system reports a parameter error.
- D: The starting number of the soft element that stores the output value controlled through coordinate determination.

Function Description

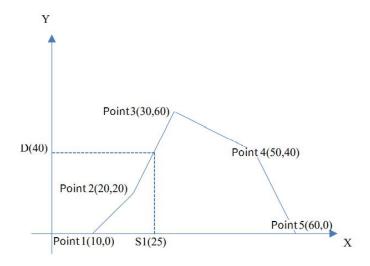
- 1. According to the specified conversion characteristics, the command performs coordinate determination on the input value specified by S1, and then stores the result to the soft element number specified by D.
- 2. The conversion used for coordinate determination is done according to the data table stored at the

starting soft element specified by S2. However, when the output data is not an integer value, it is rounded to the 1st decimal place and then output.

3. See below for settings of the conversion table used for coordinate determination:

Number of Co	Number of Coordinate Points				
Doint 1	X coordinate	S2+1			
Point 1	Y coordinate	S2+2			
D.:.+2	X coordinate	S2+3			
Point 2	Y coordinate	S2+4			
Doint w (the lest)	X coordinate	S2+2n-1			
Point n (the last)	Y coordinate	S2+2n			

Precautions


- The data of X in the data table should be arranged in ascending order. If only some parts are not in ascending order and detection starts from the low bit, the operations before these part will still be executed.
- S1 must be within the range set in the data table.

Application Example

In case of M1=ON, the command performs coordinate determination on the content of D10 unit and stores the result in D1000.

Number of Coo	ordinate Points	D100	5
Daint 1	X coordinate	D101	10
Point 1	Y coordinate	D102	0
Doint 2	X coordinate	D103	20
Point 2	Y coordinate	D104	20
D.: 2	X coordinate	D105	30
Point 3	Y coordinate	D106	60
Daint 4	X coordinate	D107	50
Point 4	Y coordinate	D108	40
Delate	X coordinate	D109	60
Point 5	Y coordinate	D110	0

3.17.6 SER: Commands for Data Retrieval

Comma	nd list	SER (S1)	(S2)	(D) (S3)	Applicable model	TS600 series			
16-Bit cor	mmand		SER: Zone control						
32-Bit cor	mmand				-				
			Bit		Word				
Operand	Туре	X, Y, M, LM, T,	D	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		C, S	Dx.y	variable	T, C	variable			
S1	INT	-	1	-	√ [1]	✓	\	-	
S2	INT	-	-	-	√ [1]	✓	✓	✓	
D	INT	\(\sqrt{[1]} \) \(\) -						-	
S3	INT	-	-	-	√ [2]	√	-	√	

Remark:

- [1] The Z element is not supported.
- [2] The D, V, and R elements are supported.

Operand Description

- S1: The number of the starting soft element that retrieves the same data, maximum value, and minimum value.
- S2: The number of the soft element that retrieves the reference value for the same data, maximum value, and minimum value or stores the target.
- D: The number of starting soft element that retrieves the same data, maximum value, and minimum value and then stores the number of these items.
- S3: The number of the retrieved same data, maximum values, and minimum values ($1 \le S3 \le 256$).

Function Description

- 1. The command retrieves the S3 data starting from S1, finds the same data as S2, and stores the results in D-D+4.
- 2. When the same data are present, the 5 soft elements starting from D store the number of the same data, the position of the initial value, the position of the final value, the position of the minimum value, and the position of the maximum value, respectively.
- 3. When the same data are not present, the first 3 soft elements store 0, while the last 2 soft elements store the position of the minimum value and the position of the maximum value, respectively.

Application Example

In case of M1=ON, the command retrieves the contents of the 8 units starting from D10 and stores the retrieval results in the 5 units starting from D1000.

Retrieved element, S1	Numeric value	Compared element value, S2	Data location	Retrieval result, D	Numeric value
D10	100	100	0	D1000	3
D11	78	-	1	D1001	0
D12	92	-	2	D1002	7
D13	100	-	3	D1003	5

Retrieved element, S1	Numeric value	Compared element value,	Data location	Retrieval result, D	Numeric value
D14	110	-	4	D1004	6
D15	-20	-	5	-	-
D16	145	-	6	-	-
D17	100	-	7	-	-

3.18 Table Operation Command

3.18.1 Command list

Command Category	Name	Function
	*SORTR	Commands to Sort word/doubleword data by row
Table Operation	*SORTC	Commands to Sort word/doubleword data by column
Command	FDEL	Commands to Data deletion of data table
	FINS	Commands to Data insertion of data table

3.18.2 SORTR: Commands to Sort Word/Doubleword Data by Row

Comm	and list	*SORTR (SI	l) (m1) (D2)	(m2) (D1) (n)	Applicable model	TS600 series		
16-Bit c	ommand	SORTR: Sort word data by row						
32-Bit c	ommand			DSORTR: So	ort doublewor	d data by row		
			Bit		Wo	ord		
Operand	Туре	X, Y, M,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	LM, T, C, S	variable	С	variable		
	INT/DINT,							
S1	Arrays	-	-	-	√ [1]	✓	-	-
	m1*m2							
m1	WORD	-	-	-	√ [1]	✓	✓	✓
m2	WORD	-	-	-	√ [1]	✓	✓	✓
	INT/DINT,							
D1	Arrays	-	-	-	√ [1]	✓	-	-
	m1*m2							
n	WORD	-	-	-	√ [1]	√	√	✓

Remark:

[1] Only the D, V, and R soft elements are supported.

Operand Description

S: The source operand, which indicates the starting unit of the first variable in the first row (first record).

M1: The source operand, which indicates the number of rows in an array and is also known as the number of records.

M2: The source operand, which indicates the number of columns in an array and is also known as the number of columns per record.

D1: The destination operand, indicating the starting unit that is used for storage after sorting and occupies the same number of subsequent variable units as the number of array variables before sorting.

n: The source operand, which indicates the array row number based on row sorting. The value range of n is 1–m1.

Function Description

1. This commands sorts the array consisting of m1 rows \times m2 columns (described by S, m1, and m2) by the n-th row of parameters, and then stores the results in the variable area starting from the D1 unit.

The following is the 3×3 data sorting process:

Before sorting:

	1	2	3
1	S S	S+3	S+6
1	1	2	8
2	S+1	S+4	S+7
2	6	7	2
2	S+2 S+5 S+8		S+8
3	3	4	3

After sorting by the second row (ascending):

	1	2	3
1	D	D+3	D+6
1	8	1	2
2	D+1	D+4	D+7
2	2	6	7
2	D+2	D+5	D+8
3	3	3	4

The command sets sorting according to the state (either ON or OFF) of SM33, where ON means descending, while OFF means ascending.

2. When the energy flow is valid, data sorting begins. After m1 scan cycles, the sorting is completed, and command execution is completed to obtain SM30=ON.

Precautions

- During the command execution, the operand cannot be modified.
- To re-sort, perform the OFF \rightarrow ON operation on the energy flow.
- During the sorting process by the command, ensure that the operands and table content are not changed.
- The source operand S cannot partially overlap with D1, and it can only overlap with the latter completely or not at all, otherwise the system reports an error of overlapping source and destination operands.
- If you use the 32-bit command, the data table content occupies 2 16-bit soft elements.
- After sorting is completed, SM30 will be set. If multiple command are used for sorting, the value of SM30 will be overwritten by the subsequent sorting commands.
- Up to 128 SORTR commands are supported.

Application Example

In case of M500=ON, the SORTR command begins to execute, which sorts the 4*4 data table elements starting from D0 in ascending order according to the 2nd row. The sorting results are stored in the 4*4 table data starting from D100. After sorting is completed, M2 is set.

Before sorting:

		Element Name	Data Type	Display Format	Current Value
1	1111	DO	INT	Decimal	1
2		D1	INT	Decimal	2
3		D2	INT	Decimal	3
4		D3	INT	Decimal	2
5		D4	INT	Decimal	6
6		D5	INT	Decimal	4
7		D6	INT	Decimal	8
8		D7	INT	Decimal	7
9		D8	INT	Decimal	3
10		D9	INT	Decimal	1
11		D10	INT	Decimal	2
12	1	D11	INT	Decimal	3
13		D12	INT	Decimal	2
14		D13	INT	Decimal	6
15		D14	INT	Decimal	4
16		D15	INT	Decimal	8

After sorting:

		Element Name	Data Type	Display Format	Current Value
18		D100	INT	Decimal	3
19		D101	INT	Decimal	1
20		D102	INT	Decimal	2
21		D103	INT	Decimal	3
22	1000	D104	INT	Decimal	1
23		D105	INT	Decimal	2
24		D106	INT	Decimal	3
25		D107	INT	Decimal	2
26		D108	INT	Decimal	6
27		D109	INT	Decimal	4
28		D110	INT	Decimal	8
29		D111	INT	Decimal	7
30		D112	INT	Decimal	2
31		D113	INT	Decimal	6
32		D114	INT	Decimal	4
33		D115	INT	Decimal	8

3.18.3 SORTC: Commands to Sort Word/Doubleword Data by Column

Comm	and list	*SORTC (S1	l) (m1) (D2)	(m2) (D1) (n)	Applicable model	TS600 series			
16-Bit c	ommand			SORTC: S	ort word data	by column			
32-Bit c	ommand			DSORTC: Sort	doubleword	data by columi	า		
			Bit		W	ord			
Operand	Туре	X, Y, M,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant	
		LM, T, C, S	Dx.y	variable	С	variable			
	INT/DINT,								
S1	Array	-	-	-	√ [1]	✓	-	-	
	m1*m2								
m1	WORD	-	-	-	√ [1]	✓	✓	✓	
m2	WORD	-	-	-	√ [1]	✓	✓	√	
	INT/DINT,								
D1	Array	-	-	-	√ [1]	✓	-	-	
	m1*m2								
n	WORD	-	-	-	√ [1]	√	√	√	

Remark:

[1] Only the D, V, and R soft elements are supported.

Operand Description

S: The source operand, which indicates the starting unit of the first variable in the first row (first record).

M1: The source operand, which indicates the number of rows in an array and is also known as the number of records.

M2: The source operand, which indicates the number of columns in an array and is also known as the number of columns per record.

D1: The destination operand, indicating the starting unit that is used for storage after sorting and occupies the same number of subsequent variable units as the number of array variables before sorting.

n: The source operand, which indicates the array row number based on column sorting. The value range of n is 1–m2

Function Description

1. This commands sorts the array consisting of m1 rows × m2 columns (described by S, m1, and m2) by the n-th column of parameters, and then stores the results in the variable area starting from the D1 unit.

The following is the 3×3 data sorting process:

Before sorting:

	1	2	3
1	S	S+3	S+6
1	1	2	8
2	S+1	S+4	S+7
2	6	7	2
2	S+2	S+5	S+8
3	3	4	3

After sorting by the second column (ascending):

	1	2	3
1	D	D+3	D+6
1	8	1	2
2	D+1	D+4	D+7
2	2	6	7
2	D+2	D+5	D+8
3	3	3	4

The command sets sorting according to the state (either ON or OFF) of SM33, where ON means descending, while OFF means ascending.

2. When the energy flow is valid, data sorting begins. After m2 scan cycles, the sorting is completed, and command execution is completed to obtain SM30=ON.

Precautions

- During the command execution, the operand cannot be modified.
- To re-sort, perform the OFF → ON operation on the energy flow.
- During the sorting process by the command, ensure that the operands and table content are not changed.
- The source operand S cannot partially overlap with D1, and it can only overlap with the latter completely or not at all, otherwise the system reports an error of overlapping source and destination operands.
- If you use the 32-bit command, the data table content occupies 2 16-bit soft elements.
- After sorting is completed, SM30 will be set. If multiple command are used for sorting, the value of SM30 will be overwritten by the subsequent sorting commands.
- Up to 128 SORTC commands are supported.

Application Example

In case of M501=ON, the SORTC command begins to execute, which sorts the 4*4 data table elements starting from D0 in ascending order according to the 2nd column. The sorting results are stored in the 4*4 table data starting from D100. After sorting is completed, M3 is set.

Before sorting:

	Element Name	Data Type	Display Format	Current Value
1	 DO	INT	Decimal	1
2	 D1	INT	Decimal	2
3	 D2	INT	Decimal	3
4	 D3	INT	Decimal	2
5	 D4	INT	Decimal	6
6	 D5	INT	Decimal	4
7	 D6	INT	Decimal	8
8	 D7	INT	Decimal	7
9	 D8	INT	Decimal	3
10	 D9	INT	Decimal	1
11	 D10	INT	Decimal	2
12	 D11	INT	Decimal	3
13	 D12	INT	Decimal	2
14	 D13	INT	Decimal	6
15	 D14	INT	Decimal	4
16	 D15	INT	Decimal	8

After sorting:

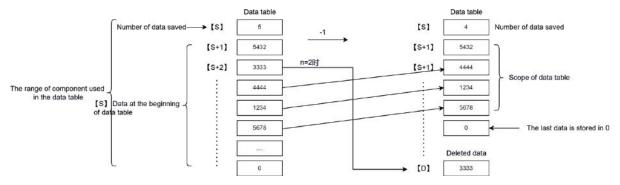
		Element Name	Data Type	Display Format	Current Value
18		D100	INT	Decimal	2
19		D101	INT	Decimal	1
20		D102	INT	Decimal	2
21		D103	INT	Decimal	3
22		D104	INT	Decimal	4
23		D105	INT	Decimal	6
24		D106	INT	Decimal	7
25		D107	INT	Decimal	8
26		D108	INT	Decimal	1
27		D109	INT	Decimal	3
28		D110	INT	Decimal	3
29		D111	INT	Decimal	2
30		D112	INT	Decimal	6
31		D113	INT	Decimal	2
32	Table 1	D114	INT	Decimal	8
33		D115	INT	Decimal	4

3.18.4 FDEL: Commands for Data Deletion of Data Table

Commai	nd list	FDEL (S) ([O) (n)	Applicable TS600 series			
16-Bit cor	mmand		FDEL: Data deletion of data table					
32-Bit cor	nmand				-			
			Bit		W	ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	INT, Array* [S]+1	-	-	-	√ [1]	√	-	-
D	INT	-	-	-	√ [1]	✓	-	-
n	WORD	-	-	-	√ [1]	√	√	√

Remark:

[1] Only the D, V, and R soft elements are supported.



Operand Description

- S: The data table information.
- S: The number of saved data.
- S+1: The starting position of the data table.
- D: The soft element that saves the deleted data.
- n: The table position of the data to be deleted.

Function Description

The command deletes the n-th data in the data table starting from D+1, saves the deleted data to S, moves the data starting from the n+1-th data in D+1 forwards, and subtracts 1 from the saved data number D.

Precautions

- This command continuously performs the deletion operation, which is usually executed in conjunction with the rising edge trigger.
- When the saved data number exceeds the range of the soft elements, the system reports an out-of-range address error.
- When the deleted position n is greater than the saved data number S, the system reports an illegal operand error.
- When the set value of n is ≤ 0 , the system reports an illegal operand error.
- When the set value of the saved data number is ≤ 0 , the system reports an illegal operand error.

Application Example

Before execution:

	Element Name	Data Type	Display Fo:	Current Value
1	 R100	WORD	Decimal	5
2	 R101	WORD	Decimal	1111
3	 R102	WORD	Decimal	2222
4	 R103	WORD	Decimal	3333
5	 R104	WORD	Decimal	4444
6	 R105	WORD	Decimal	5555
7	 R106	WORD	Decimal	0
8		WORD	Decimal	
9	 D200	WORD	Decimal	3
10		WORD	Decimal	
11	 D100	WORD	Decimal	0

After execution:

	Element Name	Data Type	Display Fo:	Current Value
1	 R100	WORD	Decimal	4
2	 R101	WORD	Decimal	1111
3	 R102	WORD	Decimal	2222
4	 R103	WORD	Decimal	4444
5	 R104	WORD	Decimal	5555
6	 R105	WORD	Decimal	0
7	 R106	WORD	Decimal	0
8		WORD	Decimal	
9	 D200	WORD	Decimal	3
10		WORD	Decimal	
11	 D100	WORD	Decimal	3333

3.18.5 FINS: Commands for Data Insertion of Data Table

Comma	nd list	FINS (S	(model		600 series			
16-Bit co	mmand			FINS: Da	ata insertio	n of data table		
32-Bit co	mmand		-					
			Bit		Word			
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
	INT,							
S1	Array*[S	-	-	-	√ [1]	✓	-	-
	1]+2							
S2	INT	-	-	-	√ [1]	√	-	-
n	WORD	-	-	-	√ [1]	√	√	√

Remark:

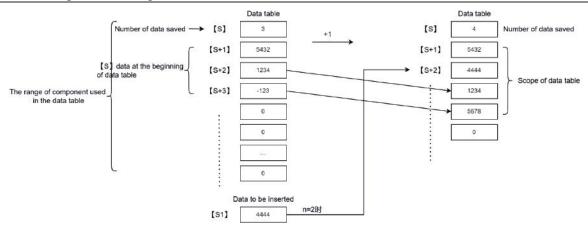
[1] Only the D, V, and R soft elements are supported.

Operand Description

S1: The data table information.

S1: The number of saved data.

S1+1: The starting position of the data table.


S2: The soft element that saves the inserted data.

n: The table position of the data to be inserted.

Function Description

The command inserts the data of S to the n-th data in the data table starting from D+1, moves the data starting from the n-th data in the data table backwards one by one, and adds 1 to the saved data number D.

Precautions

- This command continuously performs the insertion operation, which is usually executed in conjunction with the rising edge trigger.
- When the saved data number exceeds the range of the soft elements, the system reports an out-of-range address error.
- When the deleted position n is greater than the saved data number S, the system reports an illegal operand error.
- When the set value of n is \leq 0, the system reports an illegal operand error.
- When the set value of the saved data number is ≤ 0, the system reports an illegal operand error.

Application Example

Before execution:

	Element Name	Data Type	Display For	Current Value
1	 R100	WORD	Decimal	4
2	 R101	WORD	Decimal	1111
3	 R102	WORD	Decimal	2222
4	 R103	WORD	Decimal	4444
5	 R104	WORD	Decimal	5555
6	 R105	WORD	Decimal	0
7	 R106	WORD	Decimal	0
8		WORD	Decimal	
9	 D100	WORD	Decimal	3333
10		WORD	Decimal	
11	 D200	WORD	Decimal	3

After execution:

	Element Name	Data Type	Display Fo:	Current Value
1	 R100	WORD	Decimal	5
2	 R101	WORD	Decimal	1111
3	 R102	WORD	Decimal	2222
4	 R103	WORD	Decimal	3333
5	 R104	WORD	Decimal	4444
6	 R105	WORD	Decimal	5555
7	 R106	WORD	Decimal	0
8		WORD	Decimal	
9	 D100	WORD	Decimal	3333
10		WORD	Decimal	
11	 D200	WORD	Decimal	3

3.19 String Command

3.19.1 Command list

Command Category	Name	Function
	STRADD	String combination
	STRLEN	String length detection
	STRRIGHT	Read from right side of string
String Common d	STRLEFT	Read from left side of string
String Command	STRMIDR	Randomly read from string
	STRMIDW	Randomly replace from string
	STRINSTR	String retrieval
	STRMOV	String transfer

3.19.2 STRADD: Commands for String Combination

Comma	and list	STRADD	TRADD (S1) (S2) (D) Applicable model TS600 series					
16-Bit co	mmand			STRAD	D: String co	mbination		
32-Bit co	mmand				-			
			Bit		V	/ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	INT/ Array*in definite	-	-	-	√ [1]	√	√	√ [2]
S2	INT/ Array*in definite	-	-	-	√ [1]	✓	√	√ [2]
D	INT/ Array*in definite	-	-	-	√ [1]	√	√	-

Remark:

[1] The Z element is not supported.

[2] Here it represents a string constant.

Operand Description

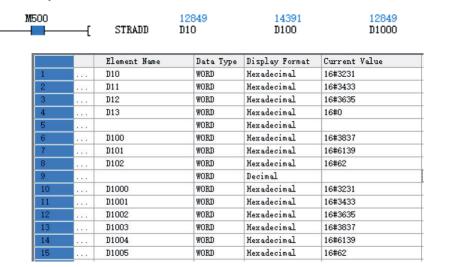
S1: The first string unit.

S2: The second string unit.

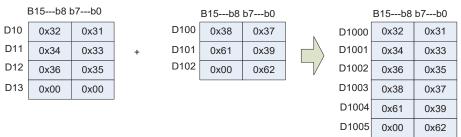
D: The string storage unit after connection.

Function Description

- 1. When the energy flow is valid, the command connects the string units starting from S1 and S2 and stores the results to the soft elements starting from D.
- 2. String combination refers to connecting the first character of the S2 unit string to the last character of the S1 unit string and ignoring the end marker of the S1 unit string.
- 3. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.


]

4. If the number of connected characters is odd, "00H" is added to the high byte of the soft element that stores the last character. If it is even, "0000H" is added to the next element after the soft element that stores last character.


Precautions

- When '00H' is not found within the allowed ranges of S1 and S2, the system reports a string data or length error.
- When the merged string exceeds the allowed range of D, the system reports a string data or length error.

Application Example

In case of M500=ON, the command connects the string units starting from D10 with the string units starting from D100, and stores the results in the units starting from D1000. See the figure below for the process.

3.19.3 STRLEN: Commands for String Length Detection

Comma	and list	STRLEN	STRLEN (S) (D) Applicable model T			TS	600 series	
16-Bit co	mmand			STRLEN	: String lengt	h detection		
32-Bit co	mmand		-					
			Bit		W	ord		
Operand	Type	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	DX.y	variable	С	variable		
	INT/							
S	Array*in	-	-	-	√ [1]	✓	✓	-
	definite							
D	WORD	-	-	-	√	√	√	-

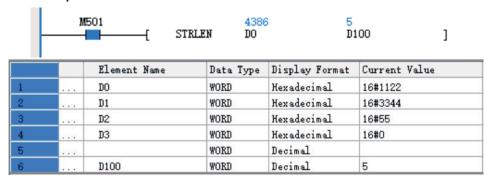
Remark:

[1] The Z element is not supported.

Operand Description

S: The string unit.

D: The length of the string unit.


Function Description

- 1. When the energy flow is valid, the command detects the length of the S unit string (the number of characters/bytes in the string) and stores the value in D.
- 2. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.

Precautions

- When '00H' is not found within the allowed range of S, the system reports a string data or length error.
- When the number of detected characters is greater than 32767, the system reports a string data or length error.

Application Example

In case of M501=ON, the command retrieves the length of the string unit starting from D100 and stores the result in D100.

3.19.4 STRRIGHT: Commands Used to Read from Right Side of String

Comm	and list	STRRIGH	STRRIGHT (S) (D) Applicable model TS600 series					
16-Bit co	ommand			STRRIGHT: F	Read from rig	ht side of string	5	
32-Bit co	ommand				-			
			Bit		V	/ord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
	INT/							
S	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							
	INT/							
D	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							
n	WORD	-	-	-	√	√	√	√

Remark:

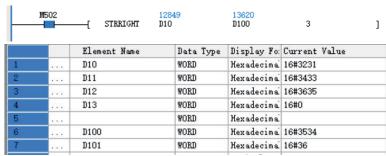
[1] The Z element is not supported.

Operand Description

S: The string unit.

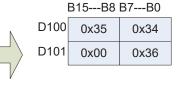
D: The extracted string unit saved.

n: The number of characters extracted; $0 \le n < 32767$.


Function Description

- 1. When the energy flow is valid, the command extracts n characters from the left side of the S string unit to the right, and stores them in the soft elements starting from D.
- 2. When n equals zero, '00H' is stored in the D soft element.
- 3. If the number of extracted characters is odd, "00H" is added to the high byte of the soft element that stores the last character. If it is even, "0000H" is added to the next element after the soft element that stores last character.
- 4. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.

Precautions


- When "00H" is not found within the corresponding soft element range of the string unit starting from S, the system reports a string data or length error.
- n should be greater than or equal to 0 and also less than or equal to the number of characters in the S string unit, otherwise the system reports an illegal operand error.
- If the retrieved string data cannot be stored within the legal range of D, the system reports an error that the parameter exceeds the limit address range.

Application Example

In case of M502=ON, the command extracted 3 characters from the right side of the string unit starting from D10, and stores them in the unit starting from D100. See the figure below for the process.

3.19.5 STRLEFT: Commands Used to Read from Left Side of String

Comm	and list	STRLEFT	(S)	(D) (n)	Applicable model	TS600 series		
16-Bit co	ommand			STRLEFT:	Read from le	eft side of string	5	
32-Bit c	ommand				-			
			Bit		٧	/ord		
Operand	Type	X, Y, M,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		LM, T, C, S	DA.y	variable	T, C	variable		
	INT/							
S	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							
	INT/							
D	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							
n	WORD	-	-	-	✓	√	√	√

Remark:

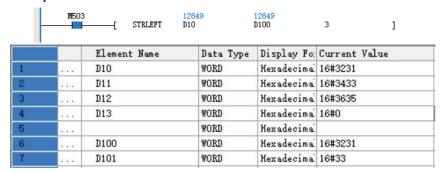
[1] The Z element is not supported.

Operand Description

S: The string unit.

D: The extracted string unit saved.

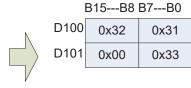
n: The number of characters extracted; $0 \le n < 32767$.


Function Description

- 1. When the energy flow is valid, the command extracts n characters starting from the last valid character (excluding "00H") of the string in the S unit, and stores them in the soft elements starting from D.
- 2. When n=0, '00H' is stored in the D soft element.
- 3. If the number of extracted characters is odd, "00H" is added to the high byte of the soft element that stores the last character. If it is even, "0000H" is added to the next element after the soft element that stores last character.
- 4. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.

Precautions

- When "00H" is not found within the corresponding soft element range of the string unit starting from S, the system reports a string data or length error.
- n should be greater than or equal to 0 and also less than or equal to the number of characters in the S string unit, otherwise the system reports an illegal operand error.
- If the retrieved string data cannot be stored within the legal range of D, the system reports an error that the parameter exceeds the limit address range.


Application Example

In case of M503=ON, the command extracted 3 characters from the left side of the string unit starting from D10, and stores them in the unit starting from D100. See the figure below for the process.

E	B15B8 B7B0							
D10	0x32	0x31						
D11	0x34	0x33						
D12	0x36	0x35						
D13	0x00	0x00						

3.19.6 STRMIDR: Commands Used to Randomly Read from String

Comm	and list	STRMIDE	R (S. (S2)	1) (D)	Applicable model	TS600 series		
16-Bit co	ommand			STRMIDR	: Randomly re	ad from string		
32-Bit co	ommand				-			
			Bit		Wo	ord		
Operand	Туре	X, Y, M,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	C variable			
	INT/							
S1	Array*	-	-	-	√ [1]	✓	\checkmark	-
	indefinite							
	INT/							
D	Array*	-	-	-	√ [1]	✓	\checkmark	-
	indefinite							
CO	INT/				,	,	,	,
S2	Array*2	-	_	-	√	√	√	√

Remark:

[1] The Z element is not supported.

Operand Description

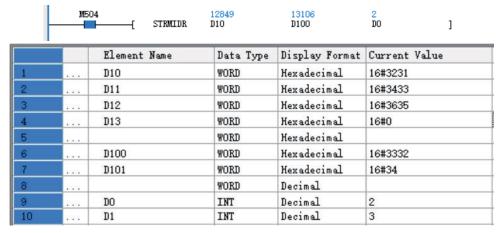
S1: The string unit.

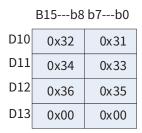
D: The extracted string unit saved.

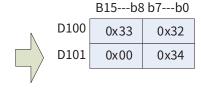
S2: The starting position of the string to be extracted.

S2+1: n, the number of characters to be extracted.

Function Description


- 1. When the energy flow is valid, the command extracts the data of n characters starting from the S2-nd characters in the S1 string unit, and stores them in the soft elements starting from D.
- 2. If the number of extracted characters is odd, "00H" is added to the high byte of the soft element that stores the last character. If it is even, "0000H" is added to the next element after the soft element that stores last character.
- 3. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.
- 4. When n is 0, the command performs no action.
- 5. When n is -1, the command extracts all character data starting from S2 in the S1 string unit and stores them in the soft elements starting from D.


Precautions


- When "00H" is not found within the corresponding soft element range of the string unit starting from S1 or D, the system reports a string data or length error.
- When the set value of S2 is too large and exceeds the number of characters in S1, the system reports an illegal operand error.
- When the set value of S2 is less than 1, the system reports an illegal operand error.
- When the set value of S2+1 is less than -1, the system reports an illegal operand error.
- When the set value of S2+1 exceeds the number of characters in S1, the system reports an illegal operand error.

Application Example

In case of M504=ON, the command reads out the D1 (D1=3) data starting from the D0th (D0=2) data of the string unit starting from D10, and stores them in the units starting from D100. See the figure below for the process.

3.19.7 STRMIDW: Commands Used to Randomly Replace from String

Comm	and list	(\$2) model		00 series				
16-Bit c	ommand			STRMIDW: I	Randomly re	place from string	5	
32-Bit c	ommand		<u>-</u>					
			Bit		V	Vord		
Operand	Туре	X, Y, M,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	T, C	variable		
	INT/							
S1	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							
	INT/							
D	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							
c2	INT/				,	,	,	,
S2	Array*2	-		-	√	V	√	√

Remark:

[1] The Z element is not supported.

Operand Description

S1: The string unit to be used as the replacement.

D: The string unit replaced.

S2: The starting position of the replacement.

S2+1: n, the number of replaced characters.

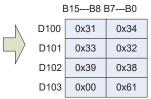
Function Description

- 1. When the energy flow is valid, the command uses the n characters in the S1 string unit to replace the n characters starting from the S2-nd character in the D string unit.
- 2. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.
- 3. When n is 0, the command performs no action.
- 4. When n is -1, all characters of the S1 string will be replaced sequentially with the characters of the D string starting from position S2 up to the end character 00H of the D string (which is not replaced).

Precautions

- When "00H" is not found within the corresponding soft element range of the string unit starting from S1 or D, the system reports a string data or length error.
- When the set value of S2 is too large and exceeds the number of characters in D, the system reports an illegal operand error.
- When the set value of S2 is less than 1, the system reports an illegal operand error.
- When the set value of S2+1 is less than -1, the system reports an illegal operand error.
- When the set value of S2+1 exceeds the number of characters in S1, the system reports an illegal operand error.

Application Example



		Element Name	Data Type	Display Format	Current Value
1		D10	WORD	Hexadecimal	16#3231
2		D11	WORD	Hexadecimal	16#3433
3		D12	WORD	Hexadecimal	16#35
4		D13	WORD	Hexadecimal	16#0
5			WORD	Hexadecimal	
6		D100	WORD	Hexadecimal	16#3134
7	242	D101	WORD	Hexadecimal	16#3332
8		D102	WORD	Hexadecimal	16#3938
9		D103	WORD	Hexadecimal	16#61
10			WORD	Decimal	
11		DO	INT	Decimal	2
12		D1	INT	Decimal	3

In case of M505=ON, the command reads out the D1 (D1=3) data starting from the D0th (D0=2) data of the string unit starting from D10, and stores them in the units starting from D100. See the figure below for the process.

B15B8 B7B0							
D10	0x32	0x31					
D11	0x34	0x33					
D12	0x00	0x35					

E	B15B8 B7B0							
D100	0x35	0x34						
D101	0x37	0x36						
D102	0x39	0x38						
D103	0x00	0x61						

3.19.8 STRINSTR: Commands for String Retrieval

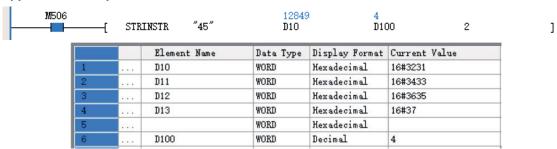
Comm	and list	STRINSTR (S1) (S2) (D) A			Applicable model	TS600 series		
16-Bit c	ommand			STRI	NSTR: String	g retrieval		
32-Bit c	ommand				-			
			Bit		V	Vord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
		LIVI, 1, C, 3		variable	1, 0	Variable		
	INT/							
S1	Array*	-	-	-	√ [1]	✓	√	√ [2]
	indefinite							
	INT/							
S2	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							
D	INT	-	-	-	√	✓	√	-
n	INT	-	-	-	✓	√	√	√

Remark:

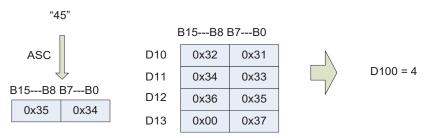
- [1] The Z element is not supported.
- [2] Here it represents a string constant.

Operand Description

- S1: The string unit to be retrieved.
- S2: The retrieval source.
- D: The retrieval result.
- n: The position where the retrieval starts.


Function Description

- 1. When the energy flow is valid, the command retrieves the same strings starting from the nth character of the S2 string unit as the S1 string unit, and stores the string position information of the retrieved result in D.
- 2. When there is no consistent string, the command stores '0' in D.
- 3. When n, the retrieval starting position, is a negative or '0', the command performs no action.
- 4. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.


Precautions

- When "00H" is not found within the corresponding soft element range of the string unit starting from S1 or S2, the system reports a string data or length error.
- When n is greater than the number of characters in S2, the system reports an illegal operand error.
- When S1 is a specified string, a maximum of 32 characters are allowed. Commas and double quotes
 represent separators in the upper computer software, so these characters cannot be recognized by the
 upper computer software and are not counted towards the number of characters.
- When S1 is an empty string ("00H"), the detection result is the position of "00H" in the S2 string unit (if S2 has an even number of characters, the result is the first "00H" position).

Application Example

In case of M506=ON, the command retrieves the same character as "45" starting from the 2nd character of the string unit starting from D10, and stores the result in the D100 unit. See the figure below for the process.

3.19.9 STRMOV: Commands for String Transfer

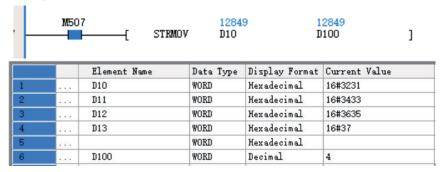
Comm	and list	STRMOV (S) (D)			Applicable model	TS600 series		
16-Bit c	ommand			STR	MOV: String t	transfer		
32-Bit c	ommand				-			
			Bit		W	ord .		
Operand	Type	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
	INT/							
S	Array*	-	-	-	√ ^[1] ✓	✓	✓	√ [2]
	indefinite							
	INT/							
D	Array*	-	-	-	√ [1]	✓	✓	-
	indefinite							

Remark:

- [1] The Z element is not supported.
- [2] Here it represents a string constant.

Operand Description

- S: The source string unit.
- D: The destination unit.


Function Description

- 1. The command transfers all data (including "00H") of the S string unit to the element units starting from D.
- 2. The valid data of a string unit is the data from the specified soft element of the string unit to the position where the first "00H" is detected.

Precautions

- When "00H" is not found within the corresponding soft element range of the string unit starting from S, the system reports a string data or length error.
- When the number of characters in the S string unit is even, the low byte stores "00H", while both high and low bytes at the corresponding positions in D stores "00H".
- When S1 is a specified string, a maximum of 32 characters are allowed. Commas and double quotes
 represent separators in the upper computer software, so these characters cannot be recognized by the
 upper computer software.

Application Example

In case of M507=ON, the command transfers the string data starting from D10 to the unit starting from D100. See the figure below for the process.

ı	B15B8 B7B0						
D10	0x32	0x31					
D11	0x34	0x33					
D12	0x36	0x35					
D13	0x00	0x00					

E	B15B8 B7B0							
D100	0x32	0x31						
D101	0x34	0x33						
D102	0x36	0x35						
D103	0x00	0x00						

3.20 Data Processing Command

3.20.1 Command list

Command Category	Name	Function
	*WTOB	Data separation of byte unit
	BTO*W	Data combination of byte unit
Data Buranaina Camanan d	UNI	4-bit combination of 16-bit data
Data Processing Command	DIS	4-bit separation of 16-bit data
	ANS	Signal alarm set
	ANR	Signal alarm reset

3.20.2 WTOB: Commands for Data Separation of Byte Unit

Comm	and list	WTOB	(S)	(D) (n)	Applicable model	TS600 series		
16-Bit co	ommand			WTOB: [ata separat	ion of byte unit		
32-Bit co	ommand				-			
			Bit		V	Vord		
Operand	Туре	X, Y, M,	Dvv	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	T, C	variable		
	WORD/							
S	DWORD,	-	-	-	√ [1]	✓	✓	-
	Array*n/2							
	WORD/							
D	DWORD,	-	-	-	√ [1]	✓	✓	-
	Array*n							
n	WORD	-	-	-	√ [2]	√	√	✓

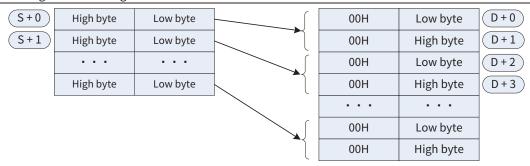
Remark:

[1]The Z and V soft elements are not supported.

[2]Only the D and R soft elements are supported.

Operand Description

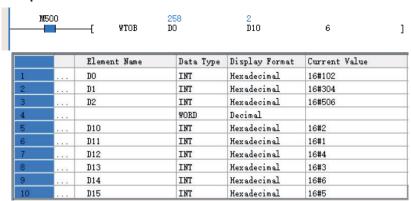
S: The starting number of the soft element that stores the data to be separated according to byte units.


D: The starting number of the soft element that stores the result already separated according to byte units.

n: The number of byte data to be separated ($0 \le n \le 256$).

Function Description

The commands separates the 16-bit data stored in the n/2 soft elements starting from S into n bytes, stores them to the low bytes of the n soft elements starting from D, and resets the high bytes to zero.



∠Note: When n is an odd, only the low byte (8 bits) is the object data in the last separated data.

Precautions

- In case of n=0, the command is not executed; in case of n>256 or n<0, the system reports an illegal operand error.
- The source and destination operands cannot overlap with each other, otherwise the system reports an overlapping operand error.

Application Example

In case of M500=ON, the command separates the data of the 3 units starting from D0 into 6 units according to high and low bytes, and stores the results in the 6 units starting from D10. In case of D0=0x102, D1=0x304, and D2=0x506, the obtained results are D10=0x02, D11=0x01, D12=0x04, D13=0x03, D14=0x06, and D15=0x05.

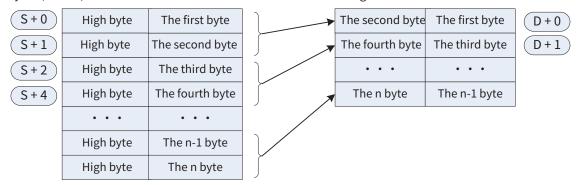
3.20.3 BTOW: Commands for Data Combination of Byte Unit

Comm	and list	BTOW	(S)	(D) (n)	Applicable model	TS600 series		
16-Bit co	ommand			BTOW: D	ata Separatio	on of byte unit		
32-Bit co	ommand				-			
			Bit		W	/ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD/ DWORD, Array*n	-	-	-	√ [1]	√	√	-
D	WORD/ DWORD, Array*n/2	-	-	-	√ [1]	√	√	-
n	WORD	-	1	-	√ [2]	√	√	√

Remark:

[1] The Z and V soft elements are not supported.

[2]Only the D and R soft elements are supported.

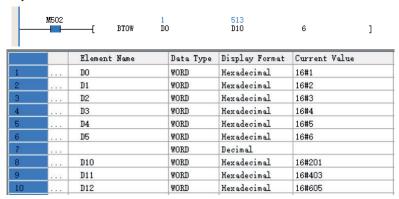


Operand Description

- S: The starting number of the soft element that stores the data to be combined according to byte units.
- D: The starting number of the soft element that stores the result already combined according to byte units.
- n: The number of byte data to be separated ($0 \le n \le 256$).

Function Description

The command combines the low bytes (8 bits) of the n 16/32-bit data starting from S, and then stores the resulting 16-bit/32-bit data in a small end manner to the n/2 soft elements starting from D. The (8-bit) high bytes (after S) of the 16-bit data in the combination source are ignored.



∠Note: When n is an odd number, the last combined high byte is reset to zero.

Precautions

- In case of n=0, the command is not executed; in case of n>256 or n<0, the system reports an illegal operand error.
- The source and destination operands cannot overlap with each other, otherwise the system reports an overlapping operand error.

Application Example

In case of M502=ON, the command combines the data of the 6 units starting from D0 into the data of 3 units, and stores the results in the 3 units starting from D10. In case of D0=0x01, D1=0x02, and D2=0x03, the obtained results are D3=0x04, D4=0x05, D5=0x06, D10=0x201, D11=0x403, and D12=0x605.

3.20.4 UNI: Commands for 4-Bit Combination of 16-Bit Data

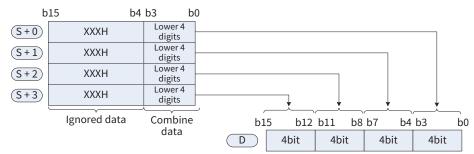
Comma	and list	UNI (S	S) (C) (n)	Applicable model	TS	600 series	
16-Bit co	mmand			UNI: 4-bit	combination	of 16-bit data		
32-Bit co	mmand				-			
			Bit		W	/ord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD, Array*n	-	-	-	√ [1]	√	√	-
D	WORD	-	-	-	√ [1]	✓	√	-
n	WORD	-	-	-	√ [2]	√	√	√

Remark:

[1]The Z and V soft elements are not supported.

[2]Only the D and R soft elements are supported.

Operand Description

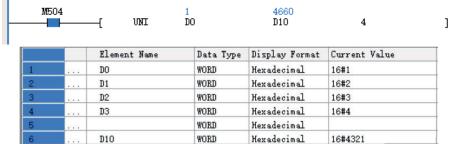

S: The starting number of the soft element that stores the data to be combined.

D: The number of the soft element that stores the data already combined.

n: The number of combinations (which is between 0 and 4; in case of n=0, the command performs no action).

Function Description

The command combines the low 4 bits of the 16-bit data of the n points starting from S into 16 bit data, and then stores the result to D in a small end manner.



∠Note: When n is between 1 and 3, the remaining low bits of D are padded with 0.

Precautions

- In case of n=0, the command is not executed; in case of n>4 or n<0, the system reports an illegal operand error.
- The source and destination operands cannot overlap with each other, otherwise the system reports an overlapping operand error.

Application Example

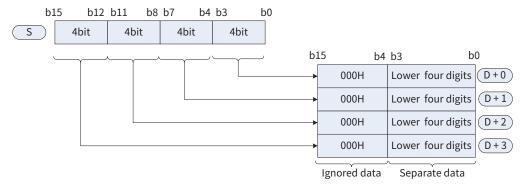
In case of M504=ON, the command combines the low 4 bits of the data of the 4 units starting from D0, and then stores the result in D10. In case of D0=0x01, D1=0x02, D2=0x03, D3=0x04, the obtained result is D10=0x4321.

3.20.5 DIS: Commands for 4-Bit Separation of 16-Bit Data

Comma	nd list	DIS	DIS (S) (D) (n) Applicable model TS600 series					
16-Bit con	mmand			DIS: 4-bi	t separation o	of 16-bit data		
32-Bit con	mmand				-			
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM,	Dvv	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	С	variable		
S	WORD	i	_	-	√ [1]	✓	√	-
_	WORD,				√ [1]	,	,	
D	Array*n	-	_	-	V [±]	√	V	-
n	WORD	-	-	-	√ [2]	√	√	√

Remark:

[1] The Z and V soft elements are not supported.


[2]Only the D and R soft elements are supported.

Operand Description

- S: The starting number of the soft element that stores the data to be separated.
- D: The number of the soft element that stores the data already separated.
- n: The number of separations (which is between 0 and 4; in case of n=0, the command performs no action).

Function Description

The command separates the 16-bit data of S with every 4 bits as a unit, and then stores the results to the low 4 bits of the n soft elements starting from D, with the high 12 bits padded with 000H.

Precautions

- In case of n=0, the command is not executed; in case of n>4 or n<0, the system reports an illegal operand error.
- The source and destination operands cannot overlap with each other, otherwise the system reports an overlapping operand error.
- The high 12 bits of the n soft elements starting from D are reset to zero.

Application Example

	Element Name	Data Type	Display Format	Current Value
1	 DO .	WORD	Hexadecimal	16#1234
2		WORD	Hexadecimal	
3	 D10	WORD	Hexadecimal	16#4
4	 D11	WORD	Hexadecimal	16#3
5	 D12	WORD	Hexadecimal	16#2
6	 D13	WORD	Hexadecimal	16#1

In case of M505=ON, the command separates the data of the D0 unit per 4 bits, and then stores the results in the 4 units starting from D10. In case of D0=0x1234, the obtained results are D10=0x04, D11=0x03, D12=0x02, and D13=0x01.

3.20.6 ANS: Commands for Signal Alarm Set

Comma	nd list	ANS (S	1) (5	S2) (D)	Applicable model	TS600 series		
16-Bit cor	mmand	nd ANS: Signal alarm set				rm set		
32-Bit cor	mmand	-						
		Bit Word			Vord			
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	DX.y	variable	T, C	variable		
S1	INT	-	-	-	√ [1]	- ✓ -		-
S2	WORD	1	-	-	√ [2]	- 🗸 🗸		✓
D	BOOL	√ [3]	-	-	-	-	-	-

Remark:

[1]Only the T element is supported.

[2]Only the D and R soft elements are supported.

[3]Only the S soft element is supported.

Operand Description

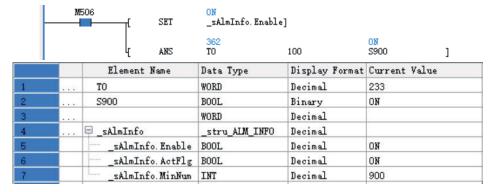
S1: The number of the timer which judges the time, only applying to the 100ms timer, and ranging between T0 and T199.

S2: The data used to judge the time (ranging between 1 and 32767).

D: The set signal alarm soft element, ranging between S900 and S999.

Function Description

When the duration of the energy flow is greater than n, D is set; when the duration of the energy flow is less than n, the timer S is reset, and D is reset; when the energy flow is invalid, S is reset.


System variables Name		Function		
_sAlmInfo.Enable Signal alarm enable		After Enable=ON, alarm enable acts		
sAlminfo AstFla	Cianal alarm act	When any of states S900–S999 acts, ActFlg=ON		
_sAlmInfo.ActFlg	Signal alarm act	is set		
a Almalia fa Min Nivos	Minimum number of ON state	It stores the smallest number of active alarms		
_SAlminio.Mininum	Minimum number of ON state	among S900-S999		

Precautions

- When the timer number is greater than 199, the system reports an operand error.
- When the set signal alarm soft element is not between S900 and S999, the system reports an operand error.

Application Example

In case of M506=ON, the alarm is enabled (that is, Enable=ON). After 10 seconds, S900 is set, the alarm action flag bit is ActFlg=ON, and the minimum recorded alarm value is MinNum=900.

3.20.7 ANR: Command for Signal Alarm Reset

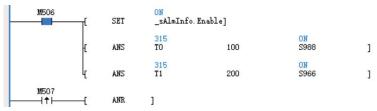
Command list			ANR		Applicable model	TS6	600 series	
16-Bit cor	nmand	ANR: Signal alarm reset						
32-Bit cor	nmand	nd -						
		Bit			W	ord		
Operand	Type	X, Y, M, LM, T,	D.,	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		X, Y, M, LM, T, C, S	Dx.y	variable	С	variable		
-	-	-	-	-	-	-	-	-

Operand Description

S1: The number of the timer which judges the time, only applying to the 100ms timer, and ranging between T0 and T199.

D: The set signal alarm soft element, ranging between S900 and S999.

S2: The data used to judge the time (ranging between 1 and 32767).

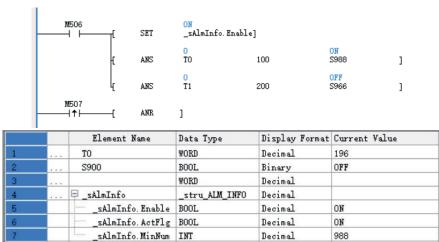

Function Description

When the energy flow is valid, the command resets the operating states of the signal alarms S900–S999; if there are multiple states acts, the command resets the one with the smallest number. When the energy flow becomes valid again, the command resets the next one with the smallest number.

System variables Name		Function		
_sAlmInfo.Enable	Signal alarm enable	After Enable=ON, alarm enable acts		
_sAlmInfo.ActFlg	Signal alarm act	When any of states S900–S999 acts, ActFlg=ON is set		
_sAlmInfo.MinNum		It stores the smallest number of active alarms among S900–S999		

Application Example

Before using the command:



	Element Name	Data Type	Display Format	Current Value
1	 TO	WORD	Decimal	309
2	 S900	BOOL	Binary	OFF
3		WORD	Decimal	
4	 = _sAlmInfo	_stru_ALM_INFO	Decimal	
5	_sAlmInfo.Enable	BOOL	Decimal	ON
6	_sAlmInfo.ActFlg	BOOL	Decimal	ON
7	_sAlmInfo.MinNum	INT	Decimal	966

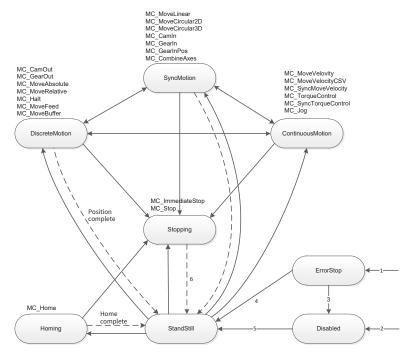
In case of M506=ON, alarm enable (Enable) is set. The alarm flag bits S988 and S966 are set after 10 seconds and 20 seconds, respectively, the alarm action flag bit ActFlg is set, and set the minimum recorded alarm value is MinNum=966.

After using the command:

In case of M507 is ON, the minimum alarm flag bit S966 is reset, and the minimum recorded alarm value is MinNum=988.

3.21 MC Axis Control (ETHERCAT & Pulse Output Commands)

3.21.1 Command list


Command	Name			
MC_SetAxisConfigPara	Axis configuration parameter			
MC_Power	Axis power-on instruction			
MC_Reset	Axis reset instruction			
MC_ReadStatus	Axis read status instruction			
MC_ReadAxisError	Read axis error			
MC_ReadDigitalInput	Read digital input instruction			
MC_ReadPosition	Read actual position instruction			
MC_ReadVelocity	Read actual velocity instruction			
MC_SetPosition	Set position instruction			
MC_MoveAbsolute	Absolute positioning instruction			
MC_MoveRelative	Relative positioning instruction			
MC_MoveVelocity	Velocity instruction			
MC_Jog	Continuous operation instruction			
MC_Home	Servo homing instruction			
MC_Homing	Controller homing instruction			
MC_SetOverride	Set override instruction			
MC_Stop	Stop instruction			
MC_Halt	Halt instruction			

0 0	
Command	Name
MC_ImmediateStop	Immediate stop instruction
MC_MoveSuperImposed	Motion Superimposed instruction
MC_TouchProbe	Probe instruction
MC_MoveFeed	Interrupt fixed-length instruction
MC_MoveBuffer	Multi-segment positioning
MC_MoveVelocityCSV	CSV-based velocity instruction with adjustable pulse width
MC_SyncMoveVelocity	Synchronized velocity supporting PWM waveform, based on CSV
MC_FollowPosition	Synchronous position instruction based on CSP mode
MC_FollowVelocity	Synchronous position instruction based on CSP mode
MC_SyncTorqueControl	Synchronous torque control instruction
MC_TorqueControl	Torque control instruction
MC_ReadActualTorque	Read actual torque instruction
MC_CamIn	Cam in
MC_CamOut	Cam out
MC_DigitalCamSwitch	Tappet
MC_GenerateCamTable	Update cam table
MC_GetCamtablePhase	Get cam table phase
MC_GetCamtableVelRatio	Get cam table velocity ratio
MC_GetCamtableDistance	Get cam table displacement
MC_GearInPos	Start gear action at the specified position
MC_GearIn	Gear in
MC_GearOut	Gear out
MC_Phasing	Master-slave axis phase offset
MC_CombineAxes	Dual-Axis electronic gear
MC_MoveLiear	Linear interpolation instruction
MC_MoveCircular2D	Planar arc interpolation instruction
MC_MoveEllipse	Plane ellipse interpolation (reserved)
MC_GroupSetOverRide	Axis group velocity regulation
MC_GroupStop	Axis group stop instruction
MC_GroupHalt	Axis group halt instruction (unrecoverable)
MC_GroupImmediateStop	Axis group immediate stop instruction
MC_ReadGroupVelocity	Read axis group resultant velocity instruction
MC_GroupPause	Axis group halt instruction (recoverable)

3.21.2 Axis State Machines

State Machine Description

State	Description
Disabled	Disabled state
ErrorStop	Stop due to fault
Standstill	Enabled state
Homing	Home
Stopping	Stop
Discrete Motion	Discretely move
Continuous Motion	Continuously move
Synchronized Motion	Synchronized motion state

Conversion	Conversion Condition						
1	When the fault detection logic of the axis detects a fault						
2	When there is no fault with the axis and the energy flow of MC_Power is OFF						
3	When MC_Reset is called to reset axis failure and MC_Power energy flow is OFF						
4	When MC_Reset is called to reset axis failure and MC_Power energy flow is ON						
5	When the energy flow of MC_Power is ON and the output flag Status is ON						
	When MC_Stop(MC_ImmediateStop).Done=ON and the energy flow of the graphic						
6	block is OFF						

3.21.3 MC_SetAxisParaAxis

Graphic Block

16-Bit

command	MC_SetAxisConfigPara: Axis configuration parameter						
32-Bit command			-				
Operand	Name	Description	Nullable	Default value	Range	Data Type	
S1	Axis	Axis name/axis ID	No	-	-	WORD	
S2	AxisCfgPara	Custom axis parameter	No	0	-	_stru_AXIS_CFG	
S3	ParameterIndex	Parameter ID	No	0	Positive/ negative/0	INT	
D1	Done	Command execution completion	Yes	OFF	ON/OFF	BOOL	
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL	
D3	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL	
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL	
D5	ErrorID	Error code	Yes	0	-	WORD	

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	1	1	-	1	-
S2	-	-	1	1	-	1	√
S3	-	-	1	1	√	\	√
D1	-	√	\	\	-	1	√
D2	-	√	\	\	-	1	√
D3	-	√	\	\	-	1	√
D4	-	√	√	√	-	-	√
D5	-	-	-	-	√	√	√

Function Description

This command is used to modify the configuration parameters of the axis. If the configuration parameters meet the requirements, the command modifies the configuration parameters again. After the configuration is completed, the Done signal output is valid. If they don't meet the requirements, the command reports an error.

AxisCfgPara represents the axis configuration parameter that the user expects to modify.

ParameterIndex is used to indicate the range of modified parameters. See below for the allowed set values:

Parameter #-1: It updates all parameters and allows modification in the Disabled state. After modification, the current position may change suddenly and therefore requires the re-execution of the homing operation.

Parameter #0: It does not update any parameter.

Parameter #100: It only updates the gear ratio and allows modification in the Disabled state. After modification, the current position may change suddenly and therefore requires the re-execution of the homing operation.

Variable	Data Type	Function Description	Valid parameter range
dwPulseData	DWORD	Number of pulses for one revolution of motor/encoder	Positive number

Variable	Data Type	Function Description	Valid parameter range
fDistanceData	REAL	The amount of movement when the worktable rotates for one revolution	Positive number
diGearRatioNum	DINT	Numerator of gear ratio	Positive number
dwGearRatioDen	DWORD	Denominator of gear ratio	Positive number

Parameter #200: It only modifies the positive and negative soft limits and allows modification in the Disabled and Standstill states.

Variable	Data Type	Function Description	Valid parameter range
bSWLimitEnable	BOOL	Soft limit enable control OFF: invalid; ON: valid	ON/OFF
fMaxPLimit	REAL	Positive limit value in linear mode	Positive/0/negative
fMaxNLimit	REAL	Negative limit value in linear mode	Positive/0/negative

Parameter #300: It only modifies the linear/rotary mode and allows modification in the Disabled state. After modification, the current position may change suddenly and therefore requires the re-execution of the homing operation.

Variable	Data Type	Function Description	Valid parameter range
iLineRotateMode	INT	Linear/rotation mode selection 0: linear mode; 1: rotary mode	0-1
fRotation	REAL	Number of rotation cycles in rotary mode	Positive number

Parameter #400: It only modifies the homing mode and allows modification in the Disabled and Standstill states.

Variable	Data Type	Function Description	Valid parameter range
iHomeMode	INT	Homing mode	Positive number
bHomeDirection	BOOL	Homing direction	Positive number
fMaxHomeSpeed	REAL	Maximum axis homing speed limit	Positive number
fMaxHomeAcc	REAL	Maximum axis homing acceleration limit	Positive number
fDecModuleSpeed	REAL	Maximum speed on deceleration module when axis homes	Positive number
fWaitZSpeed	REAL	Maximum speed while waiting for Z signal when axis homes	Positive number

Parameter #500: It only modifies the hard limit, origin signal, and Z signal and allows modification in the Disabled and Standstill states.

Variable	Data Type	Function Description	Valid parameter range
bHWPLimitEnable	BOOL	Hardware positive limit enable signal	ON/OFF
iHWPLimitID	INT	Hardware positive limit terminal ID	0-15
bHWNLimitEnable	BOOL	Hardware negative limit enable signal	ON/OFF
iHWNLimitID	INT	Hardware negative limit terminal ID	0-15
bHomeSignal	BOOL	Home enable signal	ON/OFF
iHomeSignalID	INT	Home signal terminal ID	0-15
bZSignal	BOOL	Z signal enable signal	ON/OFF
iZSignalID	INT	Z signal terminal ID	0-15

Parameter #600: It only updates the pulse output mode and allows modification in the Disabled state. After modification, the current position requires the re-execution of the homing operation.

Variable	Data Type	Function Description	Valid parameter range
iPulseMode		Pulse axis control mode 0: pulse+direction; 1: forward-reverse pulse train 2: orthogonal coding pulse; 3: PWM wave mode	0-3

Parameter #700: It only updates the virtual axis mode and allows modification in the Disabled state. After modification, the current position may change suddenly and therefore requires the re-execution of the homing operation.

Variable	Data Type	Function Description	Valid parameter range
bVirtualMode		Virtual axis mode OFF: virtual axis mode invalid; ON:	ON/OFF
Symtadiinode		virtual axis mode valid	311, 311

Parameter #800: It only modifies the probe signal and allows modification in the Disabled state. After modification, the current position may change suddenly and therefore requires the re-execution of the homing operation.

Variable	Data Type	Function Description	Valid parameter range
bTouchProbeID1	BOOL	Probe terminal 1 enable signal	ON/OFF
iTouchProbeID1	INT	Probe terminal 1 ID	0-15
bTouchProbeID2	BOOL	Probe terminal 2 enable signal	ON/OFF
iTouchProbeID2	INT	Probe terminal 2 ID	0-15

Parameter #900: It only modifies the software limit variables and negative soft limits and allows modification in the Disabled and Standstill states.

Variable	Data Type	Function Description	Valid parameter range
fAxisErrorDec	REAL	Axis error deceleration	Positive number
fMaxVelocity	REAL	Maximum axis velocity limit	Positive number
fMaxAcceleration	REAL	Maximum axis acceleration limit	Positive number
fMaxDeceleration	REAL	Maximum axis deceleration limit	Positive number
fMaxJerk	REAL	Maximum axis jerk limit	Positive number
fMaxJogSpeed	REAL	Maximum speed of axis in Jog mode	Positive number
fMaxPTorque	axPTorque REAL Maximum positive torque (fieldbus servo axis)		Positive number
fMaxNTorque	REAL	Maximum negative torque (fieldbus servo axis)	Positive number

Parameter #1000: It only updates the pulse servo control signal and allows modification in the Disabled state. After modification, the current position may change suddenly and therefore requires the re-execution of the homing operation.

Variable	Data Type	Function Description	Valid parameter range
bServoError	BOOL	Servo alarm enable signal	ON/OFF
iServoErrorID	INT	Servo alarm terminal ID	0-15

Variable	Data Type	Function Description	Valid parameter range
bServoEnable	BOOL	Servo enable signal	ON/OFF
iServoEnableID	INT	Servo enable terminal ID	0-15
bClearError	BOOL	Clear servo alarm enable signal	ON/OFF
iClearErrorID	INT	Clear servo alarm terminal ID	0-15

Resetting This Command

Resetting this command enables the modification of axis parameters again.

Multiple Calls of This Command

When this command is being executed, it is not allowed to call the second MC_SetAxisConfigPara command, otherwise the latter reports an error. Only after the first command is completed can the second command be executed.

3.21.4 MC_Power

Graphic Block

Enable	MC Power	
	_	Status
		Busy
		Error
Axis		ErrorID

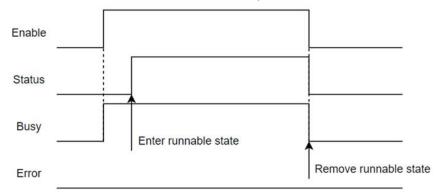
16-Bit command	MC_Power: Axis enabling							
32-Bit command		-						
Operand	Name	Description	Nullable	Default	Range	Data Type		
				value	8-	, , , ,		
S1	Axis	Axis name/axis ID	No	-	-	WORD		
D1	Status	Axis enable flag	Yes	OFF	ON/OFF	BOOL		
D2	Busy	Busy flag	Yes	OFF	ON/OFF	BOOL		
D3	Error	Error sign	Yes	OFF	ON/OFF	BOOL		
D4	ErrorID	Error code	Yes	0	-	WORD		

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
D1	-	✓	✓	✓	-	-	✓
D2	-	√	√	√	-	-	√
D3	-	√	√	√	-	-	√
D4	-	-	-	-	√	√	√

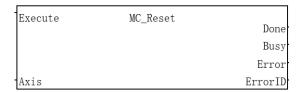
Function Description

- 1. The MC_Power command is applicable to the local pulse axis and bus servo axis, used to set the enable state of these axes, and valid at high levels.
- 2. When the command sets Enable to ON, the axis enters the enable state, the Status signal of the command is valid, and the PLCOpen state machine of the axis switches from the Disabled state to the StandStill state.
- 3. During the axis operation, if the command sets Enable to FALSE, the axis is disabled, and the motion-related commands (such as MC-MoveAbsolute) stop. The disabled state of the axis triggers the

motion-related commands to become invalid.


4. When the axis malfunctions and enters the errorstop state, enabling MC_Power again or calling MC_Reset can switch the axis to the Standstill state.

Multiple Starts of This Command

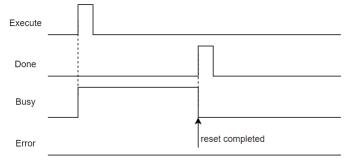

When you are using multiple MC_Power commands, the control energy flow of the last executed MC_Power command within one cycle shall prevail.

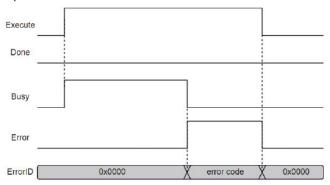
Timing diagram

Calling the MC_Power command enables the axis normally.

3.21.5 MC_Reset

16-Bit command	MC_Reset: Axis reset						
32-Bit command			-				
Operand	Name	Description	Nullable	Default value	Range	Data Type	
S1	Axis	Axis name/axis ID	No	-	-	WORD	
D1	Done	Axis enable flag	Yes	OFF	ON/OFF	BOOL	
D2	Busy	Busy flag	Yes	OFF	ON/OFF	BOOL	
D3	Error	Error sign	Yes	OFF	ON/OFF	BOOL	
D4	ErrorID	Error code	Yes	0	-	WORD	


Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
D1	-	√	√	✓	-	-	✓
D2	-	✓	√	√	-	-	✓
D3	-	√	√	√	-	-	✓
D4	-	-	-	-	✓	✓	√


- 1. The MC_ Reset command is used to reset the fault of the axis, and is valid to the rising edge.
- 2. After a successful reset, if the drive is in the enabled state, the PLCOpen state machine of the axis enters the StandStill state; if the driver is not enabled, the state machine enters the Disabled state.
- 3. This command does not have an interrupt output signal and therefore cannot be interrupted during execution.
- 4. During the axis operation, if this command is triggered, the system reports an error.

Timing diagram

• When the axis malfunctions, calling the MC_Reset command successfully resets the axis fault.

• When the driver experiences a non-resettable fault.

3.21.6 MC_ReadStatus

Enable	MC_ReadStatus
	Valid
	Busy
	Disabled
	ErrorStop
	Stopping
	StandStill
	DiscreteMotion
	ContinuousMotion
	SyncMotion
	Homing
	ConstantVelocity
	Accelerating
	Decelerating
	Error
Axis	ErrorID

16-Bit command	MC_ ReadStatus: Read axis status						
32-Bit command			-				
Operand	Name	Description	Nullable	Default value	Range	Data Type	
S1	Axis	Axis name/axis ID	No	-	-	WORD	
D1	Valid	Valid flag	Yes	OFF	ON/OFF	BOOL	
D2	Busy	Run flag	Yes	OFF	ON/OFF	BOOL	
D3	Disabled	Disabled flag	Yes	OFF	ON/OFF	BOOL	
D4	ErrorStop	Fault message	Yes	OFF	ON/OFF	BOOL	
D5	Stopping	Stop	Yes	OFF	ON/OFF	BOOL	
D6	Standstill	Run	Yes	OFF	ON/OFF	BOOL	
D7	DiscreteMotion	Discretely move	Yes	OFF	ON/OFF	BOOL	
D8	ContinuousMotion	Continuously move	Yes	OFF	ON/OFF	BOOL	
D9	SyncMotion	Synchronously move	Yes	OFF	ON/OFF	BOOL	
D10	Homing	Home	Yes	OFF	ON/OFF	BOOL	
D11	ConstantVelocity	The axis velocity is 0 or the axis moves at a constant velocity	Yes	OFF	ON/OFF	BOOL	
D12	Accelerating	The axis is moving with an acceleration	Yes	OFF	ON/OFF	BOOL	
D13	Decelerating	The axis is moving with a deceleration	Yes	OFF	ON/OFF	BOOL	
D14	Error	Error sign	Yes	OFF	ON/OFF	BOOL	
D15	ErrorID	Error code	Yes	0	-	WORD	

Operand	Const	Υ	M	S	D	R	Custom Variables
S1	\	-	-	-	-	-	-
D1	-	✓	✓	✓	-	-	✓
D2	-	✓	✓	✓	-	-	✓
D3	-	✓	✓	✓	-	-	✓
D4	-	✓	✓	✓	-	-	✓
D5	-	✓	✓	✓	-	-	✓
D6	-	✓	✓	✓	-	-	✓
D7	-	✓	✓	✓	-	-	✓
D8	-	✓	✓	✓	-	-	✓
D9	-	✓	✓	✓	-	-	✓
D10	-	✓	✓	✓	-	-	✓
D11	-	✓	✓	✓	-	-	✓
D12	-	✓	✓	✓	-	-	✓
D13	-	√	√	√	-	-	√
D14	-	√	✓	√	-	-	✓
D15	-	-	-	-	✓	✓	✓

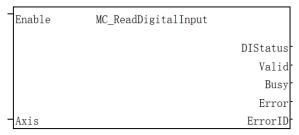
- 1. This command is used to read the states of the PLCOpen state machine, as well as the accelerating and decelerating states, of the axis, and is valid at high levels.
- 2. This command has no interrupt flag and therefor multiple commands can run simultaneously.

3.21.7 MC_ReadAxisError

Graphic Block

16-Bit command			-			
32-Bit command		MC_ ReadAx	isError: Re	ead axis ei	ror	
Operand	Name	Description	Nullable	Default value	Range	Data Type
S1	Axis	Axis name/axis ID	No	-	-	WORD
D1	Valid	Valid flag	Yes	OFF	ON/OFF	BOOL
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL
D3	AxisErrorID	Axis fault code	Yes	0	-	DINT
D4	ServoErrorID	Servo fault code	Yes	0	-	WORD
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL
D6	ErrorID	Error code	Yes	0	-	WORD

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	ı	-	-	-	-	-
D1	-	√	√	√	-	-	✓
D2	-	√	√	√	-	-	√
D3	-	-	-	-	√	√	√
D4	-	-	-	-	√	√	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	✓


Function Description

- 1. The MC_ReadAxisError command is used to read bus axis or local pulse axis faults, and is valid at high levels.
- 2. AxisErrorID is used to display the error of the corresponding function block when the axis status is ErrorStop, while ServoErrorID corresponds to the value (0x603f) of the PDO parameter of the bus driver and is used to display the fault code when the servo driver fails.
- 3. This command has no interrupt flag and therefor multiple commands can run simultaneously.

3.21.8 MC_ReadDigitalInput

Graphic Block

16-Bit			-					
32-Bit command		MC_ ReadDigitalInput: Read digital input						
Operand	Name	Name Description Nullable Default value Range Data Type						
S1	Axis	Axis name/axis ID	No	-	-	WORD		
D1	DIStatus	IO state	No	0	-	DINT		
D2	Valid	Valid flag	Yes	OFF	ON/OFF	BOOL		
D3	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL		
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL		
D5	ErrorID	Error code	Yes	0	-	WORD		

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	ı	-	-	-
D1	-	-	-	1	√	√	✓
D2	-	√	√	\	-	-	√
D3	-	√	√	\	-	-	✓
D5	-	√	√	\	-	-	✓
D6	-	-	-	1	√	√	✓

Function Description

- 1. This command applies to the EtherCAT bus axis and local pulse axis, and does not support the virtual axis mode. This command is used to read the states of the digital input terminal of the axis.
- 2. When Enable is set to ON, if 0x60fd is configured in the PDO parameters of the bus axis, or if the left-right limit signal and origin signal of the local pulse axis are not all empty, the Valid signal output is valid.
- 3. If the current axis is an EtherCAT bus axis, DIStatus will display the digital input (0x60fd) of the EtherCAT bus driver. Refer to the corresponding driver manual for specific definitions.
- 4. If the current axis is a local pulse axis, the command is used to display the hard limit and origin signals; otherwise, it displays 0.
- 5. This command has no interrupt flag and therefor multiple commands can run simultaneously.

3.21.9 MC_ReadPosition

Graphic Block

Enable	MC_ReadPosition	
		Valid
		Busy
		SetPosition
		ActPosition
		Error
Axis		ErrorID

16-Bit command			-							
32-Bit command		MC_ReadPosit	tion: Read	actual po	sition					
Operand	Name	Name Description Nullable Default Range Data Type								
S1	Axis	Axis name/axis ID	No	ı	-	WORD				
D1	Valid	Valid flag	Yes	OFF	ON/OFF	BOOL				
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D3	SetPosition	Axis command position	Yes	0	-	REAL				
D4	ActPosition	Axis feedback position	Yes	0	-	REAL				
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D6	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
D1	-	√	√	√	-	-	✓
D2	-	√	√	√	-	-	✓
D3	-	-	-	-	√	√	√
D4	-	-	-	-	√	√	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	✓

Function Description

- 1. The MC_ReadPosition command is used to read the axis command position or axis feedback position, and is valid at high levels.
- 2. When the axis is a local pulse axis, the command output parameter ActPosition is actually the command position.
- 3. This command has no interrupt flag and therefor multiple commands can run simultaneously.

3.21.10 MC_ReadVelocity

Graphic Block

Enable	MC_ReadVelocity	
		Valid
		Busy
		Velocity
		Error
Axis		ErrorID

16-Bit command			-								
32-Bit command		MC_ReadVelocity: Read actual velocity									
Operand	Name	Name Description Nullable Default value Range Data Type									
S1	Axis	Axis name/axis ID	No	-	-	WORD					
D1	Valid	Valid flag	Yes	OFF	ON/OFF	BOOL					
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D3	Velocity	Axis feedback velocity	Yes	0	-	REAL					
D4	Error	Error Error sign Yes OFF ON/OFF BOOL									
D5	ErrorID	Error code	Yes	0	-	WORD					

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
D1	ı	√	√	√	-	1	√
D2	-	√	√	√	-	-	√
D3	-	-	-	-	√	√	√
D4	-	√	√	√	-	-	√
D5	-	-	-	-	√	√	√

Function Description

- 1. The MC_ReadVelocity command is used to read the actual running velocity of the axis, and is valid at high levels.
- 2. This command has no interrupt flag and therefor multiple commands can run simultaneously.

3.21.11 MC_SetPosition

Graphic Block

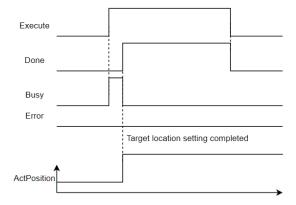
	Execute	MC SetPosition	
			Done
	Axis		Busy
٠	Position		Error
	Mode		ErrorID

16-Bit command			-								
32-Bit command		MC_SetPosition: Position set									
Operand	Name	Description	Nullable	Default value	Range	Data Type					
S1	Axis	Axis name/axis ID	No	-	-	WORD					
S2	Position	Position value	Yes	0	Positive/negativ e/0	REAL					
\$3	Mode	Mode selection 0: absolute mode 1: relative mode	Yes	0	0-1	INT					
D1	Done	Valid flag	Yes	OFF	ON/OFF	BOOL					
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D3	Error										
D4	ErrorID	Error code	Yes	0	-	WORD					

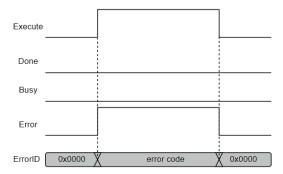
Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	-	-	√	✓	√
S3	√	-	-	-	√	√	√
D1	-	✓	√	√	-	-	√
D2	-	√	√	√	-	-	✓
D3	-	√	√	√	-	-	√
D4	-	-	-	-	√	√	✓

Function Description

- 1. This command is used to set the current position of the bus servo axis or local pulse axis, and is valid to the rising edge.
- 2. In case of Mode=0 (absolute mode), the command writes Position to the current position of the axis; in case of Mode=1 (relative mode), it adds Position to the current position of the axis.
- 3. This command is valid only when triggered in the Standstall state.


Multiple Starts of This Command

This command does not support interrupt. If there are multiple commands in one scan cycle, the first valid command will be executed. During the validity period of the Busy signal, if there is another SetPosition command running, other commands will report an error.



Timing diagram

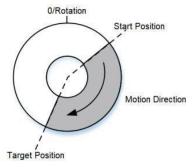
• When the axis is in the StandStill state, this command is executed, and the relative mode is selected.

• During the axis operation, this command is executed.

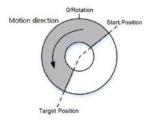
3.21.12 MC_MoveAbsolute

Execute	MC_MoveAbsolute	
Axis		
Position		Done
Velocity		Busy
Acceleration		Active
Deceleration		CommandAborted
Jerk		Error
Direction		ErrorID

16-Bit command		-								
32-Bit command		MC_MoveAbsolute: Absolute positioning								
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S1	Axis	Axis name/axis ID	No	-	-	WORD				
S2	Position	Target position	No	0	Positive/ negative/0	REAL				
S3	Velocity	Target velocity	Yes	100	Positive number	REAL				
S4	Acceleration	Acceleration	Yes	1000	Positive number	REAL				


16-Bit		_								
command 32-Bit										
command		MC_MoveAbsolute: Absolute positioning								
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S5	Deceleration	Deceleration	Yes	1000	Positive number	REAL				
S6	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL				
S7	Direction	Direction 0: positive (velocity > 0) 1: negative (velocity < 0) 2: minimum distance 3: current	Yes	0	0-3	INT				
D1	Done	Command execution completion	Yes	OFF	ON/OFF	BOOL				
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL				
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL				
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D6	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	1	-
S2	✓	-	-	-	✓	✓	√
S3	\	-	-	ı	\	\	✓
S4	√	-	-	-	√	√	√
S5	\	-	-	ı	\	\	✓
S6	\	-	-	ı	\	\	✓
S7	✓	-	-	-	\	\	√
D1	-	√	√	√	-	-	√
D2	ı	√	√	\	1	ı	✓
D3	1	√	√	\	-	1	✓
D4	ı	√	√	\	1	ı	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	✓


- 1. The MC_MoveAbsolute command is used to control the bus servo axis or local pulse axis to achieve absolute positioning, and is valid to the rising edge.
- 2. On the rising edge of the Execute input, the command locks the left input parameters such as Position and Velocity, triggers the absolute positioning function, and switches the axis state to DiscreteMotion state.
- 3. In the linear mode, Position is used to set the target position for absolute positioning. If the current

- position is less than the target position, the axis will move forward and finally reach the position set by Position. If the current position is greater than the target position, the axis will move backward and finally reach the position set by Position.
- 4. In the rotary mode, the command first uses Position to calculate the modulus over the rotation cycle to obtain the absolute position Position_p within one rotation cycle. The actual motion direction of axis is absolute in the following 4 situations:
- (1) Direction=0 indicates the forward motion (the target velocity greater than 0). If the current velocity is greater than 0, the axis continues running in the current direction and then stops at the position set by Position_p; if the current velocity is less than 0, the axis slows down to 0 first and then starts running backward until the position set by Position_p; if Position_p is equal to the current position, the axis does not move.

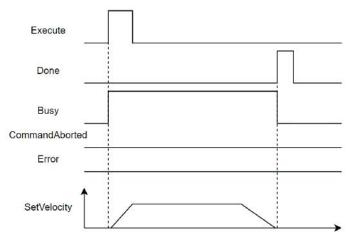
(2) Direction=1 indicates the backward motion (the target velocity less than 0). If the current velocity is less than 0, the axis continues running in the current direction and then stops at the position set by Position_p; if the current velocity is greater than 0, the axis slows down to 0 first and then starts running backward until the position set by Position_p; if Position_p is equal to the current position, the axis does not move.

(3) Direction=2 indicates the minimum distance. On the rising edge of Execute, the axis will record the current position, and assume that the current velocity is 0 to first calculate the displacement Distance_p from the 0 velocity to Position_p through the forward motion and then the displacement Distance_n from the 0 velocity to Position_p through the backward motion. In case Distance_p>Distance_n, the axis runs in the negative direction; otherwise, the axis runs in the positive direction; if Position_p is equal to the current position, the axis does not move.

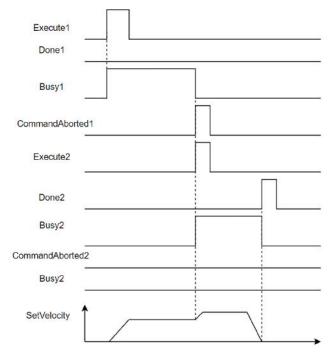
(4) Direction=3 indicates the current direction. On the rising edge of Execute, the axis will move in the direction of the most recent motion before reaching the rising edge of the Execute, and stop at the position set by Position_p. If it is powered on for the first time, the axis will run in the forward direction (the target velocity greater than 0); if Position_p is equal to the current position, the axis does not move.

- 5. Jerk is used to set the type of the speed curve. Jerk=0 represents the T-type curve acceleration and deceleration, while Jerk>0 represents the S-type curve acceleration and deceleration.
- 6. This command supports the mutual interruption between functional blocks according to the PLCopen state machine standards.

Resetting This Command

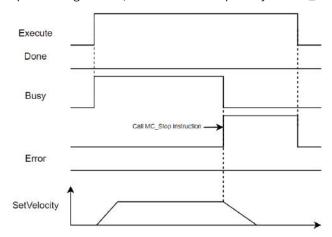

During the validity period of the Busy signal of the MoveAbsolute command, if the MC_MoveAbsolute command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

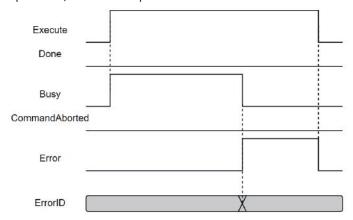

During the validity period of the Busy signal of the MoveAbsolute command, if the second MC_MoveAbsolute command is triggered, the second command will re-plan with new target parameters according to the current motion position, velocity, etc., while the first command will be interrupted and invalidated.

Timing diagram

• In the StandStill state, the axis calls this command to perform the relative positioning motion with a T-typed curve.



 During the operation of absolute positioning, another absolute positioning command (acting on the same axis) is triggered.



• During the relative positioning motion, the axis is interrupted by the MC_Stop command.

• During the axis operation, the driver experiences a fault.

3.21.13 MC_MoveRelative

Execute Axis	MC_MoveRelative	Done-
Position		Busy
Velocity		Active
Acceleration		CommandAborted
Deceleration		Error
Jerk		ErrorID

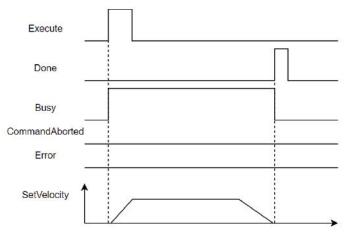
	16-Bit		-				
	ommand 32-Bit		MC MoveRelative: Relati	ive position	ing		
CC	mmand		MC_MOVERCIATIVE. Retat	ive position			
C	perand	Name	Description	Nullable	Default value	Range	Data Type
	S1	Axis	Axis name/axis ID	No	-	-	WORD
	S2	Position	Target position	No	0	Positive/ negative/0	REAL
	S3	Velocity	Target velocity	Yes	100	Positive number	REAL
	S4	Acceleration	Acceleration	Yes	1000	Positive number	REAL

16-Bit command		-								
32-Bit command	MC_MoveRelative: Relative positioning									
Operand	Name	Name Description Nullable Default value Range								
S5	Deceleration	Deceleration	Yes	1000	Positive number	REAL				
\$6	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL				
D1	Done	Command execution completion	Yes	OFF	ON/OFF	BOOL				
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL				
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL				
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D6	ErrorID	Error code	Yes	0	-	WORD				

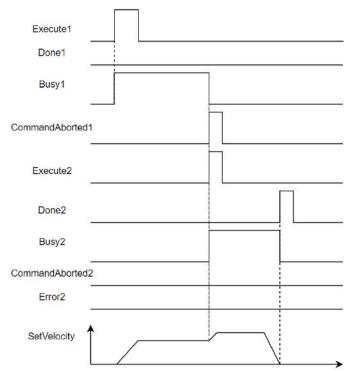
Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	-	-	√	√	✓
S3	✓	-	-	-	✓	✓	✓
S4	√	-	-	ı	\	\	√
S5	√	-	-	1	\	\	√
S6	√	-	-	ı	\	\	√
D1	-	√	√	\	-	-	✓
D2	-	√	√	\	-	-	✓
D3	-	√	√	\	1	1	√
D4	-	√	√	\	ı	ı	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	✓	√

- 1. The MC_MoveRelative command is used to control the bus servo axis or local pulse axis to achieve relative positioning, and is valid to the rising edge.
- 2. On the rising edge of the Execute input, the command locks the left input parameters such as Position and Velocity, triggers the relative positioning function, and switches the axis state to DiscreteMotion state.
- 3. Position is used to set the distance for relative positioning. Regardless of the linear or rotary mode, if Position is a positive number, the axis will run in the positive direction for the distance specified by Position; if Position is negative number, the axis will run in the negative direction for the distance specified by Position.
- 4. Jerk is used to set the type of the speed curve. Jerk=0 represents the T-type curve acceleration and deceleration, while Jerk>0 represents the S-type curve acceleration and deceleration.
- 5. This command supports the mutual interruption between functional blocks according to the PLCopen state machine standards.

Resetting This Command

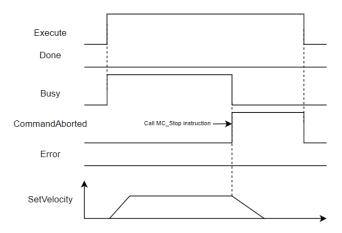

During the validity period of the Busy signal of the MC_MoveRelative command, if the MC_MoveRelative command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

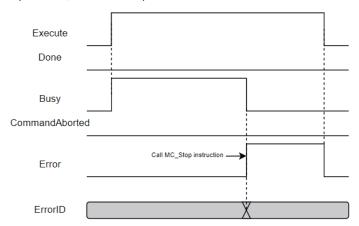

During the validity period of the Busy signal of the current MC_MoveRelative command, if the second MC_MoveRelative command is triggered, the second command will re-plan with new target parameters according to the current motion position, velocity, etc., while the current MC_MoveRelative command will be interrupted and invalidated.

Timing diagram

• In the StandStill state, the axis calls this command to perform the relative positioning motion with a T-typed curve.



• During the operation of relative positioning, another relative positioning command (acting on the same axis) is triggered.



• During the relative positioning motion, the axis is interrupted by the MC_Stop command.

• During the axis operation, the driver experiences a fault.

3.21.14 MC_MoveVelocity

-	Execute Axis	MC_MoveVelocity	InVelocity
-	Direction		Busy-
-	Velocity		Active-
-	Acceleration		CommandAborted-
-	Deceleration		Error-
-	Jerk		ErrorID-

16-Bit		-								
32-Bit command		MC_MoveVelocity: Velocity								
Operand	Name	Name Description Nullable Default value Range								
S1	Axis	Axis name/axis ID	No	-	-	WORD				
S2	Direction	Axis motion direction 0: negative Others: positive	Yes	1	Positive/ negative/0	INT				
S3	Velocity	Target velocity	Yes	100	Positive number	REAL				
S4	Acceleration	Acceleration	Yes	1000	Positive number	REAL				

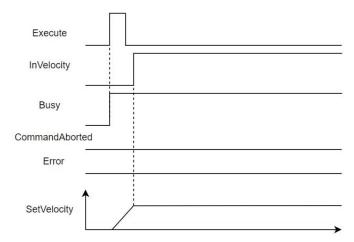
16-Bit command		-									
32-Bit command		MC_MoveVelocity: Velocity									
Operand	Name	Description	Nullable	Default value	Range	Data Type					
S5	Deceleration	Deceleration	Yes	1000	Positive number	REAL					
S6	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL					
D1	InVelocity	Reach target velocity	Yes	OFF	ON/OFF	BOOL					
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL					
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL					
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL					
D6	ErrorID	Error code	Yes	0	-	WORD					

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	√	-	-	-	√	√	√
S3	√	-	-	-	√	√	√
S4	√	-	-	-	√	√	√
S5	√	-	-	-	√	√	√
S6	√	-	-	-	√	√	√
D1	-	√	√	√	-	-	√
D2	-	√	√	√	-	-	√
D3	-	√	√	√	-	-	√
D4	-	√	√	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√

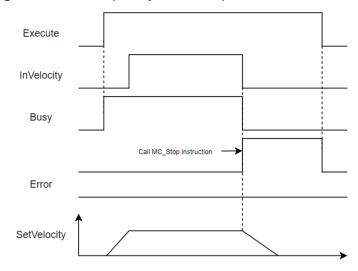
- 1. The MC_MoveVelocity command is used to control the velocity of the bus servo axis and local pulse axis, and is valid to the rising edge.
- 2. Jerk is used to set the type of the speed curve. Jerk=0 represents the T-type curve acceleration and deceleration, while Jerk>0 represents the S-type curve acceleration and deceleration.
- 3. This command supports the mutual interruption between functional blocks according to the PLCopen state machine standards.
- 4. After calling this command, you can call the MC_Stop, MC_Halt and MC_ImmediateStop commands to stop the axis from running.

Resetting This Command

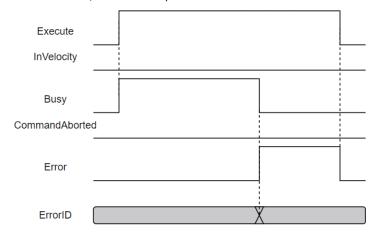
During the validity period of the Busy signal of the MC_MoveVelocity command, if the MC_MoveVelocity command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.



Multiple Starts of This Command


During the validity period of the Busy signal of the MC_MoveVelocity command, if the second MC_MoveVelocity command is triggered, the second command will re-plan with new target parameters according to the current motion position, velocity, etc., while the first command will be interrupted and invalidated.

Timing diagram


• In the StandStill state, the axis calls this command to perform the continuous motion with a T-typed curve.

• During running, the axis is interrupted by the MC_Stop command.

• During the axis acceleration, the driver experiences a fault.

3.21.15 MC_Jog

	Enable	MC_Jog	
-	Axis		
-	JogForward		
	JogBackward		Busy-
	Velocity		Active-
-	Acceleration		CommandAborted
-	Decerlation		Error
-	Jerk		ErrorID

16-Bit command			-									
32-Bit command		MC_Jog: Continuous run										
Operand	Name	Description	Nullable	Default value	Range	Data Type						
S1	Axis	Axis name/axis ID	No	-	-	WORD						
S2	JogForward	Enable forward	No	OFF	ON/OFF	BOOL						
S3	JogBackward	Enable backward	No	OFF	ON/OFF	BOOL						
S4	Velocity	Target velocity	Yes	100	Positive number	REAL						
S5	Acceleration	Acceleration	Yes	1000	Positive number	REAL						
S6	Deceleration	Deceleration	Yes	1000	Positive number	REAL						
S7	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL						
D1	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL						
D2	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL						
D3	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL						
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL						
D5	ErrorID	Error code	Yes	0	-	WORD						

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	√	-	-	-	✓
S3	√	-	√	-	-	-	✓
S4	√	-	-	-	√	√	✓
S5	✓	-	-	-	✓	✓	✓
S6	√	-	-	-	√	√	✓
S7	√	-	-	-	√	√	✓

Operand	Const	Υ	М	S	D	R	Custom Variables
D1	-	\	√	\	-	ı	√
D2	-	\	√	\	-	ı	√
D3	-	\	√	\	-	1	✓
D4	-	✓	√	✓	-	-	√
D5	-	-	-	-	√	✓	✓

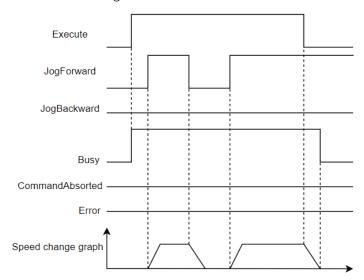
- 1. The MC_Jog command is used to control the bus servo axis and local pulse axis to achieve continuous axis run, and the direction is determined by the enable of JogForward and JogBackward.
- 2. When JogForward is set to TRUE, the axis runs in the positive direction; when JogForward is set to FALSE, the axis decelerates and then stops. When JogBackward is set to TRUE, the axis runs in the negative direction; when JogBackward is set to FALSE, the axis decelerates and then stops.
- 3. During the positive axis run, if JogForward is set to TRUE, the axis decelerates and then stops. During the negative axis run, if JogBackward is set to TRUE, the axis decelerates and then stops.
- 4. Jerk is used to set the type of the speed curve. Jerk=0 represents the T-type curve acceleration and deceleration, while Jerk>0 represents the S-type curve acceleration and deceleration.
- 5. This command supports the mutual interruption between functional blocks according to the PLCopen state machine standards.
- 6. After calling this command, you can call the MC_Stop, MC_Halt and MC_ImmediateStop commands to stop the axis from running.

Resetting This Command

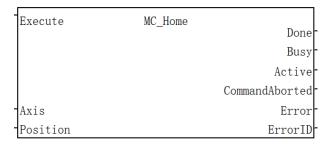
During the validity period of the Busy signal of the MC_Jog, if the MC_Jog command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

During the validity period of the Busy signal of the MC_Jog command, if the second MC_Jog command is triggered, the second command will re-plan with new target parameters according to the current motion position, velocity, etc., while the first command will be interrupted and invalidated.


Timing diagram

• When only Enable is valid, the axis is in the Standstill state.


Enable	
JogForward	 -
JogBackward	
Busy	
CommandAborted	
Error	

• When the inputs of Enable and JogForward are valid.

3.21.16 MC_Home

16-Bit			_							
command										
32-Bit	MC Home: Home									
command										
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S1	Axis	Axis name/axis ID	No	-	-	WORD				
S2	Position	Offset position	No	0	-	REAL				
D1	Done	Completion sign	Yes	OFF	ON/OFF	BOOL				
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL				
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL				
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D6	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	✓
S2	√	-	-	-	√	✓	✓
D1	-	√	√	√	-	-	√

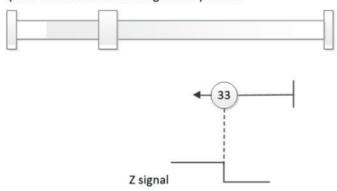
Operand	Const	Υ	М	S	D	R	Custom Variables
D2	-	√	\	\	-	ı	\
D3	-	√	√	✓	-	-	✓
D4	-	√	√	√	-	-	√
D5	-	√	\	\	-	ı	\
D6	-	-	-	-	√	√	√

- 1. The MC_Home command is used to control the bus servo axis or local pulse axis to home, and is valid to the rising edge.
- 2. This command can be called only by switching the axis to the enabled state using the MC_Power command.
- 3. On the rising edge of the command, the function block locks the Position input parameter, the axis processes the Homing state and performs the homing motion. Position is used to set the origin offset, parameters such as home mode is set in the axis configuration interface.
- 4. This command does not support the virtual axis mode.
- 5. This command does not support the mutual interruption between functional blocks.
- 6. After calling this command, you can call the MC_Stop and MC_ImmediateStop commands to stop the axis from running.
- 7. When using the bus axis for servo homing, the PDO object dictionary should be configured with 0x6041(StatusWord), 0x6040(ControlWord), 0x6060(OperationMode), 0x6061(ActOperationMode).

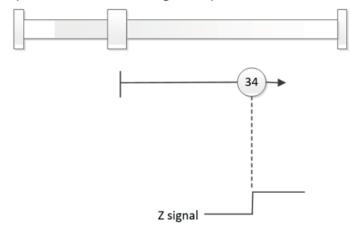
Bus Axis Home Modes:

There are four types of signals related to home modes, namely: positive limit switch (POT), negative limit switch (NOT), reference point switch (Index), and encoder Z signal. See below for specific meanings of home modes:

Homing method (DS402)	Start direction	Target position	Reference point position	Homing method (P5.10)	Description
1	Negative	NOT	Z pulse	1	Using Z pulse and negative limit switch: The drive moves towards negative limit switch at high speed, then returns at low speed and searches for target zero position (the first encoder Z pulse position after leaving NOT) after reaching NOT. Z signal pulse Negative limit switch (N-OT)
2	Positive	POT	Z pulse	0	Using Z pulse and positive limit switch: The drive moves towards positive limit switch at high speed, then returns at low speed and searches for target zero position (the first encoder Z pulse position after leaving NOT) after reaching POT.


Homing method	Start	Target	Reference point	Homing method	Description
(DS402)	direction	position	position	(P5.10)	·
					Z signal pulse Positive limit switch (P-OT)
3	Positive	Index	Z pulse	2	The initial direction movement of the drive
4	Positive	Index	Z pulse	12	depends on the switch state of the reference point. The target zero position is the first Z pulse position on the left or right side of the Index. Z signal Pulse Index switch
17	Negative	NOT	NOT	21	These four types of homing methods are similar
18	Positive	POT	POT	20	to 1–4 phases except that the target zero
19	Negative	Index	Index	23	position is related to the change of limit switch
20	Positive	Index	Index	22	or Index switch rather than using Z pulse. The following figure is diagram for 19 and 20, which are similar to method 3 and 4. Index Switch
35	-	Present position value	Present position value	8	The present position is the system zero point.

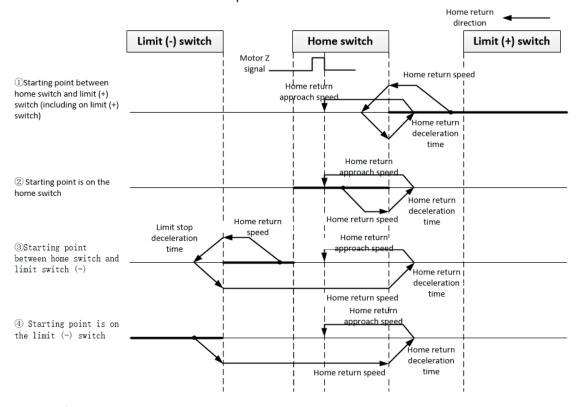
∠Note: Both home mode 19 and 20 correspond to home mode 22 (under P5.10), the actual home effect is consistent with that of home mode 19 shown in the figure above, and the home mode diagram drawn on the upper computer interface shall prevail.


Home mode 33:

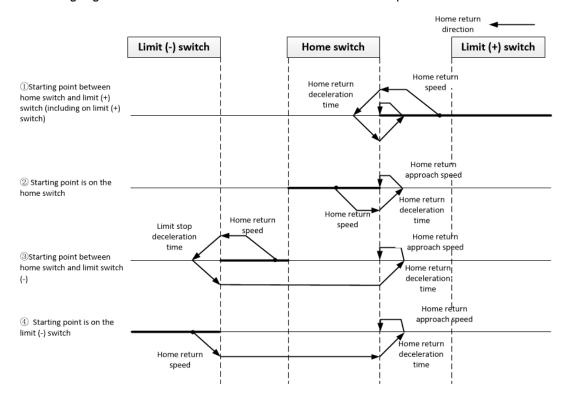
The initial direction of the drive is negative and the position of the first Zpulse is detected as the target zero position

Home mode 34:

The initial direction of the drive is positive, and the position of the first Z-pulse is detected as the target zero position.

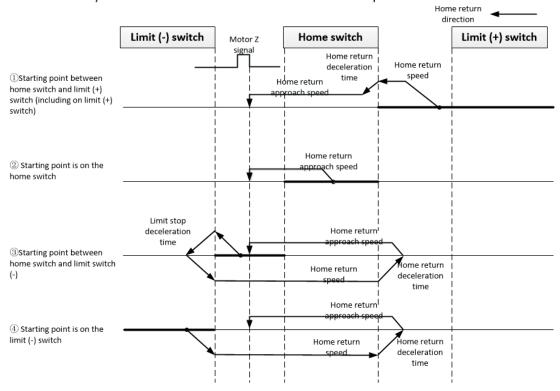


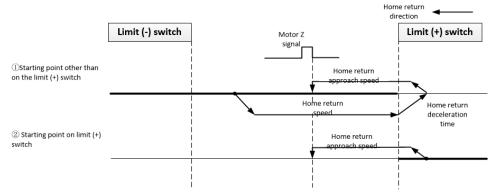
Local Pulse Axis Home Modes:


Home mode 2:

When the rising edge of the home switch is detected, the rising edge of the initial home switch is used as the home point.

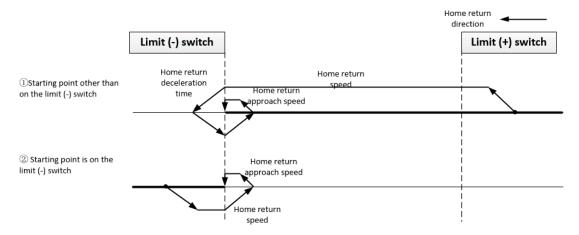
Home mode 3:

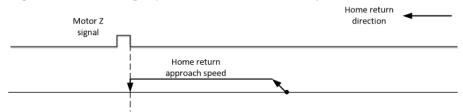

The rising edge of the home switch is detected and used as the home point.


Home mode 4:

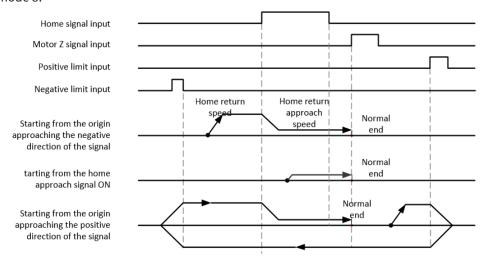
When the falling edge (rear end) of the home switch is detected, the rising edge of the home switch that was initially in the home return direction is used as the home point.

Home mode 5:

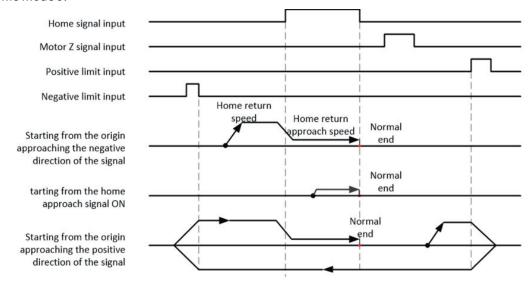

After detecting the rising edge of the limit switch in the direction opposite to the home return direction, reverse rotation is performed. Then, it stops at the rising edge of the motor Z signal, which is used as the home position.


Home mode 6:

Stop after detecting the rising edge of the limit switch in the home return direction.


Home mode 7:

It moves from the current value to the home return direction, and stops when it detects the rising edge of the motor Z signal, which is used as the home point.


(Note) If the home position sensor is ON at startup, the home position sensor is not detected, and action is taken in the home return direction.

Home mode 8:

Home mode 9:

∠Note: The origin signal, positive and negative hard limit signals, home mode, and home-related parameters (homing direction, homing velocity, etc.) should be set on the upper computer.

Controller Home	Applicable Scenarios
2	Origin signal (deceleration block signal) + motor Z signal, or origin signal + motor Z signal + positive and negative limit signals
3	Origin signal, or origin signal + positive and negative limit signals
4	Origin signal + motor Z signal, or origin signal + motor Z signal + positive and negative limit signals
5	Motor Z signal + positive and negative limit signals
6	Positive and negative limit signals
7	Motor Z signal
8	Origin signal + motor Z signal, or origin signal + motor Z signal + positive and negative limit signals
9	Origin signal, or origin signal + positive and negative limit signals
∠Noto :	

∠Note

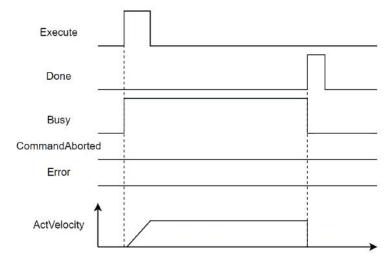
If there are only positive and negative limit signals on site, home mode 6 is selected.

If there are neither origin signal nor positive and negative limit signals on site, home mode 7 is selected in order to home the motor.

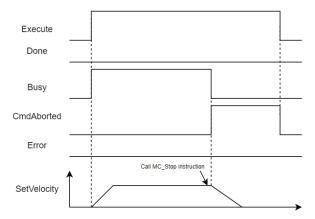
Home modes 2, 4, and 8 are suitable for most scenarios.

Resetting This Command

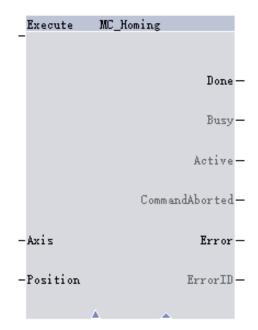
During the validity period of the Busy signal of the MC_Home command, if the MC_Home command is triggered again, the system displays that the MC_Home command is interrupted.


Multiple Starts of This Command

During the validity period of the Busy signal of the MC_Home command, if the second MC_Home command is triggered, the system displays that the first command is executed normally and the second command has an error.


Timing diagram

When this command is enabled, the driver performs the homing action normally.



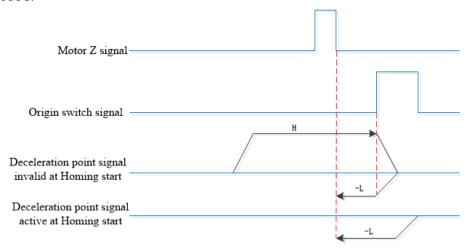
• During the homing process, the home command is interrupted by the MC_Stop command.

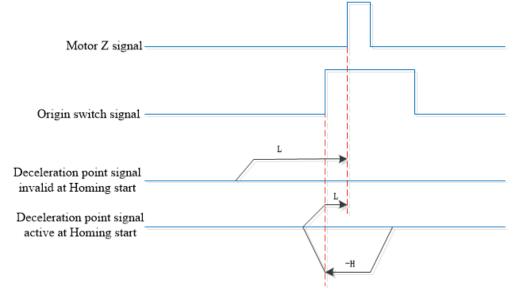
• During the homing process, the driver experiences a fault.

3.21.17 MC_Homing

16-Bit command		-									
32-Bit command		MC_Homing: Controller homing instruction									
Operand	Name	Name Description Nullable Default Range Type									
S1	Axis	Axis name/axis ID	No	-	ı	WORD					
S2	Position	Offset position	No	0	-	REAL					
D1	Done	Completion sign	Yes	OFF	ON/OFF	BOOL					
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL					
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL					
D5	Error	Fault flag	Yes	OFF	ON/OFF	BOOL					
D6	ErrorID	Fault code	Yes	0	-	WORD					

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	✓
S2	✓	-	-	-	√	✓	√
D1	-	√	√	√	-	-	✓
D2	-	√	√	√	-	-	✓
D3	-	√	√	√	-	-	√
D4	-	√	√	√	-	-	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	✓	√	✓


- The MC_Homing command is used to control the bus servo axis to achieve controller homing, and is
 valid to the rising edge. After homing is completed, the position of the bus servo axis is read as zero (the
 home offset value is zero), and the position of the servo drive is not operated.
- 2. This command can be called only by switching the axis to the enabled state using the MC_Power command.
- 3. On the rising edge of the command, the function block locks the Position input parameter, the axis processes the Homing state and performs the homing motion. Position is used to set the origin offset, parameters such as home mode is set in the axis configuration interface.
- 4. This command does not support the pulse axis and virtual axis modes.
- 5. This command does not support the mutual interruption between functional blocks.
- 6. After calling this command, you can call the MC_Stop and MC_ImmediateStop commands to stop the axis from running.
- 7. There are three differences between MC_Homing instruction and MC_Home instruction. Difference one, MC_Home instruction controls the bus servo axis and local pulse axis for homing, while MC_Homing instruction only supports controlling bus servo axis for homing; Difference two, MC_Home instruction controls the bus servo axis for homing through sending instruction to the servo drive, while MC_Homing instruction controls the bus servo axis for homing through controller internal algorithm. Difference three, after the bus servo homing is complete, MC_Home instruction operates the servo drive and clears the position of the servo drive, while the MC_Homing instruction does not operate the servo drive and does not change the position of the servo drive. The similarity between the MC_Homing instruction and the MC_Home instruction is that both instructions will read the position of the axis as zero after the homing is complete.


Bus Axis Controller Home Modes:

The bus axis controller home modes follow the standard 402 protocol. There are four types of signals related to home modes, namely: positive limit switch (POT), negative limit switch (NOT), reference point switch (Index), and encoder Z signal. See below for specific meanings of home modes (at present, only home modes 3, 4, 35 are supported):

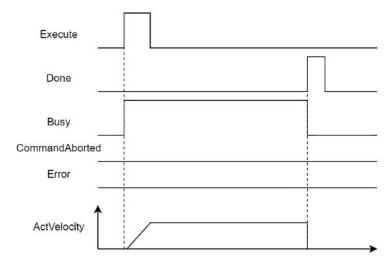
Home mode 3:

Home mode 4:

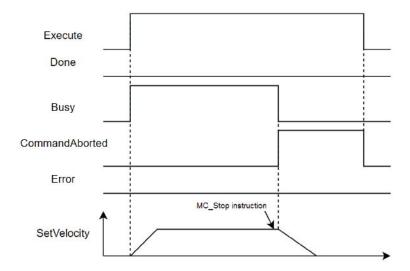
Home mode 35: Take the current position as the mechanical origin, and the origin is returned to zero.

Resetting This Command

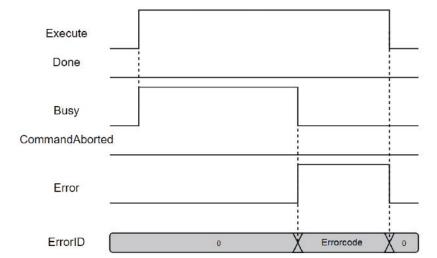
During the validity period of the Busy signal of the MC_Homing command, if the MC_Homing command is triggered again, the system displays that the MC_Homing command is interrupted.


Multiple Starts of This Command

During the validity period of the Busy signal of the MC_Homing command, if the second MC_Homing command is triggered, the system displays that the first command is executed normally and the second command has an error.



Timing diagram


• When this command is enabled, the driver performs the controller homing action normally.

• During the homing process, the controller homing command is interrupted by the MC_Stop command.

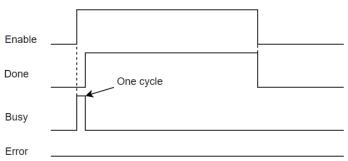
• During the homing process, the driver experiences a fault.

3.21.18 MC_SetOverride

Enable	MC_SetOverride	
Axis		Done
Velocity		Busy
Acceleration		Active
Deceleration		Error
Jerk		ErrorID

16-Bit command			-							
32-Bit command	MC_SetOverride: Variable velocity, acceleration, and deceleration									
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S1	Axis	Axis name/axis ID	No	-	-	WORD				
S2	Velocity	Target velocity after velocity regulation	Yes	100	Positive number	REAL				
S3	Acceleration	Acceleration after velocity regulation	Yes	1000	Positive number	REAL				
S3	Deceleration	Deceleration after velocity regulation	Yes	1000	Positive number	REAL				
S4	Jerk	Jerk after velocity regulation 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL				
D1	Done	Completion sign	Yes	OFF	ON/OFF	BOOL				
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D3	Active	Alternate waiting flag	Yes	OFF	ON/OFF	BOOL				
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D5	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	✓	-	-	-	√	√	✓
S3	√	-	-	-	√	√	√
S4	√	-	-	-	√	√	√
S5	✓	-	-	-	√	√	✓
D1	-	√	√	√	-	-	√
D2	-	✓	√	√	-	-	√
D3	-	√	√	√	-	-	✓
D4	-	√	√	√	-	-	√
D5	-	-	-	-	✓	√	✓


- 1. The MC_SetOverride command is used to achieve variable velocity, acceleration, and deceleration, and is valid at high levels.
- 2. Velocity, Acceleration, and Jerk represent the velocity, acceleration, and acceleration after velocity adjustment, respectively.
 - It should be noted that setting Velocity to a negative number is only valid for the MoveVelocity command, where a positive number indicates that the command is running in the forward direction, while a negative number indicates that the command is running in the negative direction. For other commands, positive numbers are valid (processed by taking absolute values internally).
- 3. Velocity regulation by the MC_Jog and MC_Home commands is not supported, while velocity regulation by other single-axis motion related commands is supported.
- 4. This command is only used for single-axis motion function blocks and does not support velocity regulation for axis group, master axis, and slave axis.

Multiple Starts of This Command

During the validity period of the Busy signal of the MC_SetOverride command, if the second MC_SetOverride command is triggered, the system displays that the first command remains running and the second command has an error.

Timing diagram

During the execution of the MC_MoveVelocity command, the MC_SetOverride command is triggered.

3.21.19 MC_Stop

Graphic Block

Execute	MC Stop	
2	o_5	Done-
		Busy-
		Active-
Axis		CommandAborted
Deceleration		Error
Jerk		ErrorID

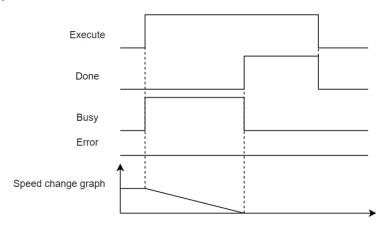
16-Bit command		-						
32-Bit command		MC_Stop: Stop						
Operand	Name	Description	Nullable	Default value	Range	Data Type		
S1	Axis	Axis name/axis ID	No	-	-	WORD		
S2	Deceleration	Deceleration	Yes	1000	Positive number	REAL		
S3	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL		
D1	Done	Completion sign	Yes	OFF	ON/OFF	BOOL		
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL		
D3	Active	Alternate waiting flag	Yes	OFF	ON/OFF	BOOL		
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL		
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL		
D6	ErrorID	Error code	Yes	0	-	WORD		

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	1	-	1	1	1	-
S2	✓	-	-	-	√	√	√
S3	√	-	-	-	√	√	√
D1	-	√	√	√	-	-	√
D2	-	√	√	√	-	-	√
D3	1	\	√	\	ı	ı	✓
D4	-	√	√	√	-	-	√
D5	-	√	√	√	-	-	✓
D6	-	-	-	-	✓	✓	✓

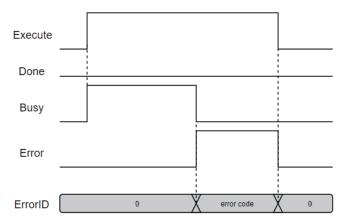
Function Description

- 1. The MC_Stop command is used to control the bus servo axis and local pulse axis to achieve a single-axis stop, and triggers the rising edge.
- 2. On the rising edge of Execute, the function block locks input parameters such as Deceleration and Jerk, and the axis is in the Stopping state and performs the decelerating stop motion. After the deceleration is completed, the Done signal is valid and remains in the Stopping state during the Execute=ON period. In case of Execute=OFF and Done=ON, the axis switches from the Stopping state to the Standstill state.

- 3. Jerk is used to set the type of the speed curve. Jerk=0 represents the T-type curve acceleration and deceleration, while Jerk>0 represents the S-type curve acceleration and deceleration.
- 4. This command is only used for single-axis motion function blocks and does not support axis group, master axis, slave axis, etc.
- 5. When the axis is in the Stopping state, other motion commands cannot interrupt this command. Only after the axis is restored to the Standstill state through the falling edge of energy flow of this command can other motion control commands run.


Resetting This Command

During the validity period of the Busy signal of the MC_Stop command, if the MC_Stop command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.


Multiple Starts of This Command

During the validity period of the Busy signal of the MC_Stop command, if the second MC_Stop command is triggered, the system displays that the first MC_Stop command remains running and the second MC_Stop command has an error.

Timing diagram

During the command operation, the driver experiences a fault.

3.21.20 MC_Halt

Graphic Block

\cdot	Execute	MC Halt	
	LACCUTC	MC_Hare	Done-
			Busy-
			Active-
d	Axis		CommandAborted-
d	Deceleration		Error-
1	Jerk		ErrorID-

16-Bit command		-							
32-Bit command		MC_Halt: Halt							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Axis	Axis name/axis ID	No	-	-	WORD			
S2	Deceleration	Deceleration	Yes	1000	Positive number	REAL			
S3	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL			
D1	Done	Completion sign	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			
D3	Active	Alternate waiting flag	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL			
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D6	ErrorlD	Error code	Yes	0	-	WORD			

Operand	Const	Υ	M	S	D	R	Custom Variables
S1	\	1	-	-	-	1	-
S2	\	1	-	-	√	\	✓
S3	\	1	-	-	√	\	✓
D1	ı	\	√	√	-	1	√
D2	ı	\	√	√	-	1	√
D3	-	✓	√	√	-	-	✓
D4	-	✓	√	√	-	-	✓
D5	-	✓	√	√	-	-	✓
D6	-	-	_	-	√	√	√

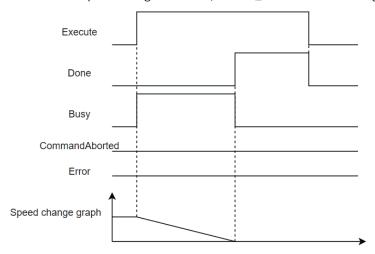
Function Description

- 1. The MC_Halt command is used to control the bus servo axis and local pulse axis to achieve a single-axis stop, and triggers the rising edge.
- 2. On the rising edge of Execute, the function block locks input parameters such as Deceleration and Jerk, and the axis is in the DiscreteMotion state and performs the decelerating stop motion. After the deceleration is completed, the Done signal is valid, and the axis is restored to the Standstill state.
- 3. Jerk is used to set the type of the speed curve. Jerk=0 represents the T-type curve acceleration and

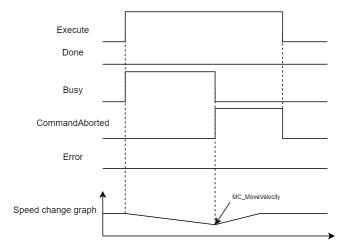
deceleration, while Jerk>0 represents the S-type curve acceleration and deceleration.

4. This command is only used for single-axis motion function blocks and does not support axis group, master axis, slave axis, etc.

Resetting This Command

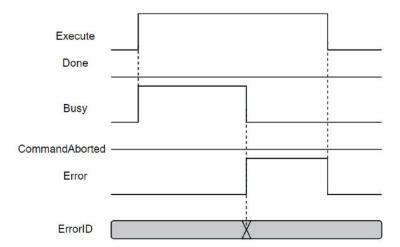

During the validity period of the Busy signal of the MC_Halt command, if the MC_Halt command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

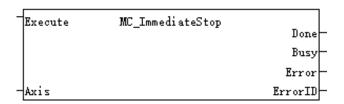

During the validity period of the Busy signal of the MC_Halt command, if the second MC_Halt command is triggered, the second command will re-plan with new target parameters according to the current motion position, velocity, etc., while the first command will be interrupted and invalidated.

Timing diagram

During the execution of the positioning command, the MC_Halt command is triggered.



• After the MC_Halt command is trigged, the velocity command is called again to interrupt the running of the MC_Halt command.



During the execution of the MC_Halt command, the machine stops due to a fault.

3.21.21 MC_ImmediateStop

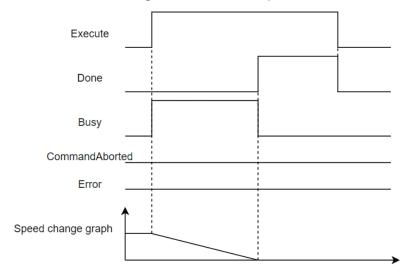
Graphic Block

16-Bit command		MC_ImmediateStop: Immediate stop							
32-Bit			-						
command									
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Axis	Axis name/axis ID	No	-	-	WORD			
D1	Done	Completion sign	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			
D3	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D4	ErrorID	Error code	Yes	0	-	WORD			

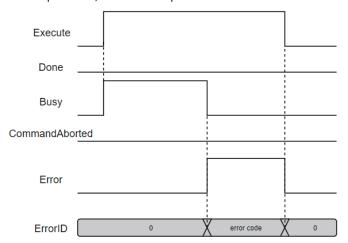
Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
D1	-	√	√	√	-	-	✓
D2	-	✓	✓	√	-	-	✓
D3	-	√	√	√	-	-	√
D4	-	-	-	-	√	√	✓

Function Description

- 1. The MC_ImmediateStop command is used for single-axis stop, and triggers the rising edge.
- 2. On the rising edge of Execute, the axis immediately stops. After the stop is completed, the Done signal is valid and remains in the Stopping state during the Execute=ON period. In case of Execute=OFF and Done=ON, the axis switches from the Stopping state to the Standstill state.


- 3. This command is only used for single-axis motion function blocks and does not support axis group, master axis, slave axis, etc.
- 4. When the axis is in the Stopping state, other motion commands cannot interrupt this command. Only after the axis is restored to the Standstill state through the falling edge of energy flow of this command can other motion control commands run.

Multiple Starts of This Command


For multiple MC_ImmediateStop commands, the first triggered one shall prevail, while the rest ones report a fault.

Timing diagram

• This command is called after calling the MC_MoveVelocity command.

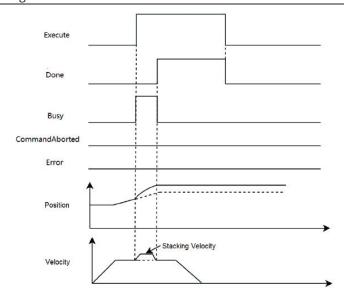
During the command operation, the driver experiences a fault.

3.21.22 MC_MoveSuperImposed

-	Execute	MC MoveSuperImposed
	2.100400	Done:
-	Axis	Busy:
-	Position	Active
-	Velocity	CommandAborted
-	Acceleration	Error
-	Deceleration	ErrorID

16-Bit command		-							
32-Bit command		MC_ MoveSuperImposed: Superimposed motion							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Axis	Axis name/axis ID	No	-	-	WORD			
S2	Position	Compensation distance	No	0	Positive/ negative/0	REAL			
S3	Velocity	Speed	Yes	100	Positive number	REAL			
S4	Acceleration	Acceleration	Yes	1000	Positive number	REAL			
S5	Deceleration	Deceleration	Yes	1000	Positive number	REAL			
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			
D3	Active	Alternate waiting flag	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL			
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D6	ErrorID	Error code	Yes	0	-	WORD			

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	√	-	-	-	√	√	✓
S3	√	-	-	-	√	√	✓
S4	√	-	-	-	√	√	✓
S5	√	-	-	-	√	√	✓
D1	-	√	√	√	-	-	√
D2	ı	√	\	√	-	-	√
D3	-	√	✓	√	-	-	✓
D4	-	√	✓	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√


On the rising edge of Execute (start), this command superimpose a relative positioning motion on the basis of the original control mode of the axis according to the input parameters. The displacement of the superimposed motion is specified by Position, and the stacking velocity is specified by Velocity.

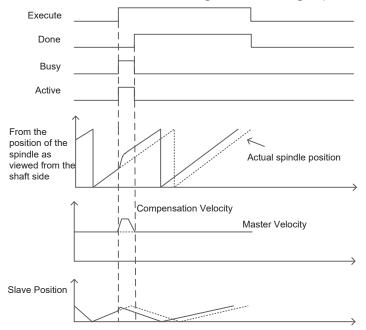
Processing Methods for Axis in Different Control Modes

1. Single-Axis Positioning Related Commands

If this command is called separately, the system reports an error for this command. If called during the operation of the positioning commands (for absolute positioning or phase positioning), this command performs the superimposed motion. This command will change the trajectory of the original command.

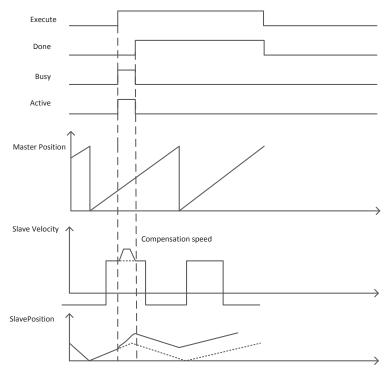
During the execution of this command, if you trigger other commands that enable the axis to handle the CSP mode, such as MC_MoveAbsolute, this command will be interrupted. This command can be stopped by the MC_Stop, MC_Halt, and MC_ImmediateStop commands.

During the validity period of the MC_Halt command, the superimposed motion command cannot be executed.


During the execution of this command, if you execute non-CSP motion related commands such as MC_Home, the system reports an error for this command.

2. Axis Group Related Commands

When the axis call this command during the control of the axis group related commands, this command reports an error and does not perform the superimposed motion action.

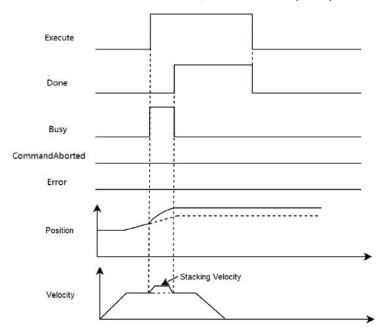

3. Cam and Gear Related Commands

The operation of the master axis follows the rules of single axis and axis group related commands.

If called when the slave axis follows gears and cams, this command performs the superimposed motion action.

The MC_GearOut and MC_CamOut commands can terminate the execution of this command.

Resetting This Command


During the validity period of the Busy signal of the MC_MoveSuperImposed command, if the MC_MoveSuperImposed command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

During the validity period of the Busy signal of the MC_MoveSuperImposed command, if the second MC_MoveSuperImposed command is triggered, the system reports an error for the second command.

Timing diagram

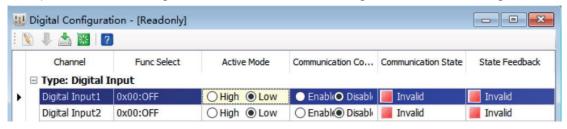
During the execution of the relative motion command, the MC_MoveSuperImposed command is triggered.

3.21.23 MC_TouchProbe

-	Enable	MC TouchProbe	
-	Axis		PosPosition
-	ProbeID		NegPosition
-	TriggerEdge		Done-
-	TerminalSource		Busy
-	TriggerMode		Active-
-	WindowOnly		CommandAborted
-	FirstPosition		Error
-	LastPosition		ErrorID-

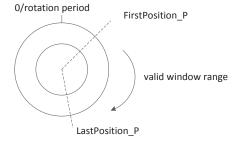
16-Bit		-							
32-Bit command		MC_TouchProbe: Probe							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Axis	Axis name/axis ID	No	-	-	WORD			
S2	ProbeID	Probe ID 0: probe 1 1: probe 2	No	0	0-1	INT			
\$3	TriggerEdge	Edge type 0: only rising edge triggered 1: only falling edge triggered	Yes	0	0-1	INT			
S4	TerminalSource	Probe signal source 0: DI terminal 1: encoder Z signal	Yes	0	0-1	INT			
S5	TriggerMode	Trigger type 0: single trigger 1: continuous trigger	Yes	0	0–1	INT			
\$6	Window Only	Probe window settings 0: The window function is turned off, and the probe signal can be detected in all position ranges 1: The window function is turned on, and the probe signal cab be detected only when the current position is ≥ FirstPosition and ≤ LastPosition	Yes	OFF	ON/OFF	BOOL			
S7	FirstPosition	Start position of probe window	Yes	0	Positive/ negative/0	REAL			
S8	LastPosition	End position of probe window	Yes	0	Positive/ negative/0	REAL			
D1	PosPosition	Rising edge latch position	Yes	0	Positive/ negative/0	REAL			
D2	NegPosition	Falling edge latch position	Yes	0	Positive/ negative/0	REAL			
D3	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL			
D4	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			

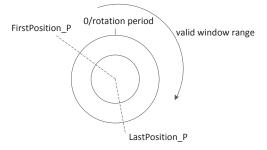
16-Bit command		-							
32-Bit command		MC_TouchProbe: Probe							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
D5	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL			
D6	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL			
D7	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D8	FrrorID	Error code, displaying error information	Yes	0	Positive/0	WORD			


Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	-	-	✓	✓	-
S3	✓	-	-	-	✓	✓	✓
S4	√	-	-	-	√	√	✓
S5	√	-	-	-	√	√	✓
S6		-	√	✓	-	-	✓
S7	√	-	-	-	√	√	✓
S8	√	-	-	-	√	√	✓
D1	ı	-	-	ı	\	\	√
D2	-	-	-	-	√	✓	✓
D3	-	√	√	√	-	-	✓
D4	ı	√	√	\	ı	1	√
D5	-	√	√	√	-	-	✓
D6	-	√	√	√	-	-	✓
D7	-	√	√	√	-	-	✓
D8	-	-	-	-	√	√	✓

- 1. This command does not support the virtual axis mode, the rising edge updates function block parameters, and the low-level module is invalid.
- 2. Currently, only the EtherCAT bus axis mode is supported, and the servo driver should be configured with the corresponding PDO.

PDO	Description			
0x60b8	Probe control word (required)			
0x60b9 Probe state word (optional)				
0x60ba	Rising edge latch of probe 1, encoder axis latch (optional)			
0x60bb	Falling edge latch of probe 1 (optional)			
0x60bc	Rising edge latch of probe 2, encoder axis latch (optional)			
0x60bd	Falling edge latch of probe 2 (optional)			


3. The probe 1 is triggered by switching value input 1 (DI1), while probe 2 is triggered by switching value input 2 (DI2). When using this command, the servo switching value needs to be configured as invalid.


4. The servo version number cannot be too low when probe 2 channel is required, where parameter R0.35 cannot lower than 2.62 and parameter R0.36 cannot be lower than 1.23.

- 5. The rising edge latch value is stored in Position, while the falling edge latch value is stored in NegPosition.
- 6. In case of TriggerEdge=0, only the rising edge trigger (including DI rising edge trigger and encoder axis Z signal trigger) is supported; in case of TriggerEdge=1, only the DI signal falling edge trigger is supported.
- 7. In case of TerminalSource=0, the DI signal trigger is selected; in case of TerminalSource=1, the encoder axis Z signal trigger is selected.
- 8. In case of WindowOnly=TRUE, the window function is enabled, and the probe signal can be detected on when the current position is within the window (the window size is determined by the parameters FirstPosition and LastPosition).
- 9. In the linear mode, the window range is greater than or equal to FirstPosition but less than or equal to LastPosition;
- 10. In circular mode, the command first uses FirstPosition and LastPosition to calculate the modulus over the cycle to obtain the range positions FirstPosition_P and LastPosition_P within one cycle.
- In case of FirstPosition_p<LastPosition_p, the valid window range is shown in the figure below.

In case of FirstPosition_p>LastPosition_p, the valid window range is shown in the figure below.

11. In case of TriggerMode=0, the single trigger mode is selected, and the trigger ends when a single latch occurs; in case TriggerMode=1, the continuous trigger mode is selected, and every successful trigger outputs the Done signal for one cycle.

12. The latch value triggered by the rising edge and encoder axis Z signal is output at the Position end, while the latch value triggered by the falling edge is output at the NegPosition end.

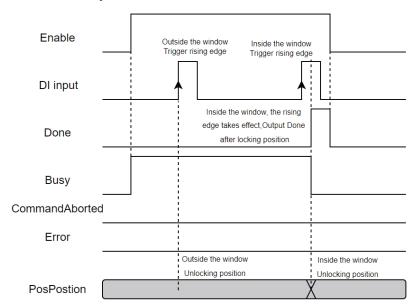
Resetting This Command

If this command is triggered again during the validity period of its Busy signal, it reads the probe value according to the new probe configuration parameters.

Multiple Starts of This Command

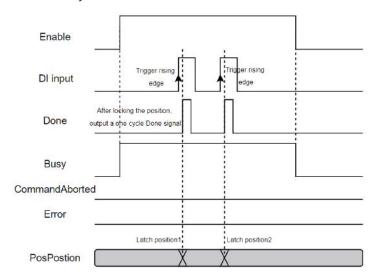
When multiple commands call the same probe channel (probe channels 1 and 2 for selection) of the same axis, if the next command is triggered during the Busy signal validity period of the previous command, the next command will take effect, and the previous command will be interrupted and invalidated.

If two commands call the same axis but different probe channels, they do not affect each other.

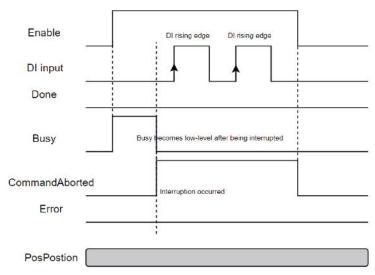

If multiple commands use the same probe channel of the same axis, the last triggered MC_MoveFeed command will interrupt the running MC_TouchProbe command, while the first triggered MC_MoveFeed command will trigger the MC_TouchProbe command to report an error (the probe channel has been occupied by the interrupt fixed length function).

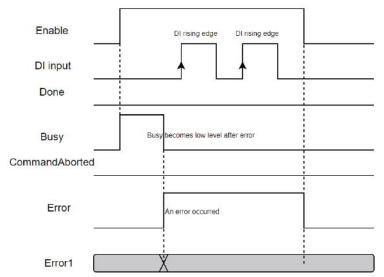
Timing diagram

There are two sources for probe signals, one is the rising edge of the encoder Z signal, the other is the rising or falling edge of the switch input. By default, probe channel 1 is triggered by switching value input 1 (DI1), while probe channel 2 is triggered by switching value input 2 (DI2).


Taking the rising edge of switching value input 1 as the signal source as an example, the timing of the probe is shown below.

• The rising edge of probe 1 is valid, the DI terminal is triggered in the single trigger mode, and the window function WindowOnly is TRUE.




• The rising edge of probe 1 is valid, the DI terminal is triggered in the continuous trigger mode, and the window function WindowOnly is FALSE.

• Probe 1 is interrupted by a probe-related command, and the window function WindowOnly is FALSE.

• A fault occurs in probe 1.

3.21.24 MC_MoveFeed

Graphic Block

Execute MC_MoveFeed Axis Position Velocity Acceleration Deceleration Jerk Direction Mode Interrupt InFeed FeedDistance Done FeedVelocity Busy WindowOnly Active FirstPosition CommandAborted LastPosition Error ErrorMode ErrorID

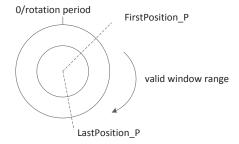
16-Bit command		-							
32-Bit command		MC_MoveFeed: Interrupt fixed length							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Axis	Axis name/axis ID	No	-	-	WORD			
S2	Position	Target position	Yes	0	Positive/ negative/0	REAL			
S3	Velocity	Target velocity	Yes	0	Positive number	REAL			
S4	Acceleration	Acceleration	Yes	0	Positive number	REAL			
S5	Deceleration	Deceleration	Yes	0	Positive number	REAL			
S6	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL			
S7	Direction	Direction In case of Mode=0 and circular mode: 0: positive 1: negative 2: minimum distance 3: current In case of Mode=2: 0: positive 1-3: negative	Yes	0	0–3	INT			
\$8	Mode	Mode 0: absolute positioning mode 1: relative positioning mode	Yes	0	0-2	INT			

16-Bit command		-				
32-Bit command		MC_MoveFeed: Interrupt	fixed lengt	th		
Operand	Name	Description	Nullable	Default value	Range	Data Type
		2: velocity mode				
S 9	Interrupt	Interrupt source selection 0: probe 1; 1: probe 2	Yes	0	0-1	INT
S10	FeedDistance	Displacement after reaching interrupt source Positive: After the interrupt source is reached, the axis runs for the distance specified by FeedDistance in the direction of original motion Negative: After the interrupt source is reached, the axis slows down to zero first, and then runs for the distance specified by FeedDistance in the opposite direction of the original motion	Yes	0	Positive/ negative/0	REAL
S11	FeedVelocity	Target velocity after reaching interruption	Yes	0	Positive number	REAL
S12	WindowOnly	Enable interrupt source window 0: Disable window detection function 1: Enable window detection function	Yes	OFF	ON/OFF	BOOL
S13	FirstPosition	Start position of interrupt source window	Yes	0	Positive/n egative/0	REAL
S14	LastPosition	End position of interrupt source window	Yes	0	Positive/n egative/0	REAL
S15	ErrorMode	Fault mode OFF: If the probe signal has not yet arrived after the position specified by Position is reached, the command does not report an error and continues to wait for the probe signal ON: If the probe signal has not yet arrived after the position specified by Position is reached, the function block reports an error	Yes	OFF	ON/OFF	BOOL
D1	InFeed	Interrupt signal validity	Yes	OFF	ON/OFF	BOOL
D2	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL
D3	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL
D4	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL
D5	CommandAbo rted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL
D6	Error	Error sign	Yes	OFF	ON/OFF	BOOL

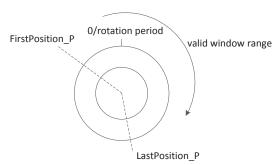
16-Bit command		-					
32-Bit command		MC_MoveFeed: Interrupt fixed length					
Operand	Name	Description	Nullable	Default value	Range	Data Type	
D7	ErrorID	Fault code, which displays fault information	Yes	0	Positive/0	WORD	

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	√	-	-	-	√	√	√
S3	√	-	-	-	√	√	√
S4	√	-	-	-	√	√	√
S5	√	-	-	-	√	√	√
S6	√	-	-	-	√	√	√
S7	\	-	-	-	√	√	√
S8	\	-	-	-	√	√	√
S9	✓	-	-	-	√	√	√
S10	√	-	-	-	✓	✓	✓
S11	✓	-	-	-	√	✓	✓
S12	-	-	√	√	-	-	√
S13	✓	-	-	-	✓	✓	✓
S14	√	-	-	-	√	√	✓
S15	✓	-	-	-	√	√	√
D1	-	√	✓	✓	-	-	✓
D2	ı	√	√	√	-	-	√
D3	-	√	√	√	-	-	√
D4	-	√	✓	√	-	-	√
D5	-	√	✓	✓	-	-	✓
D6	-	√	√	√	-	-	√
D7	-	-	-	-	√	√	√

- 1. This command does not support the virtual axis mode, the rising edge updates function block parameters, and pulling down the module does not interrupt the existing motion.
- 2. Currently, only the EtherCAT bus axis mode is supported, and the servo driver should be configured with the corresponding PDO.


PDO	Description
0x60b8	Probe control word (required)
0x60b9	Probe state word (optional)
0x60ba	Rising edge latch of probe 1, encoder axis latch (optional)
0x60bc	Rising edge latch of probe 2, encoder axis latch (optional)

- 3. Before the interrupt signal arrives, the axis moves according to the Mode parameter settings. In case of Mode=0, the axis moves in the absolute mode; in case of Mode=1, the axis moves in the relative mode; in case of Mode=2, the axis moves in the velocity mode.
- 4. Direction can take effect in the following two modes: Mode=0, where the axis is set to circular mode, and its motion mode is consistent with the description in MC_MoveAbsolute; Mode=2, where



Direction=0 means clockwise and Direction=1 means counterclockwise.

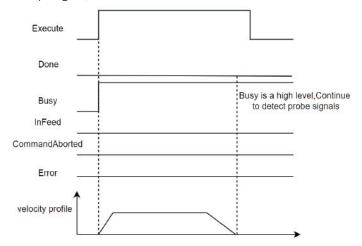
- 5. FeedDistance represents the distance traveled after the interrupt signal arrives, where a positive number indicates that the axis moves for the specified distance in the direction of the original motion after the interrupt source arrives, while a negative number indicates that the axis first slows down zero and then moves the specified distance in the opposite direction of the original motion after the interrupt source arrives;
- 6. In case of WindowOnly=TRUE, the window function is enabled, and the probe signal can be detected on when the current position is within the window (the window size is determined by the parameters FirstPosition and LastPosition);
- 7. In the linear mode, the window range is greater than or equal to FirstPosition but less than or equal to LastPosition.
- 8. In circular mode, the command first uses FirstPosition and LastPosition to calculate the modulus over the cycle to obtain the range positions FirstPosition_P and LastPosition_P within one cycle;
- In case of FirstPosition_p<LastPosition_p, the valid window range is shown in the figure below.

• In case of FirstPosition_p>LastPosition_p, the valid window range is shown in the figure below.

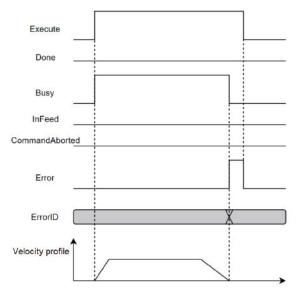
- 9. When Mode=0 or Mode=1 is configured, if the probe signal has not arrived after the distance is completed, the system takes the corresponding action depending on the value of ErrorMode: in case of ErrorMode=FALSE, it keeps the Busy state and continues to wait for the probe signal; in case of ErrorMode=TRUE, it reports an error.
- 10. Starting the interrupt fixed length command interrupts probe commands that occupy the same probe channel of the same axis. But the probe command cannot interrupt the interrupt fixed length command (if the channel is occupied, the probe command reports an error, the interrupt fixed length command runs normally).

Resetting This Command

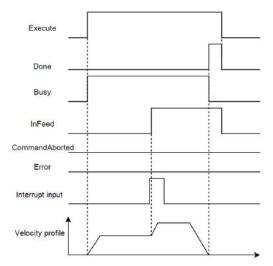
If this command is triggered again during the validity period of its Busy signal, it re-plans the motion according to the new configuration parameters.


Multiple Starts of This Command

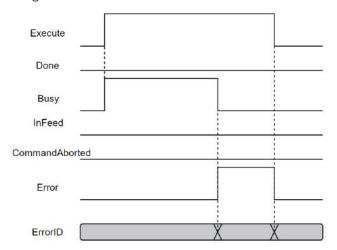
When multiple commands call the same axis, if the next command is triggered during the Busy signal validity period of the previous command, the next command will take effect, and the previous command will be interrupted and invalidated.



Timing diagram


• When the relative positioning and absolute positioning modes are selected, the motion ends without triggering an interrupt signal, and ErrorMode is OFF.

• When the relative positioning and absolute positioning modes are selected, the motion ends without triggering an interrupt signal, and ErrorMode is ON.



• When the relative positioning, absolute positioning, and velocity modes are selected, an interrupt signal arrives during the motion.

• An error occurs during the command execution.

3.21.25 MC_MoveBuffer

	Execute Axis	MC_MoveBuffer	
-	Position		
	Velocity		
	Direction		Done
	Number		Busy
	Acceleration		Active
	Deceleration		CommandAborted
	Jerk		Index
	VelocityMode		Error
-	AbsRelMode		ErrorID

16-Bit command		-							
32-Bit command		MC_MoveBuffer Multi-segment positioning							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Axis	Axis name/axis ID	No	-	-	WORD			
S2	Position	Target position	No	0	Positive/ negative/0	REAL [16]			
S3	Velocity	Target velocity	No	100	Positive number	REAL [16]			
S4	Direction	Direction (valid in absolute mode) 0: positive (velocity > 0) 1: negative (velocity < 0) 2: minimum distance 3: current	No	-	0–3	INT[16]			
S5	Number	Number of buffer queues	No	-	1-16	INT			
S6	Acceleration	Acceleration	Yes	1000	Positive number	REAL			
S7	Deceleration	Deceleration	Yes	1000	Positive number	REAL			

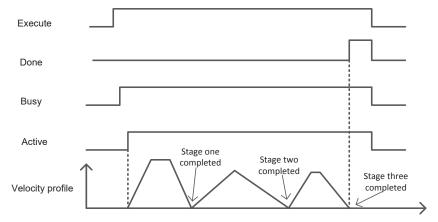
16-Bit command		-						
32-Bit command		MC_MoveBuffer Multi-segment positioning						
Operand	Name	Description	Nullable	Default value	Range	Data Type		
S8	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL		
S9	VelocityMode	Velocity switching mode 0: Slows down to 0 and starts the next segment 1: Maintains the current velocity and starts the next segment	Yes	0	0-1	INT		
S10	AbsRelMode	Positioning mode 0: absolute positioning 1: relative positioning	Yes	0	0-1	INT		
D1	Done	Command execution completion	Yes	OFF	ON/OFF	BOOL		
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL		
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL		
D4	CommandAborte d	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL		
D5	Index	Segment being executed	Yes	0	0-15	INT		
D6	Error	Error sign	Yes	OFF	ON/OFF	BOOL		
D7	ErrorID	Error code	Yes	0	-	WORD		

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	\checkmark	-	-	-	-	-	-
S2	✓	-	-	-	√	√	✓
S3	√	-	-	-	√	√	√
S4	✓	-	-	-	√	√	✓
S5	√	-	-	-	√	√	√
S6	✓	-	-	-	√	√	✓
S7	√	-	-	-	√	√	√
S8	√	-	-	-	√	√	✓
S9	√	-	-	-	√	√	√
S10	✓	-	1	-	√	√	✓
D1	-	√	√	√	-	-	√
D2	-	√	√	√	-	-	√
D3	-	√	✓	√	-	-	✓
D4	-	√	√	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	✓	✓	✓

This command is used for the multi-segment positioning function the bus servo axis or local pulse axis, and is valid to the rising edge.

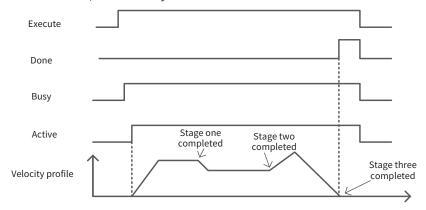
After the rising edge of the command is triggered, the current input parameters are latched, and the axis run the absolute positioning (AbsRelMode==0) or relative positioning (AbsRelMode==1) function in the buffer mode according to the configuration of the AbsRelMode mode. This command supports caching up to 16 segments of positions.

- Position: The target position, which is of array type and supports up to 16 levels. It is used to set the absolute target position of the axis in the absolute mode or the relative target position of the axis in the relative mode.
- Velocity: The target velocity, which is of array type and supports up to 16 levels. It is used to set the target velocity.
- Direction: The target direction of the rotary axis in the absolute positioning mode. It has the same meaning as Direction in the MC_MoveAbsolute command.
- Number: The valid data length in the cache queue, which ranges between 1 and 16. Exceeding this range will result in an error.
- VelocityMode: The velocity switching mode, which is used to command the velocity transition mode between two target positions. VelocityMode=0 means decelerating to 0 and then starting the next positioning trajectory; VelocityMode=1 means that the transition velocity between the two target positions is the target velocity of the previous command (note that VelocityMode=1 is temporarily invalid in the current version).
- AbsRelMode: The positioning mode, where AbsRelMode=0 indicates that the current command is in the absolute positioning mode, while AbsRelMode=1 indicates that the current command is in the relative positioning mode.

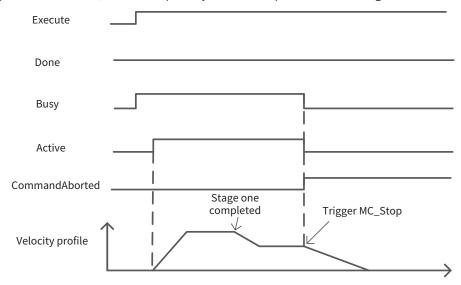

Interrupt

During the execution of this command, the axis is in the DiscreteMotion state, and other commands that allow the axis to be in the DiscreteMotion state or meet the state switching of the PLCopen state machine can interrupt this command. When this command is interrupted, the CommandAborted signal output is valid.

- In case of Execute=ON and invalid Done signal, when the soft and hard limits are triggered, the CommandAborted signal output is valid.
- In case of Execute=ON and invalid Done signal, when an error occurs in the servo, the CommandAborted signal output is valid.
- In case of Execute=ON and invalid Done signal, when disable is triggered, the CommandAborted signal output is valid.


Timing diagram

The 3-segment buffer is set, with VelocityMode=0



The 3-segment buffer is set, with VelocityMode=1

The 3-segment buffer is set, but interrupted by the MC_Stop command during its execution

3.21.26 MC_MoveVelocityCSV

	Execute Axis	MC_MoveVelocityCSV InVelocity
	Velocity	Busy
-	Acceleration	Active
-	Deceleration	CommandAborted
	Jerk	Error
-	PulseWidth	ErrorID

16-Bit		_				
command						
32-Bit		MC_MoveVelocityCSV:	Volocity			
command		MC_MovevelocityC3v.	velocity			
Operand	Name	Description	Nullable	Default	Pange	Data
Operand	Name	Description		value	Range	Type
S1	Axis	Axis name/axis ID	No	-	-	WORD
S2	Velocity	Target velocity	Yes	100	Positive/	REAL
32	velocity	Target velocity	103	100	negative/0	
S3	Acceleration	Acceleration	Yes	1000	Positive	REAL
	Acceleration	Acceleration	163	1000	number	NLAL
S4	Deceleration	Deceleration	Yes	1000	Positive	REAL
34	Deceleration		162	1000	number	

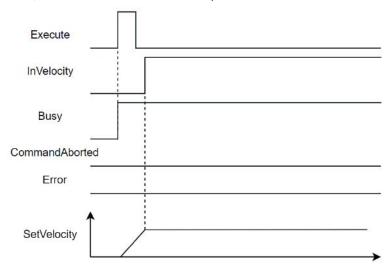
16-Bit command		-								
32-Bit command		MC_MoveVelocityCSV: Velocity								
Operand	Name	Name Description Nullable Default value Range Type								
S5	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive/0	REAL				
S6	PulseWidth	Pulse width, in units of 0.01%	Yes	5000	1-9999	INT				
D1	InVelocity	Reach target velocity	Yes	OFF	ON/OFF	BOOL				
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL				
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL				
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D6	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	√	-	-	-	√	√	√
S3	√	-	-	-	√	✓	√
S4	√	-	-	-	√	√	√
S5	√	-	-	-	√	√	√
S6	√	-	-	-	√	√	√
D1	-	√	√	√	-	-	√
D2	-	√	√	√	-	-	√
D3	-	√	√	√	-	-	√
D4	-	√	√	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√

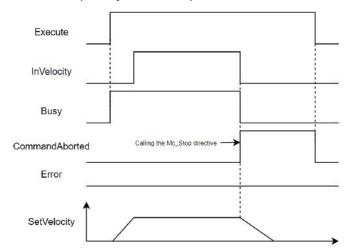
- 1. The MC_MoveVelocityCSV command is used to control the bus servo axis or local pulse axis to achieve synchronous velocity control, and is valid to the rising edge.
- 2. The state machine of the running axis is in the ContinuousMotion mode.
- 3. If you are using a bus servo axis, it is necessary to configure the relevant PDO object dictionaries 0x6060, 0x6061, 0x60FF, 0x6083, and 0x6084. In the bus mode, this command and other motion commands such as MC_MoveAbsolute and MC_Stop can interrupt each other.
- 4. If you are using a pulse axis, it is necessary to configure "Output device" and select a pulse mode under "Output mode" in the "Mode setting" in the axis configuration. In "pulse+direction" or "forward-reverse pulse train" mode, parameter PulseWidth can be modified, while in "orthogonal coding pulse" mode, modifying the PulseWidth parameter is invalid.

Resetting This Command

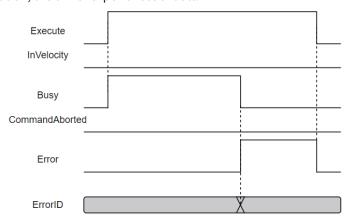
During the validity period of the Busy signal of the MC_MoveVelocityCSV, if the MC_MoveVelocity command is triggered again, it will re-plan with new target parameters according to the current motion position, velocity, etc.



Multiple Starts of This Command


During the validity period of the Busy signal of the MC_MoveVelocity command, if the second MC_MoveVelocity command is triggered, the second command will re-plan with new target parameters according to the current motion position, velocity, etc., while the first command will be interrupted and invalidated.

Timing diagram


In the StandStill state, the axis calls this command to perform the continuous motion with a T-typed curve.

During running, the axis is interrupted by the MC_Stop command.

During the axis acceleration, the driver experiences a fault.

3.21.27 MC_SyncMoveVelocity

Graphic Block

	Execute	MC SyncMoveVelocity
		InVelocity
		Busy
		Active
٠	Axis	CommandAborted
	Velocity	Error
	PulseWidth	ErrorID

16-Bit command		-									
32-Bit command		MC_SyncMoveVelocity: Velocity									
Operand	Name	Name Description Nullable Default value Data									
S1	Axis	Axis name/axis ID	No	-	-	WORD					
S2	Velocity	Target velocity	Yes	100	Positive number	REAL					
S3	PulseWidth	Pulse width, in units of 0.01%	Yes	5000	1-9999	INT					
D1	InVelocity	Reach target velocity	Yes	OFF	ON/OFF	BOOL					
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL					
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL					
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL					
D6	ErrorID	Error code	Yes	0	-	WORD					

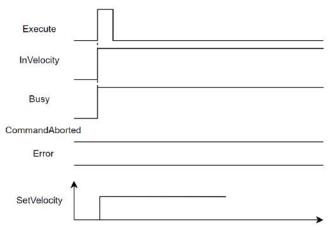
Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	√	-	-	-	√	√	√
S3	√	ı	-	-	√	\	√
D1	-	✓	√	√	-	-	✓
D2	-	\	√	√	-	1	√
D3	-	\	√	√	-	ı	√
D4	-	✓	√	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	✓	√

Function Description

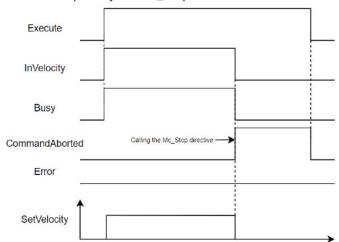
- 1. The MC_SyncMoveVelocity command is used to control the bus servo axis or local pulse axis to achieve synchronous velocity control, and is valid at high levels.
- 2. When using the bus axis, the PDO object dictionary should be configured with 0x6060, 0x6061, and 0x60FF, and this command and other motion commands such as MC_MoveAbsolute and MC_Stop can interrupt each other.
- 3. Calling this command enables the velocity to change at the maximum servo acceleration or deceleration.
- 4. The state machine of the running axis is in the ContinuousMotion mode.

5. If you are using a pulse axis, it is necessary to configure "Output device" and select a pulse mode under "Output mode" in the "Mode setting" in the axis configuration. In "pulse+direction" or "forward-reverse pulse train" mode, parameter PulseWidth can be modified, while in "orthogonal coding pulse" mode, modifying the PulseWidth parameter is invalid.

Resetting This Command

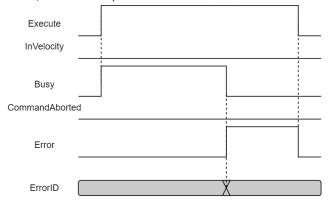

During the validity period of the Busy signal of the MC_SyncMoveVelocity command, if the MC_SyncMoveVelocity command is triggered again, the axis will change to the new target velocity at the maximum servo acceleration or deceleration according to the current motion position, velocity, etc.

Multiple Starts of This Command

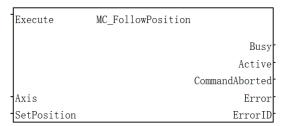

During the validity period of the Busy signal of the MC_SyncMoveVelocity command, if the second MC_SyncMoveVelocity command is triggered, the second command will change to the new target velocity at the maximum servo acceleration or deceleration according to the current motion position, velocity, etc., while the first command will be interrupted and invalidated.

Timing diagram

In the StandStill state, the axis calls this command to perform the continuous motion.



During running, the axis is interrupted by the MC_Stop command.

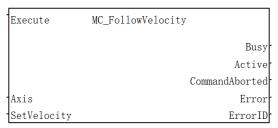


During the axis acceleration, the driver experiences a fault.

3.21.28 MC_FollowPosition

16-Bit command		-									
32-Bit command	MC_Fol	MC_FollowPosition: Synchronized position based on CSP mode									
Operand	Name	Name Description Nullable Default value Range Data Type									
S1	Axis	Axis name/axis ID	No	ı	-	WORD					
S2	SetPosition	Target position	No	-	Positive/nega tive/0	REAL					
D1	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D2	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL					
D3	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL					
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL					
D5	ErrorID	Error code	Yes	0	-	WORD					

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	√				√	√	√
D1	-	√	√	√	-	-	✓
D2	-	√	√	√	-	-	✓
D3	-	√	√	√	-	-	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√


This command is applicable to the EtherCAT bus axis and local pulse axis, and is used to achieve periodic sending of user-level target position commands. This command has no acceleration or deceleration planning process for its data sending and therefore directly sends the position increments of the first and second cycles to the servo. The data sending of this command is affected by the scan cycle of the user program, so it is recommended to configure the user program to have a constant scan cycle.

During the execution of this command, the axis is in the DiscreteMotion state.

Interruption

During the execution of this command, it can be interrupted other motion-related commands.

3.21.29 MC_FollowVelocity

16-Bit command		-								
32-Bit command	MC_Fol	MC_FollowVelocity: Synchronized velocity based on CSP mode								
Operand	Name	Name Description Nullable Default value Range Data Type								
S1	Axis	Axis name/axis ID	No	-	-	WORD				
S2	SetVelocity	Target velocity	No	-	Positive/ negative/0	REAL				
D1	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D2	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL				
D3	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL				
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D5	ErrorlD	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	√				√	√	✓
D1	-	√	√	√	-	-	✓
D2	-	√	√	√	-	-	✓
D3	-	√	√	√	-	-	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√

- 1. This command is applicable to the EtherCAT bus axis and local pulse axis, and is used to achieve the running of axes at a periodically synchronized velocity in the CSP mode at the user level. This command has no acceleration or deceleration planning process for its data sending and therefore directly sends the data to the servo according to the position increment calculated from the current target velocity. The data sending of this command is affected by the scan cycle of the user program, so it is recommended to configure the user program to have a constant scan cycle.
- 2. During the execution of this command, the axis is in the Continuous Motion state.
- 3. During the execution of this command, it can be interrupted other motion-related commands.

3.21.30 MC_SyncTorqueControl

	Execute	MC SyncTorqueControl
		InTorque
		Busy
		Active
-	Axis	CommandAborted
	TargetTorque	Error
	Velocity	ErrorID

16-Bit		-									
32-Bit command		MC_SyncTorqueControl: Synchronized torque									
Operand	Name	Nullable	Default value	Range	Data Type						
S1	Axis	Axis name/axis ID	No	-	-	WORD					
S2	TargetTorque	Target toque, in units of 0.1%. If the target torque is set to 100, it corresponds to 10% of the actual torque	No	0	Positive/ negative/0	INT					
S3	Velocity	Limited velocity, whose unit is defined by the user	No	0	Positive/0	REAL					
D1	InTorque	Torque reaching signal, which indicates that feedback torque reaches the range of \pm 5% of the target torque. If the target torque is 100 and corresponds to 10% of the actual torque and the feedback torque is between 9.5% and 10.5%, the InTorque signal is set to TRUE, otherwise it is set to FALSE	Yes	OFF	ON/OFF	BOOL					
D2	Busy Ongoing execution flag		Yes	OFF	ON/OFF	BOOL					
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL					
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL					
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL					
D6	ErrorID	Error code	Yes	0	-	WORD					

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	√	-	-	-	√	√	✓
S3	√	-	-	-	√	√	√
D1	-	√	√	√	-	-	\
D2	-	√	√	√	-	-	\
D3	-	√	√	√	-	-	\
D4	-	√	√	√	-	-	\
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√

- 1. The MC_SyncTorqueControl command is used to control the bus servo axis (not supporting the virtual axis) to achieve synchronized torque control, is valid to the rising edge, and supports modifying the target torque and maximum velocity limit value through repeated rising edges. Different from MC_TorqueControl, its acceleration time cannot be adjusted, and the acceleration is the maximum value of the servo.
- 2. TargetTorque represents the target torque in units of 0.1%, assuming a target torque value is 100, it corresponds to 10% of the actual motor torque. Velocity represents the maximum velocity limit, whose unit is defined by the user; it is valid when the axis mapping is 0x607F and invalid when there is no mapping.
- 3. To use this function block, the EtherCAT control unit type parameter of the servo driver P4.25 should be set to the manufacturer unit, otherwise it will not run.
- 4. During the startup phase, the torque ramp can be adjusted by setting the torque RAMP time parameter of servo driver P0.68. For example, P0.68 can be set to 100ms rather than too large a value.
- 5. During the startup phase, if the torque reaching signal generated by the step response of the motor recognizes that the invalid torque is reached, the InTorque output is FALSE.
- 6. This command supports the mutual interruption between functional blocks according to the PLCopen state machine standards.
- 7. After calling this command, you can call the MC_Stop, MC_Halt and MC_ImmediateStop commands to stop the axis from running. After the stop is completed, the mode switches to position mode 8, which can be viewed through the current mode parameters of the servo driver R0.32.
- 8. Running this command switches the servo mode to torque mode 10.
- 9. When using the bus axis for synchronous torque control, the PDO object dictionary should be configured with 0x6041(StatusWord), 0x6040(ControlWord), 0x6060(OperationMode), 0x6061(ActOperationMode), 0x607F(MaxProfileVelocity), 0x6071(TargetTorque), 0x6077(ActTorque).

Resetting This Command

During the validity period of the Busy signal of the MC_SyncTorqueControl command, if the MC_SyncTorqueControl command is triggered again, the running parameters for the second trigger shall prevail.

Multiple Starts of This Command

During the validity period of the Busy signal of the MC_SyncTorqueControl command, if the second MC_SyncTorqueControl command is triggered, the parameters of the second command will be run, while the first command will be interrupted and invalidated.

Timing diagram (omitted)

3.21.31 MC_TorqueControl

Graphic Block

Execute InTorqueControl
Execute InTorqueBusyAxis ActiveTargetTorque CommandAbortedTorqueRampTime ErrorVelocity ErrorID-

16-Bit		-									
32-Bit command		MC_TorqueControl: Torque control instruction									
Operand	Name	Description	Nullable	Default value	Range	Data Type					
S1	Axis	Axis name/axis ID	No	-	-	WORD					
S2	TargetTorque	Target toque, in units of 0.1%. If the target torque is set to 100, it corresponds to 10% of the actual torque	Yes	0	Positive/ negative/0	INT					
S 3	TorqueRampTime	Time to accelerate from zero to rated torque (ms)	Yes	0	0-10000	INT					
S4	Velocity	Limited velocity, whose unit is defined by the user	Yes	0	Positive/0	REAL					
D1	InTorque	Torque reaching signal, which indicates that feedback torque reaches the range of \pm 5% of the target torque. If the target torque is 100 and corresponds to 10% of the actual torque and the feedback torque is between 9.5% and 10.5%, the InTorque signal is set to TRUE, otherwise it is set to FALSE	Yes	OFF	ON/OFF	BOOL					
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL					
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL					
D5	Error	Fault flag	Yes	OFF	ON/OFF	BOOL					
D6	ErrorID	Fault code	Yes	0	-	WORD					

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	✓	-	-	-	✓	✓	✓

Operand	Const	Υ	М	S	D	R	Custom Variables
S3	√	-	-	-	√	√	✓
S4	√	-	-	-	√	√	\
D1	-	√	√	√	-	-	\
D2	-	√	√	√	-	-	\
D3	-	√	√	√	-	-	√
D4	-	√	√	√	-	-	\
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	\

- The MC_TorqueControl command is used to control the bus servo axis (not supporting the virtual axis) to achieve torque control, is valid to the rising edge, and supports modifying the target torque and maximum velocity limit value through repeated rising edges, torque ACC time. Different from MC_SyncTorqueControl, its acceleration time is adjustable, whereas the acceleration for MC_SyncTorqueControl is the maximum value of the servo.
- 2. TargetTorque represents the target torque in units of 0.1%, assuming a set target torque value is 100, it corresponds to 10% of the actual motor torque. Velocity represents the maximum velocity limit, whose unit is defined by the user; it is valid when the axis mapping is 0x607F and invalid when there is no mapping. TorqueRampTime indicates the time to accelerate from zero to rated torque (ms).
- 3. To use this function block, the EtherCAT control unit type parameter of the servo driver P4.25 should be set to the manufacturer unit, otherwise it will not run.
- 4. This command supports the mutual interruption between functional blocks according to the PLCopen state machine standards.
- 5. After calling this command, you can call the MC_Stop, MC_Halt and MC_ImmediateStop commands to stop the axis from running. After the stop is completed, the mode switches to position mode 8, which can be viewed through the current mode parameters of the servo driver R0.32.
- 6. Running this command switches the servo mode to torque mode 10.

Resetting This Command

During the validity period of the Busy signal of the MC_TorqueControl command, if the MC_TorqueControl command is triggered again, the running parameters for the second trigger shall prevail.

Multiple Starts of This Command

During the validity period of the Busy signal of the MC_TorqueControl command, if the second MC_TorqueControl command is triggered, the parameters of the second command will be run, while the first command will be interrupted and invalidated.

Timing diagram (omitted)

3.21.32 MC_ReadActualTorque

Enable	MC_ReadActualTorque	
		Torque
		Valid-
		Busy
		Error-
Axis		ErrorID-

16-Bit command			-							
32-Bit command		MC_ReadActualTorque: Read current torque								
Operand	Name	Nullable	Default value	Range	Data Type					
S1	Axis	Axis name/axis ID	No	-	-	WORD				
D1	Torque	Current torque	Yes	0	Positive/ negative/0	INT				
D2	Valid	Valid flag	Yes	OFF	ON/OFF	BOOL				
D3	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D5	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
D1	-	-	-		√	√	√
D2	-	√	√	√	-	-	√
D3	-	√	√	√	-	-	√
D4	-	√	√	√	-	-	✓
D5	-	-	-	-	√	√	✓

- 1. The MC_ReadActualTorque command is used to read the feedback torque of the bus axis, and is valid at high levels.
- 2. This command does not support the virtual axis mode nor the pulse axis.
- 3. This command has no interrupt flag and therefor multiple commands can run simultaneously.

3.21.33 Error Codes of Single Axis Commands

Main error code	Secondary error code	Error level	Possible cause	Solution
	0x1(1)	Fault	The current axis ID is not within the valid range	Check whether the axis ID parameter settings are reasonable
	0x2(2)	Fault	The current function block ID is not within the valid range	Check whether the function block ID parameter settings of the upper computer are reasonable
0x11(17) Operation	0x3(3)	Warning	cannot be started due to	Check whether the current axis state meets the PLCopen state machine switching process when the current command is triggered
control fault	0x4(4)	Warning	Axis configuration failed	Check whether the axis configuration is successful
	0x5(5)	_	The address of the PDO parameter Digitallput is NULL	 Check whether the parameter is mapped in the slave station IO mapping. Check whether the parameter exist in the XML version of the servo slave station

Main error code	Secondary error code	Error level	Possible cause	Solution	
Code	0x6(6)	Fault	Current axis/servo error	The axis/servo is faulty, and the error can be cleared by calling the MC_Reset command or restarting the MC_Power command	
	0x7(7)	Warning	The current axis is not enabled and therefore in the Disabled state	Switch the axis to the Standstill state by calling the MC_Power command	
	0x8(8)	Fault	The positive hard limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	
	0x9(9)	Fault	The negative hard limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	
	0xA(10)	Fault	The positive soft limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	
	0xB(11)	Fault	The negative soft limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	
	0xC(12)	Warning	The pulse axis has not selected any output device	Check whether the pulse axis has selected an output device	
	0xD(13)	Warning	The bus axis has not selected any output device	•	
	0xE(14)	Warning	The current command does not support repeated calls	The current command does not support repeated calls to the function block, so avoid this situation manually	
	0xF(15)	Warning	Axis type setting error	Check whether the axis type matches the command type	
	0x10(16)	Warning	The address of process data control word (16#6040) is not configured	1. Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file 2. Check whether the parameter ControlWord(16#6040) is configured in the slave device description file	
0x11(17)	0x11(17)	Warning	Positive hard limit ID configuration failed	Check whether the current pulse axis input and output points are reused	
Operation	0x12(18)	Warning	Negative hard limit ID configuration failed	Check whether the current pulse axis input and output points are reused	
fault	0x13(19)	Warning	Probe ID1 configuration failed	Check whether the current pulse axis input and output points are reused	
	0x14(20)	Warning	Probe ID2 configuration failed	Check whether the current pulse axis input and output points are reused	
	0x15(21)	Warning	Servo error ID configuration failed	Check whether the current pulse axis input and output points are reused	
	0x16(22)	Warning	Home signal ID configuration failed	Check whether the current pulse axis input and output points are reused	

Main error code	Secondary error code	Error level	Possible cause	Solution
	0x17(23)	Warning	Z signal ID configuration failed	Check whether the current pulse axis input and output points are reused
	0x18(24)	Warning	Axis enable ID configuration failed	Check whether the current pulse axis input and output points are reused
	0x19(25)	Warning	Failed to clear the servo error ID configuration	Check whether the current pulse axis input and output points are reused
	0x1A(26)	Warning	The axis address is NULL	Check whether the axis configuration is successful
	0x1B(27)	Warning	Bus axis enable failed	If bus axis enable timed out, check whether the EtherCAT communication and feedback state words are normal
	0x1C(28)	Fault	The bus axis has not entered the OP state	Check whether the EtherCAT communication has entered the OP state
	0x1D(29)	Warning	The current function block execution is invalid	The current command function is not yet open and is invalid for use
	0x1E(30)	Warning	The current axis communication timed out	 Check whether the EtherCAT communication has entered the OP state Check whether the EtherCAT communication return value is normal
	0x1F(31)	Warning	Under the current axis configuration, the EtherCAT synchronization cycle cannot be less than 1 ms	Check whether the setting of the synchronization cycle of the EtherCAT master station is less than 1ms (in case of mixed use of bus axis and pulse axis, the EtherCAT synchronization cycle cannot be less than 1 ms)
	0x20(32)	Warning	The PLC does not run	Check whether the PLC dial switch is set to Stop
	0x21(33)	Warning	The axis triggered a soft-limit deceleration and stop	The current axis is in the process of the soft-limit deceleration and stopping, and the execution of the current triggerd command is invalid
0x11(17) Operation control	0x22(34)	Warning	The address of the current command parameter is NULL	If the address of the current command parameter is NULL, provide an input variable or contact the IVT technical personnel
fault	0x23(35)	Fault	During the pulse axis movement, the pulse frequency of the current interpolation period is ≥ 200k	The maximum running frequency of the pulse axis must not exceed 200K, so it is recommended to reduce the running velocity
	0x24(36)	Warning	The pulse axis FPGA cache reached the limit value	This is only a prompt
	0x25(37)	Fault	The PDO data address in EtherCAT is NULL	Check whether the EtherCAT communication is normal

Main error code	Secondary error code	Error level	Possible cause	Solution
	0x26(38)	Fault	The current servo axis is not on-line	 Check whether the EtherCAT communication is normal Check whether the current servo axis is connected to the network cable
	0x27(39)	Warning	The current axis communication failed	If the EtherCAT communication failed during the operation, check the state of the EtherCAT communication
	0x28(40)	Warning	The value of the PDO parameter StatusWord is 0	Check whether the EtherCAT communication is normal
	0x29(41)	Warning	The address of the PDO parameter ErrorCode is NULL	 Check whether the EtherCAT communication is normal Check whether the PDO parameter is configured
	0x2A(42)	Warning	The current axis does not support torque control	Check the axis type configuration, as torque control only supports the bus axis
	0x2B(43)	Warning	The address of bus axis target position (16#607a) is NULL	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter TargetPosition(16#607a) is configured in the slave device description file
	0x2C(44)	_	The process data operation mode (16#6060) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter ModeOfOperation(16#6060) is configured in the slave device description file
	0x2D(45)	Warning	The process data status word (16#6041) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter StatusWord(16#6041) is configured in the slave device description file
	0x2E(46)	Warning	The process data feedback position (16#6064) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter PositionActualValue(16#6064) is configured in the slave device description file

Main error code	Secondary error code	Error level	Possible cause	Solution
	0x2F(47)	Warning	The process data feedback speed (16#606c) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter SpeedActualValue(16#606c) is configured in the slave device description file
	0x30(48)	Warning	The process data feedback mode (16#6061) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter OperationModeDisplay(16#6061) is configured in the slave device description file
	0x31(49)	Warning	The process data maximum velocity (16#607f) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter MaxProfileVelocity(16#607f) is configured in the slave device description file
0x11(17) Operation control fault	0x32(50)	Warning	The process data target torque (16#6071) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter TargetTorque(16#6071) is configured in the slave device description file
	0x33(51)	0x33(51) Warning torque (16#6077) is not selected		 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter TorqueActualValue(16#6077 is configured in the slave device description file
	0x34(52)	Warning	The process data target velocity (16#60ff) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter TargetVelocity(16#60ff) is configured in the slave device description file

Main error code	Secondary error code	Error level	Possible cause	Solution		
	0x65(101)	Warning	The enable command state is abnormal	If the enable command state is abnormal, contact the IVT technical personnel		
	0x66(102)	Warning	The reset command state is abnormal	If the reset command state is abnormal, contact the IVT technical personnel		
	0x67(103)	Warning	Reset timed out	If the axis reset timed out, check whether the EtherCAT communication is normal		
	0x68(104)	Warning	The current axis state does not support the superimposed motion command	If the current axis state does not support the superimposed motion command, refer to the specific commands for using the command		
	0x69(105)	Warning	Input parameter error	The command input parameter is not within the valid range		
0x11(17)	0x6A(106)	Warning	The system report an error about the repeated calls of the MC_Stop command	Please check whether the same axis is called more than once		
Operation control fault	0x6B(107)	Warning	The system report an error about the repeated calls of the MC_ImmediateStop command	r f Please check whether the same axis i called more than once		
	0x6C(108)	Fault	The input parameter of the MC_Stop command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x6D(109)	Fault	The input parameter of the MC_Halt command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x6E(110)	Warning	The input parameter of the MC_SetOverride command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x6F(111)	Fault	The input parameter of the MC_MoveVelocity command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
0x11(17)	0x70(112)	Fault	The input parameter of the MC_MoveRelative command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
Operation control fault	0x71(113)	Fault		Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x72(114)	Fault	The input parameter of the MC_Jog command is	Check whether the command parameters are within the valid range,		

Main error code	Secondary error code	Error level	Possible cause	Solution		
			not within the valid range	and call the MC_Reset command to reset the axis state		
	0x73(115)	Fault	The input parameter of the MC_Inch command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x74(116)	Fault	The input parameter of the MC_Home command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x75(117)	Warning	The input parameter of the MC_SetPosition	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x76(118)	Warning	It is invalid to trigger the MC_SetOverride command in the current axis state	The current axis is in the process of reversing, and the velocity regulation does not take effect		
	0x77(119)	Warning	The current axis is in the operation process of the axis group	Run the axis after the axis group operation is completed		
	0x78(120)	Warning	The axis is not in the Standstill state	Before triggering the current command, switch the axis to the StandStill state		
	0x79(121)	Warning	Resetting by the MC_Reset command is invalid	The current axis state is not ErrorStop, so resetting is invalid		
	0x7A(122)	Warning	The interpolation cycle value settings are invalid	Check the EtherCAT synchronization cycle settings		
	0x7B(123)	Warning	MC_Stop command	Check whether the current axis state can trigger the instruction		
	0x7C(124)	Warning	It is invalid to trigger the MC_Halt command	Check whether the current axis state can trigger the instruction		
	0x7D(125)		It is invalid to trigger the MC_ImmediateStop command	Check whether the current axis state can trigger the instruction		
	0x7E(126)	E(126) Warning	The input parameter of the MC_TouchProbe command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
	0x7F(127)	Warning	The input parameter of the MC_MoveSuperImosed	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state		
0x11(17) Operation	0x80(128)	Warning	The MC_Home command has been called repeatedly	Check whether the home function block has been called repeatedly on the same axis		
control fault	0x81(129)	Fault	The input parameter of the MC_MoveFeed	Check whether the command parameters are within the valid range,		

	Main error code	Secondary error code	Error level	Possible cause	Solution
ľ	couc				and call the MC_Reset command to
				valid range	reset the axis state
		0x82(130)	Warning	The probe channel used is not configured	Check whether the PDO data in the "Process Data" section of the configuration interface for the servo axis on the upper computer has been added (Possible mappings: 0x60B8, 0x60B9, 0x60BA, 0x60BB, 0x60BC, and 0x60BD)
		0x83(131)	Warning	When the interrupt fixed length function is used with Mode=0 or Mode=1, the probe signal has not arrives after the first distance is traveled.	Check whether the probe signal is triggered normally.
		0x84(132) Warnin		When the probe function is triggered, the probe channel used has already been occupied by the interrupt fixed length function.	Check whether the channel is incompatible.
		0x85(133)	Warning	The axis configuration index parameter is not within the valid range	Check whether the axis configuration index parameter is within the valid range
		0x86(134)	Warning	The axis parameter input by the MC_SetAxisConfigPara command is not within the valid range	Check whether the axis setting parameter is within the valid range
		0x87(135)	Warning	The input parameter of the MC_MoveBuffer command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state
		0x88(136)	Warning	The input parameter of the MC_SyncMoveVelocity command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state
		0x89(137)	Warning	The input parameter of the MC_MoveVelocityCSV command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state
		0x8A(138)	Warning	The input parameter of the MC_SyncTorqueControl command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state
		0x8B(139)	Warning	PDO data used is not	The process data 0x6060 and 0x6061 in

Main error code	Secondary error code	Error level	Possible cause	Solution
			configured	the servo configuration of the upper computer are not configured
	0x8C(140)	Warning	PDO data used is not configured	The process data 0x606C is not configured in the servo configuration of the upper computer
	0x8D(141)	Warning	PDO data used is not configured	The process data 0x60FF is not configured in the servo configuration of the upper computer
	0x8E(142)	Warning	PDO data used is not configured	The process data 0x6071 and 0x607F are not configured in the servo configuration of the upper computer
	0x8F(143)	Warning	PDO data used is not configured	The process data 0x6083 and 0x6084 are not configured in the servo configuration of the upper computer
	0x90(144)	Warning	The current axis state does not support the single-axis velocity regulation command	Check whether the current axis state meet the requirements of the velocity regulation function
	0x91(145)	Warning	The probe does not support the pulse axis and virtual axis	Check whether the current axis type is configured as the bus axis
	0x92(146)	Warning	The parameter range of the MC_TorqueControl command is not reasonable	Check the input parameter of the MC_SyncTorqueControl command
	0x93(147)	Warning	The address of 0x6077 or 0x6087 is null	Check whether mapping 0x6077 or 0x6087 is configured in Process Data
0.11/17)	0x94(148)	Warning	Failed to switch to target control mode	Check whether the servo type matches
0x11(17) Operation control	0x95(149)	Warning	Failed to write SDO parameter	Check whether the servo type matches
fault	0x96(150)	Warning	The input parameter of the MC_Homing command is not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state
	0x97(151)	Warning	The MC_Homing command has been called repeatedly	Please check whether the MC_Homing command is called more than once
	0x98(152)	Warning	The homing direction of MC_Homing command is incorrectly set	Check whether the homing direction on the upper computer is set correctly, that is the starting direction of the MC_Homing command homing mode 3 and 4 is positive
	0x99(153)	Warning	The home mode of MC_Homing command is incorrectly set	Check whether the home mode on the upper computer (at present, only home modes 3,4, 35 are supported) is set correctly

Main error code	Secondary error code	Possible cause		Solution
	0x100(154)		Incorrectly set	The MC_Homing command only supports the bus-connected real axis, and does not support the pulse axis, encoder axis, and virtual axis

3.21.34 MC_CamIn

	ıIn
Execute	
Master	
Slave	
CamTable	
Period	
StartMode	
StartPosition	InSync
MasterStartDistan	ce InCam
MasterScaling	EndofProfile
SlaveScaling	Busy
MasterOffset	Active
SlaveOffset	CommandAborted
ReferenceType	Error
BufferMode	ErrorID
	CamTable Period StartMode StartPosition MasterStartDistand MasterScaling SlaveScaling MasterOffset SlaveOffset ReferenceType

16-Bit command		-							
32-Bit command		MC_CamIn: Electronic cam entry							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Master	Master axis name/axis ID It can be chosen from bus servo axis, local pulse axis, and local encoder axis	No	-	0–39	WORD			
S2	Slave	Slave axis name/axis ID It can be chosen from bus servo axis and local pulse axis	No	-	0-39	WORD			
S3	CamTable	Cam table name	No	-	0-15	WORD			
S4	Period	Repeated mode 0: executed periodically 1: executed for only one cycle	Yes	0	0-1	INT			
S5	StartMode	Start mode 0: absolute mode 1: relative mode 2: immediate start	Yes	2	0-2	INT			
S6	StartPosition	Start position of cam table	Yes	0	Positive/0	REAL			
S7	MasterStartDistance	Master axis tracking distance	Yes	0	Positive/0	REAL			
S8	MasterScaling	Master axis scale coefficient	Yes	1	Positive number	REAL			

16-Bit command		-						
32-Bit command	MC_CamIn: Electronic cam entry							
Operand	Name	Name Description Nu		Default value	Range	Data Type		
S9	SlaveScaling	Slave axis scale coefficient	Yes	1	Positive number	REAL		
S10	MasterOffset	Master axis offset	Yes	0	Positive/ negative/0	REAL		
S11	SlaveOffset	Slave axis offset	Yes	0	Positive/ negative/0	REAL		
S12	ReferenceType	Master axis position source 0: command position for previous cycle 1: command position for current cycle 2: feedback position for current cycle	Yes	1	0-2	INT		
S13	BufferMode	Buffer mode 0: Wait for the completion of the previous cam cycle Other: reserved	Yes	0	0	INT		
D1	InSync	Cam synchronization flag	Yes	OFF	ON/OFF	BOOL		
D2	InCam	Cam table engagement flag	Yes	OFF	ON/OFF	BOOL		
D3	EndOfProfile	Cam cycle completion	Yes	OFF	ON/OFF	BOOL		
D4	Busy	Executing	Yes	OFF	ON/OFF	BOOL		
D5	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL		
D6	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL		
D7	Error	Error sign	Yes	OFF	ON/OFF	BOOL		
D8	ErrorID	Error code	Yes	0	-	WORD		

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	-	-	-	-	-
S3	✓	-	-	-	-	-	✓
S4	\	-	1	-	√	\	✓
S5	\	-	1	-	√	\	✓
S6	✓	-	-	-	✓	✓	✓
S7	√	-	-	-	√	√	✓
S8	✓	-	-	-	✓	✓	✓
S9	\	-	1	-	√	\	✓
S10	\	-	1	-	√	\	✓
S11	\	-	1	-	√	\	✓
S12	\	-	1	-	√	\	✓
S13	\	-	1	-	√	\	✓
D1	-	√	√	√	-	-	✓
D2	-	✓	✓	√	-	-	✓
D3	-	√	√	√	-	-	✓
D4	-	✓	√	✓	-	-	√
D5	-	√	√	√	-	-	√
D6	-	√	√	✓	-	-	√

Operand	Const	Υ	М	S	D	R	Custom Variables
D7	-	✓	✓	✓	-	-	✓
D8	-	-	-	-	√	✓	✓

Command start condition

This command can be started in any state of master axis stop, position control, velocity control, and synchronization control.

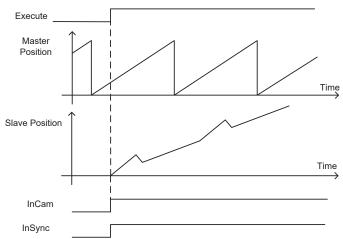
This command can be started when the slave axis is in any of the StandStill, DiscreteMotion, ContinuousMotion, and SynchronizedMotion states.

Function Description

The module is used to implement the electronic cam entry function.

Relative Cam Table

The phase and displacement of the cam table are specified by the relative quantities starting from 0.0. In each EtherCAT cycle, the CamIn function block calculates the slave axis displacement corresponding to the master axis phase based on the selected cam curve type.


Soft Limit Function

When the position of the slave axis exceeds the software limit in the shaft configuration interface during the cam action, an exception will occur, causing the slave axis to decelerate and stop.

At the Beginning of Cam Action

1. When StartMode is set to 2, which means immediate start.

After the function block Execute is set to TRUE, the command immediately performs the cam action, the current position of the master axis is the phase zero point of the cam, and the current position of the slave axis is the displacement zero point of the cam. At this time, any value set for the function block parameters StartPosition and MasterStartDistance is invalid.

2. When StartMode is set to absolution position or relative position.

After the function block Execute is set to TRUE, the command waits for the master axis to reach StartPosition (the start position of the cam table) to execute the start point of the cam table, and the output variable InCam is TRUE.

The phase and displacement of the cam table are specified by the relative quantities from the zero start point. Therefore, the absolute positions of each axis at each phase are the relative values with the absolute positions of each axis in the cam table as the start points. For example, the camshaft is shown in the following figure, where StartPosition (the start point of the cam table) 50, the absolute position of the master axis is the phase of the cam table plus the value of StartPosition, and the absolute position of the slave axis is the displacement of the cam table plus the absolute position of the slave axis at the start point of the cam table.

Phase	Shift
0	0
80	30
120	50
240	20
360	0

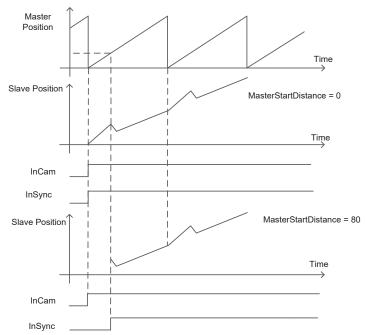
StartPosition=50
→

Master axis	Slave axis		
FO	0 + absolute position of slave axis at start		
50	point of cam table		
120	30 + absolute position of slave axis at		
130	start point of cam table		
170	50 + absolute position of slave axis at		
170	start point of cam table		
290	20 + absolute position of slave axis at		
290	start point of cam table		
50	0 + absolute position of slave axis at start		
30	point of cam table		

In addition, when MasterStartDistance (the master axis tracking distance) is passed, the slave axis cam action starts, and InSync outputs TRUE.

The cam table is set as follows:

Phase	Shift
0	0
80	120
120	80
360	140

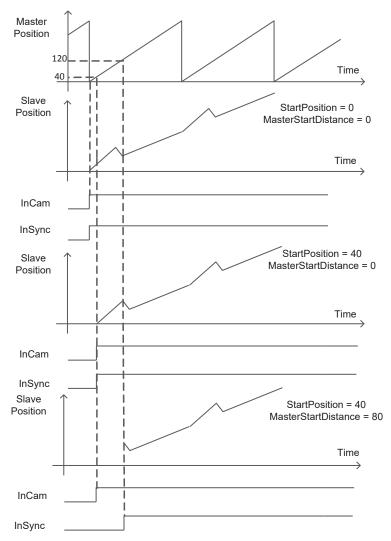

The conditions for the cam action start are listed as follows:

Input variable	Condition 1	Condition 2
StartMode (specified start position method)	Relative position	Relative position
StartPosition (start position of cam table)	0	0
MasterStartDistance (master axis tracking distance)	0	80

Under condition 1, when the master axis passes through 0, the output variables InCam (in cam action) and InSync (in synchronization) are both output as TRUE, and the slave axis starts the cam action.

Under condition 2, when the master axis passes through 0, the output variable InCam (in cam action) is ouput as TRUE; when the master axis passes through 80, the output variable InSync (in synchronization) is output as TRUE, and the slave axis starts the cam action.

Note that under condition 2, the slave axis has a rapid acceleration process when starting the cam action halfway through the cam table.


The starting conditions are modified as follows for the above cam table:

Input variable	Condition 1	Condition 2	Condition 3
StartMode	Relative position	Relative position	Relative position
StartPosition	0	40	40
MasterStartDistance	0	0	80

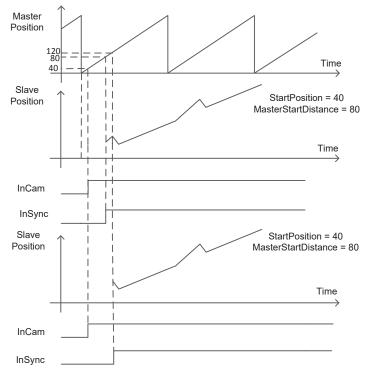
Under condition 1, when the master axis passes through 0, the output variables InCam (in cam action) and InSync (in synchronization) are both output as TRUE, and the slave axis starts the cam action.

Under condition 2, when the master axis passes through 40 specified by StartPosition (start position of cam table), the output variables InCam (in cam action) and InSync (in synchronization) are both output as TRUE, and the slave axis starts the cam action.

Under condition 3, when the master axis passes through 40 specified by StartPosition (start position of cam table), the output variable InCam (in cam action) is output as TRUE; when the master axis passes through 120, the output variable InSync (in synchronization) is output as TRUE, and the slave axis starts the cam action.

By using StartMode (specified start position method), you can also decide whether to process the specified values of StartPosition and MasterStartDistance as absolute positions or relative positions.

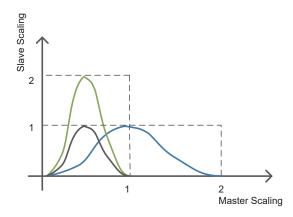
The starting conditions of the cam table are set as follows:


Input variable	Condition 1	Condition 2
StartMode	Absolute position	Relative position
StartPosition	40	40
MasterStartDistance	80	80

Under conditions 1 and 2, when the master axis passes through 40, the output variable InCam is output as TRUE. Under condition 1, since StartMode is specified as an absolute position, when the master axis passes through 80, the output variable InSync is output as TRUE, and the slave axis starts the cam action.

Especially note that under condition 1, if the current axis is a linear axis and the current position is non-zero, StartPosition can be set to an integer multiple of the end point of the cam table to avoid the sharp acceleration or deceleration when the slave starts the cam action. Under condition 1, MasterStartDistance needs to be ahead of the StartPosition position in the master axis direction.

Under condition 2, since StartMode is specified as a relative position, when the master axis passes through 120 (=40+80), the output variable InSync becomes TRUE, and the slave axis starts the cam action.



At the End of Cam Action

To end the cam action halfway, you can use the MC_CamOut function block stop command.

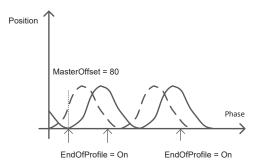
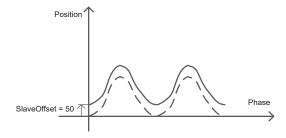
Scaling Coefficients of Master and Slave Axes

For the specified cam table, the master axis phase and slave axis displacement can be scaled according to the specified ratios.

Offsets of Master and Slave Axes

For the specified cam table, the master axis phase and slave shaft displacement can be moved according to the offsets.

Figure 3-1In case of MasterOffset > 0

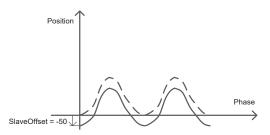

Figure 3-3In case of SlaveOffset > 0

Figure 3-2In case of MasterOffset < 0

Figure 3-4In case of SlaveOffset < 0

Position Type Selection

ReferenceType is used to set the source of position data for the master axis.

- 1. When the master axis is a local encoder axis, this parameter setting is invalid and will always be the feedback position for this cycle.
- When the master axis is set to the bus servo axis and local pulse axis, the following three modes can be set: command position for previous cycle, command position for current cycle, and feedback position for this cycle.

Resetting This Command

During the validity period of the Busy signal of the MC_CamIn command, if this command is triggered again and the axis has been in the cam engagement process, parameters StartPosition and MasterStartDistance will be invalid, while parameters Periodic, MasterScaling, SlaveScaling, and ReferenceType will take effect in the next cam cycle.

Multiple Starts of This Command

During the validity period of the Busy signal of the MC_CamIn command, if the second MC_CamIn command is triggered and the same slave axis is used, the Busy signal of the second command will be valid, but the Active signal will be invalid. After a cam cycle ends, the first command is interrupted, and the Active output of the second command is valid. Parameters StartPosition and MasterStartDistance are invalid, but Parameters Periodic, MasterScaling, SlaveScaling, and ReferenceType still take effect as per the parameters of the second command.

3.21.35 MC_CamOut

Graphic Block

-	Execute MC	_CamOut
		Done -
		Busy-
-	Slave	Active-
-	Deceleration	CommandAborted-
-	Jerk	Error-
-	OutMode	ErrorID-

16-Bit command		-				
32-Bit command	MC_CamOut: Electronic cam exit					
Operand	Name	Description	Nullable	Default value	Range	Data Type
S1	Slave	Axis name/axis ID	No	-	0–39	WORD
S2	Deceleration	Deceleration	Yes	1000	Positive number	REAL
S3	Jerk	Acceleration and deceleration 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive number	REAL
S4	OutMode	Synchronization mode cancellation selection 0: deceleration-based stop 1: immediate stop after completion of current cam cycle	Yes	0	0-1	INT
D1	Done	Execution completion	Yes	OFF	ON/OFF	BOOL
D2	Busy	Executing	Yes	OFF	ON/OFF	BOOL
D3	Active	Execution validity	Yes	OFF	ON/OFF	BOOL
D4	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL
D6	ErrorID	Error code	Yes	0	-	WORD

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	\	-	-	-	√	√	✓
S3	\	-	1	-	√	√	✓
S4	√	-	-	-	√	√	✓
D1	-	✓	✓	✓	-	-	✓
D2	-	√	\	√	-	-	✓
D3	-	√	\	√	-	-	✓
D4	-	√	\	√	-	-	✓
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√

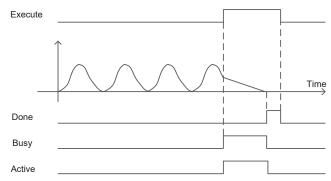
Function Description

1. The cam action of the axis is cancelled by using this command.

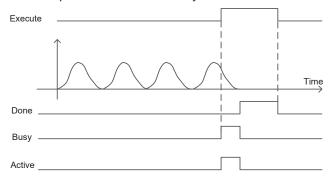
- 2. When Execute (start) is set to ON, the MC_CamIn command is interrupted, and the interrupt flag bit is valid.
- 3. If OutMode is set to 0, the slave axis performs the deceleration action is executed based on Deceleration (deceleration); after the slave axis decelerates to 0, the Done output is valid; the slave axis is in the ContinuousMotion state before it stops moving.
- 4. If OutMode is set to 1, the slave axis stops immediately after completing the cam action for the current cycle; before the cam action ends, the slave axis is in synchronous motion mode.
- 5. When you enable this command on an axis that has not performed the cam action yet, an exception will occur.

Repeated Triggering

When the MC_CamOut command is triggered repeatedly on the rising edge, the stop mode runs according to the following rules:


Initial Stop Mode	New Selected Mode	Execution Result
Deceleration-based stop	Immediate ston atter	The axis decelerates to completely stop and then enters the Standstall state
Deceleration-based stop	Deceleration-hased ston	The axis stops as per the new deceleration
Immediate stop after completion of current cam cycle	Hacalaration-nagan ston	The axis switches to the stop through deceleration mode
Immediate stop after	Immediate stop after	The axis immediately stop after
completion of current cam cycle	completion of current cam cycle	completing the current cam cycle

Multiple Starts of This Command


During the validity period of the Busy signal of the MC_CamOut command, if the second MC_CamOut command is triggered and the same slave axis is used, the Busy signal of the second command will be valid, the Active signal will be valid, and the deceleration will take effect according to the parameter setting of the second command, causing the first command to be interrupted and CommandAborted to be valid.

Timing diagram

Stop through deceleration.

• Immediate stop after completion of current cam cycle.

3.21.36 MC_GenerateCamTable

Graphic Block

MC_Ger Execute	nerateCamTable
	Done
	EndPointIndex •
	ErrorNodePointIndex•
	Busy-
-CamTable	Active
-CamNode	CommandAborted ·
-NodeNum	Error
-Mode	ErrorID

16-Bit command			-						
32-Bit command	MC	MC_GenerateCamTable: Update cam table command							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	CamTable	Cam table name/cam table ID	No	-	0-15	WORD			
S2	CamNode	Cam node array When set to empty, it means to use the original cam node array	No	-		_stru_CAM_NODE			
S3	NodeNum	The number of cam nodes When set to empty, it means to use the original number of cam nodes	Yes	0	2-361	INT			
S4	Mode	Validity mode 0: valid in the next cam cycle Other: reserved	Yes	0	0	INT			
S5	Done	Execution completion	Yes	OFF	ON/OFF	BOOL			
S6	EndPointIndex	End point index	Yes	0	0-360	REAL			
S7	ErrorEndPointIndex	Error node number	Yes	0	0-360	REAL			
D2	Busy	Executing	Yes	OFF	ON/OFF	BOOL			
D3	Active	Execution validity	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL			
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D6	ErrorID	Error code	Yes	0	-	WORD			

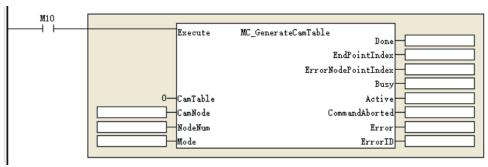
Function Description

This command is activated through the rising edge of Execute, calculates the cam data based on the values of input codes CamNode and NodeNum, and updates the data to the cam table specified in CamTable, which takes effect in the next cam cycle.


CamNode Variable Functions

The parameter CamNode is used to specify whether to use a new user-defined cam node array. When this parameter is empty, it represents the original node array of the cam table specified by CamTable. When it is not empty, it means to use the cam node array specified by CamNode.

1. When CamNode is empty


The values in the cam node array in the cam table in the system variables can be modified through the PLC program, take effect through the MC_GenerateCamTable command, and get executed according to the new cam nodes at the beginning of the next cam cycle.

Phase	Shift
0	0
50	40
90	60
130	30
200	0

Phase	Shift
0	0
50	40
100	70
130	30
200	0

Examples are as follows:

2. When CamNode is not empty

Create a new cam node array in PLC program, and copy the values in the cam node array to the cam table with MC_GenerateCamTable, which are executed in the next cam cycle.

Cam Table A Before Replacement

Phase	Shift
0	0
50	40
90	60
130	30
200	0
0	0

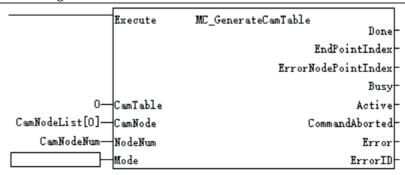
Cam Table A After Replacement

0

360

Phase	Shift	
0	0	
30	40	Through MC_Generate
70	80	CamTable copy
100	120	——
240	200	
		I

Pilase	SIIIIC
0	0
30	40
70	80
100	120
240	200
360	0


Phase Shift

Cam Node Array Created by PLC Program

Program Example

√ * 🖺 Global variable table 1							
Variable Name	Data Type	Initial Value	Power Down				
📮 CamNodeList	_stru_CAM_NODE[32]	0	No Hold				
CamNodeList[0]	_stru_CAM_NODE	0	No Hold				
fPhase	REAL	0	No Hold				
fDistance	REAL	0	No Hold				
fVel	REAL	0	No Hold				
fAcc	REAL	0	No Hold				
iCurve	INT	0	No Hold				
🛨 CamNodeList[1]	_stru_CAM_NODE	0	No Hold				
⊕ CamNodeList[2]	_stru_CAM_NODE	0	No Hold				

The above CamNodeNum is used to specify the number of nodes in the cam node array in the cam table created by the PLC program.

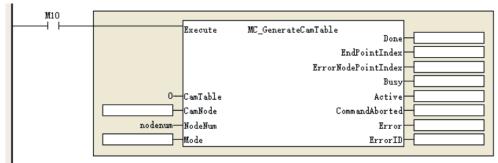
Description of _stru_CAM_NODE Structure Members:

fPhase: Master axis phase

fDistance: Slave axis position corresponding to master axis phase

fVel: master-slave axis velocity ratio

fAcc: master-slave axis acceleration ratio


iCurve: Curve type, 0: straight line; 1: quintic curve

NodeNum Variable Functions

The parameter NodeNum is used to represent the number of nodes in the new generated cam table. When this parameter is empty, it indicates that the number of nodes in the cam table remains unchanged; if it is not empty, the value specified by NodeNum is used.

You can use this parameter to modify the number of cam table keypoints, make the number valid through the MC_GenerateCamTable command, and execute the program according to the new cam node array from the next cam cycle.

Program Example

Parameter Rationality Check

Before calling this command, you should first check the rationality of the cam keypoint data:

- 1. The phase and displacement of the first point must be 0, otherwise the system reports an error.
- 2. The number of nodes cannot exceed 361, otherwise the system reports an error.
- 3. The number of nodes must be 2 at least, otherwise the system reports an error.
- 4. Phases must be arranged in ascending order, otherwise the system reports an error.
- 5. The phase difference between two adjacent master axes must be greater than 0.0001, otherwise the system reports an error.
- 6. The curve type of the node can only be set to quintic curve (1) or straight line (0), otherwise the system reports an error.

Rules of Velocity Ratio Adjustment

When you call this command, if the velocity ratio of the cam keypoint is not set reasonably, the ratio will be adjusted automatically. See below for the modification rules:

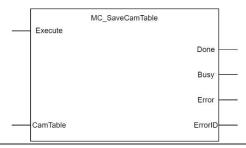
1. When the current segment is a straight line, the velocity ratio will be automatically calculated and adjusted according to the formula.

For example, if A1 and A2 form a straight line, the calculated velocity ratio will be written into the A2 keypoint. If the coordinates of the A1 point are (x_1, y_1) and the coordinates of the A2 point are (x_2, y_2) , the velocity ratio of the line A1–A2 is:

$$\frac{y_2 - y_1}{x_2 - x_1}$$

2. When the quintic curve immediately follows a straight line, adjustment should be done to ensure the continuity of the velocity ratio between the quintic curve and the straight line at the junction point and to prevent step jumps.

For example, points A1 and A2 form a quintic curve, and points A2 and A3 form a straight line. First, the velocity ratio of the straight line A2–A3 is calculated, and the calculation result is written into A3; then, the velocity ratio of the quintic curve is adjusted, and the adjustment result is written into A2 to keep the speed ratios of A2 and A3 consistent.


- 3. If a quintic curve immediately follows another quintic curve, no adjustment needs to be made.
- 4. If a straight line immediately follows another straight line, it is necessary to calculate the joint velocity of each segment separately, and a sudden change in the joint velocity ratio is allowed at this time.

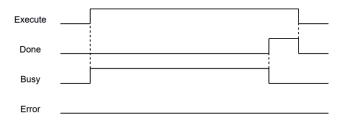
For example, A1–A2 form the first straight line segment, and A2–A3 form the second straight line segment. First, the velocity ratio of the first straight line segment is calculated and written into A2. Then, the joint velocity of the second straight line segment is calculated and written into A3. At this time, it is allowed that a sudden velocity change caused by the joint velocity inconsistency between the first and second straight line segments.

Multiple Starts of This Command

For this command, after the Done signal is set to ON, you can trigger the current command by repeating the rising edge or trigger a new MC_GenerateCamTable command to take effect, otherwise the system reports an error.

3.21.37 MC_SaveCamTable

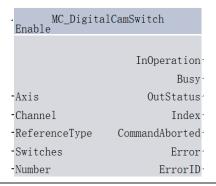
16-Bit			_				
command							
32-Bit		MC Cove	CamaTabla	. Cauca aana	ملطمه		
command	MC_SaveCamTable: Save cam table						
Operand	Name	Description	Nullable	Default value	Range	Data Type	
S1	CamTable	Cam table	No	1	0-15	WORD	
D1	Done	Completion	Yes	-	ON/OFF	BOOL	



16-Bit command			-					
32-Bit command	MC_SaveCamTable: Save cam table							
Operand	Name Description Nullable Value Range Data Type							
D2	Busy	Executing	Yes	-	ON/OFF	BOOL		
D3	Error	Fault	Yes	-	ON/OFF	BOOL		
D4	ErrorID	Error code	Yes	-	-	WORD		

On the rising edge of Execute, this command saves the cam table specified by CamTable to the non-volatile memory.

During the execution of this command, the control power cannot be turned off, otherwise data saving failure and data loss will be caused.


Timing diagram

3.21.38 MC_DigitalCamSwitch

Graphic Block

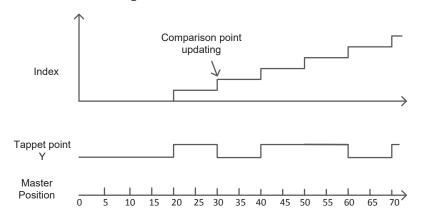
16-Bit

command			-						
32-Bit command		MC_DigitalCamSwitch: Tappet control							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	Axis	Axis name/axis ID	No	-	0-39	WORD			
S2	ReferenceType	Position Type Selection 0: command position for previous cycle 1: command position for current cycle 2: feedback position for current cycle 3: Corresponding	No	1	0–3	REAL			

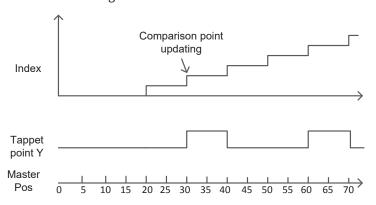
16-Bit command			-			
32-Bit command		MC_DigitalCamS	witch։ Taր	opet con	trol	
Operand	Name	Description	Nullable	Default value	Range	Data Type
		master axis phase with axis used as cam slave axis				
S3	Switches	Switch	No	-	-	_stru_MC_DIGITAL _SWITCH[32]
S4	Number	Qty	No	-	1-32	INT
S5	Channel	Tappet terminal selection 0–15 represent physical terminal 16–31 represent virtual terminal	No	-	0-31	INT
D1	InOperation	Tappet in operation	Yes	OFF	ON/OFF	BOOL
D2	Busy	Command under execution	Yes	OFF	ON/OFF	BOOL
D3	OutStatus	Output status	Yes	OFF	ON/OFF	BOOL
D4	Index	Index, comparison point being executed	Yes	0	0-31	INT
D5	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL
D6	Error	Error sign	Yes	OFF	ON/OFF	BOOL
D7	ErrorID	Error code	Yes	0	-	WORD

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	ı	-	-	ı	-	-
S2	√	1	-	-	\	√	√
S3	-	ı	-	-	ı	-	√
S4	√	-	-	-	✓	√	√
S5	√	-	-	-	√	√	√
D1	-	√	√	√	-	-	√
D2	-	\	√	√	ı	-	√
D3	-	√	√	√	-	-	√
D4	-	ı	-	-	\	√	√
D5	-	√	√	√	-	-	√
D6	-	√	√	√	-	-	√
D7	-	-	-	-	√	√	√

- 1. This command is used in combination with the cam to achieve the tappet function.
- 2. ReferenceType is used for position type selection, supporting the command position for the previous cycle (0), the command position for the current cycle (1), the feedback position for the current cycle (2), and the master axis phase when the axis is specified as a cam slave by the current command (3).
- 3. Switches is a configuration parameter setting the output point of the tappet, its variable is a structure array with a length of 32, and its structure data type is _stru_MC_DIGITAL_SWITCH.


Variable	Data Type	Description
fPosition	REAL	Absolute position during ON validity period
iDeeAsties	INIT	Positive running switch action
iPosAction	INT	0: no action; 1: ON; 2: OFF; 3: inversion
:NlasAstian	INIT	Negative running switch action
iNegAction	INT	0: no action; 1: ON; 2: OFF; 3: inversion

After the tappet command is activated, the command determines the closest tappet point to the current position of the axis internally. After the axis reaches this point, it immediately outputs the tappet action according to Action. Note that fPosition needs to be set to ascending order, otherwise the command reports an error.


During the positive operation of the command, the tappet sets the tappet output terminal according to iPosAction. During the negative operation of the command, the tappet will set the tappet output terminal according to iNegAction.

No.	fPosition	iPosAction	iNegAction
1	20	1	2
2	30	2	3
3	40	3	1
4	50	0	0
5	60	2	2
6	70	1	3

In case of positive master axis running:

In case of negative master axis running:

OutStatus can be used to monitor the output state of the tappet.

Channel is used to select the tappet terminals, where 0–15 are the digital output terminals of the CPU body and correspond to Y00–Y07 and Y10–Y17, and 16–31 are virtual tappets that only occupy the number of tappets but will not output to the physical hardware terminals. Channel does not support setting a tappet terminal through an expansion module.

On the rising edge of Enable, this command latches its left-side input parameters, and starts executing the tappet output comparison function.

Note that during the Enable=ON period, modifying the left-side input parameters of the command is invalid, and the entire process of the tappet action requires that ON keep valid.

On the falling edge of Enable, the command stops the tappet comparison output function and interrupts the tappet terminal that outputs ON.

Repeated Triggering

This command is an Enable control command and has no involvement with repeated triggering. It is valid at high levels and invalid at low levels.

Multiple Calls

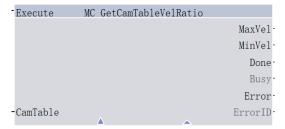
If two identical MC_DigitalCamSwitch commands have the same Channel setting value, the first command is triggered first. If the second command is triggered during the validity period of Busy signal of the first command, the first command is interrupted, and the tappet point is output through the control of the second tappet command.

3.21.39 MC_GetCamTablePhase

_	MC_GetCamTablePha	ase	
		Done -	-
		Busy-	-
_	·CamTable	Number-	-
_	StartPoint	Phase-	-
_	EndPoint	Error-	-
_	Distance	ErrorID-	-

16-Bit command			-							
32-Bit command		MC_GetCamTablePhase: Get cam table phase								
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S1	CamTable	Cam table name/cam table ID	No	-	0-15	REAL				
S2	StartPoint	Start point	No	-	-	_stru_CAM_NODE				
S3	EndPoint	End point	No	-	-	_stru_CAM_NODE				
S4	Distance	Slave axis displacement	No	-	Positive/ negative/0	REAL				
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL				
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL				
D3	Number	Number of corresponding phases -1: Myriad solution 0: None >0: Actual number	Yes	0	Positive/ negative/0	INT				
D4	Phase	Solved phase value	Yes	0	Positive/0	REAL [6]				
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D6	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	-	-	-	-	-	-	✓
S3	-	-	-	-	-	-	√
S4	✓	-	-	-	√	√	√
D1	-	√	\	√	-	-	√
D2	-	√	✓	√	-	-	√
D3	-	-	-	-	√	√	√
D4	-	-	1	-	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	√


This command can calculate the corresponding master axis phase (Phase) according to the slave axis displacement (Distance) between two cam keypoints.

If the cam curve is a straight line and parallel to the X-axis, the Distance given in the specifications is on the straight line, and the command output parameter Number outputs -1, and Phase [0] outputs the abscissa of the starting point.

If the cam curve is a quintic curve, there may be multiple solutions. The command output parameter Number represents the solved number of Phase, and the specific solution values are stored in the Phase array.

If there is no solution, the output parameter Number is equal to 0, and the function block reports an error message stating Distance is not within the range of the cam curve.

3.21.40 MC_GetCamTableVelRatio

16-Bit command			-								
32-Bit command		MC_GetCamTableVelRatio: Get cam table velocity ratio									
Operand	Name	Description	Nullable	Default value	Range	Data Type					
S1	CamTable	Cam table name/cam table ID	No	1	0-15	REAL					
D1	MaxVel	Maximum velocity ratio	No	0	Positive/ negative/0	REAL					
D2	MinVel	Minimum velocity ratio	No	0	Positive/ negative/0	REAL					
D3	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL					
D4	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL					
D5	Error	Fault	Yes	OFF	ON/OFF	BOOL					
D6	ErrorID	Error code	Yes	0	-	WORD					

This command can calculate the maximum and minimum values of the current cam table velocity ratio, and is valid to the rising edge.

Note that if the cam table keypoints are modified during a run, the current modified cam keypoint parameters will be read.

3.21.41 MC_GetCamTableDistance

Graphic Block

	MC_GetCamTable	Distance
-	·CamTable	Done
-	StartPoint	Distance
-	EndPoint	Error
	Phase	ErrorID

16-Bit command			-							
32-Bit command		MC_GetCamTableDistance: Get cam table displacement								
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S1	CamTable	Cam table name/cam table ID	No	-	0–15	REAL				
S2	StartPoint	Start point	No	-	-	_stru_CAM_NODE				
S3	EndPoint	End point	No	-	-	_stru_CAM_NODE				
S4	Phase	Master axis phase	No	-	Positive/ negative/0	REAL				
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL				
D2	Distance	Solved displacement	Yes	0	Positive/ negative/0	REAL				
D3	Error	Error sign	Yes	OFF	ON/OFF	BOOL				
D4	ErrorID	Error code	Yes	0	-	WORD				

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	-	-	-	-	-	-	✓
S3	-	-	-	-	-	-	✓
S4	√	-	-	-	√	✓	✓
D1	-	✓	✓	√	-	-	✓
D2	-	-	-	-	✓	✓	✓
D3	-	√	√	√	-	-	√
D4	-	-	-	-	√	√	√

Function Description

This command can calculate the corresponding slave axis displacement (Distance) according to the master axis phase (Phase) between two cam keypoints.

3.21.42 MC_GearInPos

Graphic Block

Execute MC GearInPos

-Master
-Slave
-RatioNumerator
-RatioDenominator
-ReferenceType
-MasterSyncPosition StartSync-SlaveSyncPosition InSync-MasterStartDistance Busy-Acceleration Active-Deceleration CommandAborted-Jerk Errori-AvoidReversal ErrorID-

16-Bit		-				
32-Bit command	MC_	GearInPos: Action start at spe	cified posi	tion of ge	ear	
Operand	Name	Description	Nullable	Default value	Range	Data Type
S1	Master	Master axis name/axis ID It can be chosen from bus servo axis, local pulse axis, and local encoder axis	No	-	0-39	WORD
S2	Slave	Slave axis name/axis ID It can be chosen from bus servo axis and local pulse axis	No	-	0-39	DINT
S3	RatioNumerator	Numerator of gear ratio	Yes	1	Positive/ negative	DINT
S4	RatioDenominator	Denominator of gear ratio	Yes	1	Positive number	DWORD
S5	ReferenceType	Selection of master axis position type 0: command position for previous cycle 1: command position for current cycle 2: feedback position for current cycle	Yes	1	0-2	INT
S6	MasterSyncPosition	Master axis synchronization position	No	-	Positive/ negative/0	REAL
S7	SlaveSyncPosition	Slave axis synchronization position	No	-	Positive/ negative/0	REAL
S8	MasterStartDistance	Distance of master axis movement during Catching Phase	No	-	Positive number	REAL
S9	Acceleration	Acceleration	Yes	1000	Positive number	REAL
S10	Deceleration	Deceleration	Yes	1000	Positive number	REAL

16-Bit command		-									
32-Bit command	MC_	MC_GearInPos: Action start at specified position of gear									
Operand	Name	Description	Nullable	Default value	Range	Data Type					
S11	Jerk	Jerk (reserved)	Yes	0	Positive/0	REAL					
S12	AvoidReversal	Avoiding reversal	Yes	0	0-1	INT					
D1	StartSync	Catching	Yes	OFF	ON/OFF	BOOL					
D2	InSync	Synchronizing	Yes	OFF	ON/OFF	BOOL					
D3	Busy	Executing	Yes	OFF	ON/OFF	BOOL					
D4	Active	Execution validity	Yes	OFF	ON/OFF	BOOL					
D5	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL					
D6	Error	Error sign	Yes	OFF	ON/OFF	BOOL					
D7	ErrorlD	Error code	Yes	0	-	WORD					

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	-	-	-	-	-
S3	✓	-	-	-	√	√	✓
S4	✓	-	-	-	✓	✓	✓
S5	✓	-	-	-	√	√	√
S6	✓	-	-	-	√	√	✓
S7	✓	-	-	-	√	√	√
S8	✓	-	-	-	√	√	√
S9	✓	-	-	-	√	√	√
S10	✓	-	-	-	√	√	✓
S11	✓	-	-	-	√	√	√
S12	✓	-	-	-	√	√	√
S13	✓	-	-	-	√	√	√
D1	-	√	√	√	-	-	√
D2	-	√	√	√	-	-	√
D3	-	√	√	√	-	-	√
D4	-	√	√	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	√	√	√	-	-	√
D7	-	-	-	-	√	√	√

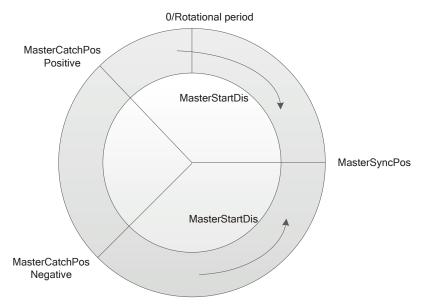
This command specifies the action target axis through the Slave (slave axis), and determines the speed ratio between the slave axis and the master axis upon completion of synchronization, based on the input parameters RatioNumerator (numerator of gear ratio) and RatioDenominator (denominator of gear ratio). The source of the master axis position can be determined based on the ReferenceType (position type selection) parameter. The positions of the master and slave axes during synchronization can be determined based on the MasterSyncPosition (master axis synchronization position), SlaveSyncPosition (slave axis synchronization position), and MasterStartDistance (master axis starting synchronization displacement) parameters. The control of the slave axis can be achieved through the above parameters.

The interval during which the slave axis moves from its current position to the specified synchronization position is defined as Catching Phase; after reaching the target position, the phase is called InGear Phase. After the gears are synchronized, synchronized action with the master axis at the specified gear ratio is maintained in any interval.

The essence of the motion process in the command catching phase is that the slave axis follows an electronic cam of the master axis. At this time, a quintic cam curve is planned based on the master axis range (MasterCatchPosition, MasterSyncPosition), slave axis range (slave axis position at the moment of triggering the catching phase, SlaveSyncPosition), master-slave axis velocity ratio (0, master-slave axis gear ratio at the moment of triggering the catching phase), and the above position parameters, so that the slave axis follows the master axis in the catching phase to complete the cam motion.

The starting position of the master axis during the catching phase is defined as MasterCatchPosition, which is determined based on the direction of the master axis's movement at the start time. When the master axis is a linear axis:

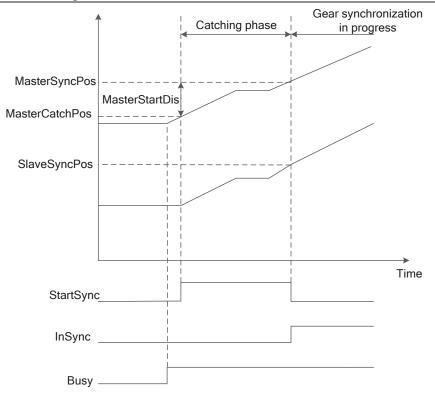
If the motion direction of master axis is positive,

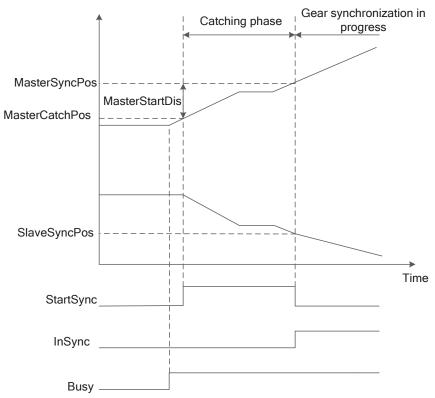

 ${\tt MasterCatchPosition=MasterSyncPosition-MasterStartDistance}.$

If the motion direction of master axis is negative,

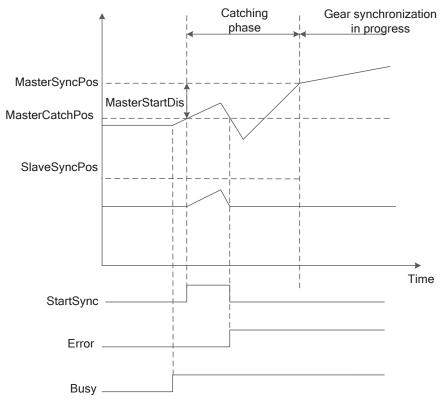
 ${\tt MasterCatchPosition=MasterSyncPosition+MasterStartDistance}.$

The command will determine the current position and motion direction of the master axis before the cam action start. If the current motion direction of the master axis cannot reach MasterCatchPosition, an error will be reported.

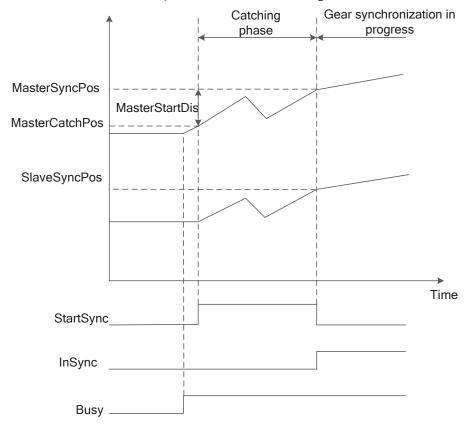

When the master axis is in the rotating axis mode, the calculation principle of its catching phase position is as follows:


After the gears are synchronized, the slave axis moves at the target speed obtained by multiplying the master axis speed by the gear ratio (RatioNumerator/RatioDenominator). During gear synchronization, if the gear ratio parameter is modified, the slave axis will accelerate or decelerate to the target speed based on the parameters Acceleration and Deceleration.

When the gear ratio is positive, upon reaching the synchronization position, the slave axis moves in the same direction as the master axis.



When the gear ratio is negative, upon reaching the synchronization position, the slave axis moves in the opposite direction to the master axis.



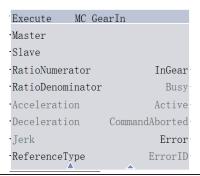
During the catching process, if the position of the master axis deviates from the catching area due to vibration, the command will exit the catching stage and report an error.

In addition, the slave axis speed will not be fixed when the master axis speed varies significantly from cycle to cycle. Before reaching the gear synchronization InSync and within the area of master axis catching phase, the slave axis will follow the master axis position. The schematic diagram is shown below.

Resetting This Command

During the period when the Busy signal of the command is active and StartSyn is inactive, if this command is triggered again, it re-latch the current input parameters, and the slave axis performs the gear-specified position action based on the new command parameters.

During the period when the StartSync signal of the command is active and InSync is inactive, if this command is triggered again, it reports an error, and the slave axis enters an incorrect deceleration and stop motion.


During the validity period of the InSync signal of the command, if this command is triggered again, it performs acceleration and deceleration actions based on the modified gear ratio parameters, while maintaining the gear synchronization state.

Multiple Calls

During the period when the Busy signal of the command is active and StartSync is inactive, if the second MC_GearInPos command is triggered, the Busy signal of the second command is valid, the first command is interrupted, and the CommandAborted output ON of the first command is valid.

If the first command has already entered the gear catching phase, it is necessary to call MC_GearOut before triggering the second MC_GearInPos command.

3.21.43 MC GearIn

16-Bit		-								
32-Bit command	MC_GearIn: Electronic gear entry									
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S1	Master	Master axis name/axis ID It can be chosen from bus servo axis, local pulse axis, and local encoder axis	No	-	0–39	WORD				
S2	Slave	Slave axis name/axis ID It can be chosen from bus servo axis and local pulse axis	No	-	0-39	WORD				
S3	RatioNumerator	Numerator of gear ratio	Yes	1	Positive/ negative/0	DINT				
S4	RatioDenominator	Denominator of gear ratio	Yes	1	Positive number	DWORD				
S5	Acceleration	Acceleration	Yes	1000	Positive number	REAL				
S6	Deceleration	Deceleration	Yes	1000	Positive number	REAL				

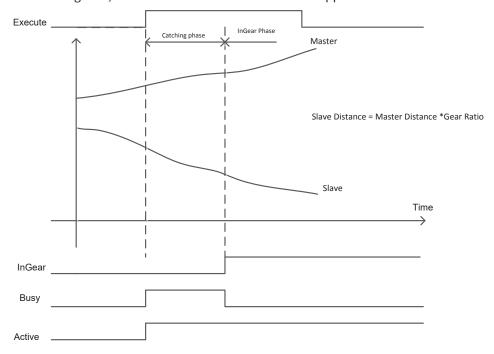
16-Bit command		-							
32-Bit command		MC_GearIn: Electronic gear entry							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S7	Jerk	Jerk value	Yes	10000	Positive number	REAL			
S8	ReferenceType	Master axis position source 0: command position for previous cycle 1: command position for current cycle 2: feedback position for current cycle	Yes	1	0-2	INT			
D1	InGear	Reach specified gear ratio	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Executing	Yes	OFF	ON/OFF	BOOL			
D3	Active	Execution validity	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL			
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D6	ErrorID	Error code	Yes	0	-	WORD			

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	-	-	-	-	-
S3	√	-	-	-	√	√	✓
S4	✓	-	-	-	√	√	✓
S5	√	-	-	-	√	√	✓
S6	√	-	-	-	√	√	✓
S7	√	-	-	-	√	√	✓
S8	√	-	-	-	√	√	✓
D1	-	√	√	√	-	-	✓
D2	-	√	√	√	-	-	✓
D3	-	√	√	√	-	-	✓
D4	-	√	√	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	✓	✓	✓

After the action is started, the speed obtained by multiplying the master axis speed by the gear ratio is taken as the target speed, and the acceleration and deceleration operation is carried out on the slave axis.

Before reaching the target position, the phase is called Catching Phase; after reaching the target position, the phase is called InGear Phase.

Catching phase InGear Phase Master


Slave Distance = Master Distance *Gear Ratio

Slave

Time

If the gear ratio is positive, the slave axis moves in the same direction as the master axis.

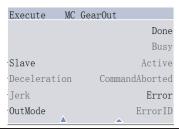
If the gear ratio is negative, the slave axis moves in the direction opposite to the master axis.

Resetting This Command

InGear

Busy

Active


If triggered again during the validity period of the Busy signal of the MC_GearIn command, this command will re-calculate the target velocity of the slave axis based on the numerator and denominator of the gear ratio, and the slave axis will perform a follow-up action based on the calculation result and determine whether InGear is set based on the calculation result.

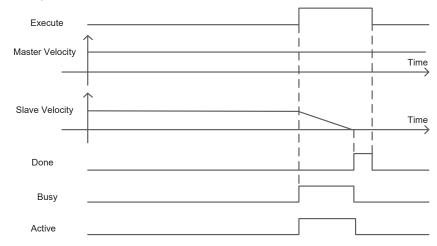
Multiple Starts of This Command

During the validity period of the Busy signal of the MC_GearIn command, if the second command is triggered, the Busy signal of the second command will be valid, the first command will be interrupted, the second command will re-calculate the target velocity of the slave axis based on the numerator and denominator of the gear ratio, and the slave axis will perform a follow-up action based on the calculation result and determine whether InGear is set based on the calculation result.

3.21.44 MC_GearOut

16-Bit command		-						
32-Bit command	MC_GearOut: Electronic gear exit							
Operand	Name	Description	Nullable	Default value	Range	Data Type		
S1	Slave	Axis name/axis ID	No	-	0-39	WORD		
S2	Deceleration	Deceleration	Yes	1000	Positive number	REAL		
S3	Jerk	Acceleration and deceleration 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive number	REAL		
S4	OutMode	Synchronization mode cancellation selection 0: deceleration-based stop 1: immediate stop	Yes	0	0-1	INT		
D1	Done	Execution completion	Yes	OFF	ON/OFF	BOOL		
D2	Busy	Executing	Yes	OFF	ON/OFF	BOOL		
D3	Active	Execution validity	Yes	OFF	ON/OFF	BOOL		
D4	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL		
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL		
D6	ErrorID	Error code	Yes	0	-	WORD		

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	✓	-	-	-	-	-	-
S2	✓	-	-	-	√	✓	✓
S3	√	-	-	-	√	√	✓
S4	√	-	-	-	√	√	√
D1	ı	\	√	√	-	1	√
D2	ı	\	√	√	-	1	√
D3	-	√	√	√	-	-	√
D4	-	✓	√	√	-	-	√
D5	-	√	√	√	-	-	√
D6	-	-	-	-	√	√	✓


This function block is used to implement the electronic gear exit function. When the gear exits, the slave axis slows down and stops as per the specified deceleration. If Execute is set to TRUE, the slave axis slows down to "0" according to Deceleration (deceleration); if the slave axis command velocity changes to "0", Done becomes TRUE.

Multiple Starts of This Command

During the validity period of the Busy signal of the MC_GearOut command, if the second command is triggered, the Busy signal of the second command is valid, the first command is interrupted, and the axis decelerates to 0 according to the deceleration of the second command.

Timing diagram

Timing diagram for stop with deceleration

3.21.45 MC_Phasing

-	MC_Ph	asing
	Execute	_
-	Slave	Done ·
-	PhaseShift	Busy
-	Velocity	Active
-	Acceleration	CommandAborted
-	Deceleration	Error
-	Jerk	ErrorID

16-Bit command		-								
32-Bit command	MC_Phasing: Phase offset									
Operand	Name	Description	Nullable	Default value	Range	Data Type				
S1	Slave	Slave axis name/axis ID	No	-	0-39	WORD				
S2	PhaseShift	Phase offset	No	-	Positive/ negative/0	REAL				
S3	Velocity	Speed	Yes	100	Positive number	REAL				
S4	Acceleration	Acceleration	Yes	1000	Positive number	REAL				
S5	Deceleration	Deceleration	Yes	1000	Positive number	REAL				

16-Bit command	-								
32-Bit command	MC_Phasing: Phase offset								
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S6	Jerk	Jerk value 0: T-type acceleration and deceleration >0: S-type acceleration and deceleration	Yes	0	Positive number	REAL			
D1	Done	Phase offset completion	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Executing	Yes	OFF	ON/OFF	BOOL			
D3	Active	Execution validity	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interruption	Yes	OFF	ON/OFF	BOOL			
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D6	ErrorID	Error code	Yes	0	-	WORD			

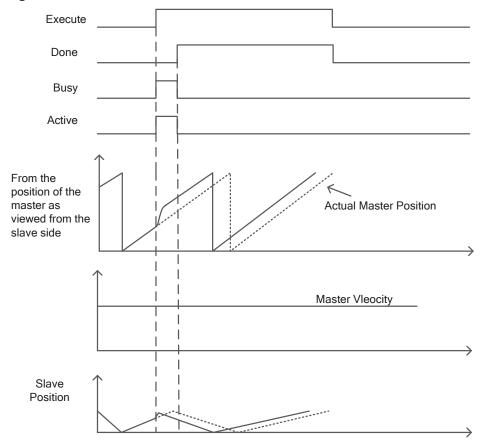
Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	1	-	-	-	1	-
S2	√	1	-	-	√	\	✓
S3	✓	-	-	-	✓	✓	✓
S4	√	-	-	-	√	√	✓
S5	√	-	-	-	√	√	✓
S6	√	-	-	-	√	√	✓
D1	-	√	√	√	-	-	✓
D2	-	√	√	√	-	-	✓
D3	-	✓	✓	✓	-	-	✓
D4	-	√	√	√	-	-	✓
D5	-	√	√	√	-	-	√
D6	-	√	√	√	-	-	√

This command is only applicable to the MC_CamIn (cam action start) and MC_GearIn (gear action start) commands.

If activated in the master-slave axis synchronization control, this command compensates the master axis phase according to on the set PhaseShift (phase compensation), Velocity (velocity), Acceleration (acceleration), and Deceleration (deceleration).

- For cooperating with the cam motion, this command is only called after calling the CamIn command. In
 case of InSync==OFF for the CamIn command, the phase compensation command is in a buffered state,
 only the Busy signal is valid, and the Active signal output is invalid. In case of InSync==ON for the
 MC_CamIn command, the cam is fully engaged, the Active signal output of the phase compensation
 command is valid, and the phase compensation action starts.
- 2. For cooperating with the gear motion, this command is only called after calling the GearIn command. First, the MC_GearIn command is triggered to establish a gear relationship between master and slave axes; after the slave axis is in the SyncMotion state, the MC_Phasing command is triggered, and the execution of the phase compensation action starts.

During the execution, the set position (feedback position) of the master axis remains unchanged, and the value compensated for the set position (feedback position) with simply a relative amount by the MC_Phasing is the "master axis phase". The slave axis is synchronized with the compensated "master axis phase".


When PhaseShift (the phase compensation) is reached, Done (the execution completion flag) becomes ON.

When the synchronization control command in execution is completed, the compensation ends. When you execute the synchronization control command again, the previous compensation is not affected.

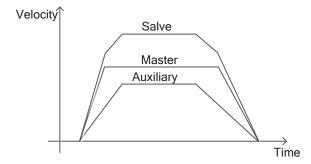
Multiple Starts of This Command

During the validity period of the Busy signal of the MC_Phasing command, if the second command is triggered, the Busy signal of the second command is valid, the first command is interrupted, and the slave axis performs the acceleration or deceleration action according to the parameters of the second command to keep the specified phase difference with the master axis.

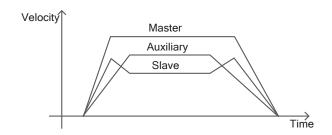
Timing diagram

3.21.46 MC_CombineAxes

Execute MC Combi	neAxes
Master	
Auxiliary	
·Slave	
·CombineMode	
RatioNumMaster	
RatioDenMaster	
-RatioNumAuxiliary	7
RatioDenAuxiliary	7
RefTypeMaster	InCombination
RefTypeAuxiliary	Busy
Acceleration	Active
Deceleration	CommandAborted
Jerk	Error
BufferMode	ErrorID



16-Bit command		-				
32-Bit command		MC_CombineAxes: Dual-axis e	lectronic g	gear		
Operand	Name	Description	Nullable	Default value	Range	Data Type
S1	Master	Master axis name/axis ID It can be chosen from bus servo axis, local pulse axis, and local encoder axis	No	-	0-39	WORD
S2	Auxiliary	Auxiliary axis name/axis ID It can be chosen from bus servo axis, local pulse axis, and local encoder axis	No	-	0-39	WORD
S3	Slave	Slave axis name/axis ID It can be chosen from bus servo axis and local pulse axis	No	-	0-39	DINT
S4	CombineMode	Addition-subtraction selection 0: addition 1: subtraction	No	-	0–1	INT
S5	RatioNumMaster	Gear ratio numerator of master axis	Yes	1	Positive number	DINT
S6	RatioDenMaster	Gear ratio denominator of master axis	Yes	1	Positive number	DWORD
S7	RatioNumAuxiliary	Gear ratio numerator of auxiliary axis	Yes	1	Positive number	DINT
S8	RatioDenAuxiliary	Gear ratio denominator of auxiliary axis	Yes	1	0-2	DWORD
S 9	RefTypeMaster	Selection of master axis position type 0: command position for previous cycle 1: command position for current cycle 2: feedback position for current cycle	Yes	1		INT
S10	RefTypeAuxiliary	Selection of auxiliary axis position type 0: command position for previous cycle 1: command position for current cycle 2: feedback position for current cycle	Yes	1		INT
S11	Acceleration	Acceleration (reserved)	Yes	1000		REAL
S12	Deceleration	Deceleration (reserved)	Yes	1000		REAL
S13	Jerk	Jerk (reserved)	Yes	0		REAL
S14	BufferMode	Buffer mode (reserved)	Yes	0		INT
D1	InCombination	Ongoing acceleration operation	Yes	OFF	ON/OFF	BOOL
D2	Busy	Executing	Yes	OFF	ON/OFF	
D3	Active	Execution validity	Yes	OFF	ON/OFF	
D4		Execution interruption	Yes	OFF	ON/OFF	
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL
D6	ErrorID	Error code	Yes	0	-	WORD



Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	√	-	-	-	-	-	-
S3	√	-	-	-	-	-	-
S4	√	-	-	-	√	✓	✓
S5	√	-	-	-	√	√	✓
S6	√	-	-	-	√	√	√
S7	√	-	-	ı	√	\	✓
S8	√	-	-	-	√	✓	✓
S9	√	-	-	-	√	√	√
S10	√	-	-	ı	√	\	\
S11	√	-	-	ı	√	\	✓
S12	√	-	-	1	√	\	\
S13	✓	-	-	-	✓	√	✓
S14	✓	-	-	-	✓	√	√
D1	-	✓	✓	✓	-	-	✓
D2	-	√	√	✓	-	-	✓
D3	-	√	√	✓	-	-	✓
D4	-	√	√	\	-	-	\
D5	-	√	√	√	-	-	√
D6	-	-	-	-	✓	✓	✓

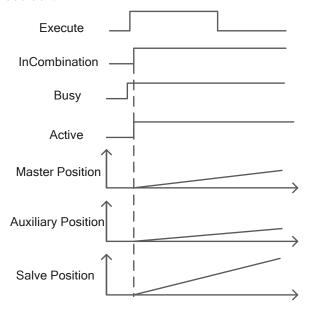
- 1. This command outputs the value obtained by addition or subtraction of the positions of the main and auxiliary axes as the position of the slave axis.
- 2. There are two ways for this command to execute combination: addition or subtraction, which can be set through the input parameter CombineMode.
- When CombineMode is set to 0: Increment of slave axis position = increment of master axis position × RatioNumMaster/RatioDenMaster + increment of auxiliary axis position × RatioNumAuxiliary/RatioDenAuxiliary

When CombineMode is set to 1: Increment of slave axis position = increment of master axis position × RatioNumMaster/RatioDenMaster - increment of auxiliary axis position × RatioNumAuxiliary/RatioDenAuxiliary

The numerator and denominator of the gear ratio between the master and auxiliary axes are set as the position increment adjustment factors for these two axes.

To end the master-slave axis relationship of this command, this can be done by exiting the engagement between the master and slave axes through commands such as MC_GearOut and MC_Halt.

Resetting This Command


If triggered again during the validity period of the Busy signal of the MC_CombineAxes command, this command will re-latch the current input parameters, and the slave axis will perform a follow-up action based on the calculation result and determine whether InCombination is set based on the calculation result.

Multiple Calls

During the validity period of the Busy signal of the MC_CombineAxes command, if the second command is triggered, the Busy signal of the second command is valid, the first command is interrupted, and the CommandAborted output ON of the first command is valid.

Timing diagram

CombineMode is set to addition.

3.21.47 Error Codes of Master and Slave Axis Commands

Main error code	Secondary error code		Possible cause	Solution
	0xC9(201)	Warning	The master and slave axes use the same axis ID	Check whether the master and slave axes are the same
0x11(17) Operation control fault	0xCA(202) 0xCB(203)		It is invalid to trigger the MC_ GearOut function block	Check whether the input parameters of GearOut are within the constraint range of the command parameter list Check whether the slave axis is in the gear action Check whether the slave axis is in the gear disengagement action
	0xCC(204)	l Fa⊓lt	Input parameter error of MC_GearIn function block	Check whether the input parameters of MC_GearIn are within the constraint range of the command parameter list

Main error code	Secondary error code	Error level	Possible cause	Solution
	0xCD(205)	Warning	The current command to run the master axis does not meet the requirements	Check whether the master axis state meets the requirements With the MC_Phasing command running, check whether the current axis is in the process of cam or gear operation
	0xCE(206)	Warning	The master axis has not reached the target velocity	Check whether the current master axis has reached the target velocity
	0xCF(207)	Fault	Input parameter error of MC_CamOut function block	Check whether the input parameters of MC_CamOut are within the constraint range of the command parameter list
	0xD0(208)	Warning	It is invalid to trigger the MC_CamOut command	Check whether the slave axis is in the cam action Check whether the slave axis is in the cam disengagement action
	0xD1(209)	Fault	Input parameter error of MC_CamIn function block	Check whether the input parameters of MC_CamIn are within the constraint range of the command parameter list
	0xD2(210)	Warning	The current CamTable ID is not within the valid range	Check whether the CamTable ID is within the constraint range of the command parameter list
	0xD3(211)	Warning	Setting error of StartPosition or MasterStartDistance in MC_CamIn command	Check whether MasterStart Distance and Start Position are in the current master axis running direction in the absolute position mode
0x11(17) Operation control fault	0xD4(212)	Warning	When the MC_CamIn command is in the absolute position mode, StartPosition ahead of Master Start Distance	Check whether StartPosition is ahead of MasterStartDistance in the absolute position mode
	0xD5(213)	Fault	The input parameters of the MC_Phasing command are not within the valid range	Check whether the input parameters of MC_Phasing are within the constraint range of the command parameter list
	0xD6(214)	Warning	Reserved	-
	0xD7(215)		Reserved	-
	0xD8(216)		Reserved	-
	0xD9(217)		Reserved	-
	0xDA(218)	Ŭ	Reserved	-
	0xDB(219)	Ŭ	Reserved	-
	0xDC(220)		Reserved	-
	0xDD(221)		Reserved	-
	0xDE(222)		Reserved	-
011/17\	0xDF(223)		Reserved	-
0x11(17)	0xE0(224)		Reserved	Charlembath on the mass to a suit on because
Operation	0xE1(225)	warning	Master axis phase setting	Check whether the master axis phases

Main error	Secondary error code		Possible cause	Solution
code control	error code	levet	error	of two adjacent keypoints are less
fault				than or equal to 0.001 in the
				user-defined cam table of the
				MC_GenerateCamTable command
				Check whether the positions of the
			The start point of the cam	master and slave axes at the start
	0xE2(226)	Warning	table cannot be set as a	point of the cam are set to non-zero in
			non-zero parameter	the user-defined cam table of the
				MC_GenerateCamTable command
			The current NodeNum	Check whether the MC_NodeNum
	0xE3(227)	Warning	parameter cannot be set to	parameter is set to 0 in the current
	UXL3(ZZI)	waiiiiig	0	mode in the GenerateCamTable
			U .	command
				Check whether the MC_NodeNum
			The current NodeNum	parameter is set within the constraint
	0xE4(228)	Warning	parameter is not within the	range of the command parameter list
			valid range	in the current mode in the
				GenerateCamTable command
		xE5(229) Warning		Check whether the cam curve type
	0xE5(229)			settings are within the constraint
			Curve type setting error in	range of the command parameters
			cam table	list. They only support 0 (which
				represents straight lines) and 1 (which
				represents quintic curves)
	0xE6(230)	Warning	The cam table is empty	Check whether the cam table is
	UNEO(230)	Walling	The cam table is empty	configured
			Encoder master axis enable	Check whether the counting
	0xE7(231)	Warning	failed	command ENC_Counter is enabled
				when using the encoder master axis
			The length of the	Check that the length of the
	0xE8(232)	Warning	user-defined cam table is	user-defined cam table array must be
	(===/		not within the valid range	32 in the MC_GenerateCamTable
				command
			The the user-defined tappet	Check that the length of the
	0xE9(233)	Warning	switch is not within the	user-defined switch array must be 32
			valid range	in the MC_DigitalCamSwitch
				command
			The ReferenceType	Check whether ReferenceType
	0xEA(234)	Warning	[·	parameter settings are within the
			within the valid range	valid range for the current command
			The Channel parameter	Check whether Channel parameter
	0xEB(235)	Warning		settings are within the valid range for
			valid range	the current command
			The Number parameter	Check whether Number parameter
	0xEC(236)	Warning	settings are not within the	settings are within the valid range for
			valid range	the current command
	0xED(237)	Warning	The address of the Switches	Check whether the Switches

Main error code	Secondary error code		Possible cause	Solution
Couc			parameter is NULL	parameter has a given variable in the current command
	0xEE(238)	Warning	Positions are not arranged in ascending order in the tappet switch	Check whether Position in the Switches parameter is set to ascending order in the current command. If not, modify it.
	0xEF(239)	Warning	The current axis state does not support the use of the tappet command	Check whether the axis is in the home state
	0xF0(240)	Warning	The Action settings are not within the valid range for the tappet switch	Check whether Action in the Switches parameter is within the valid range for the current command
	0xF1(241)	Warning	The current Channel is already in use	Check if there is any reuse of Channel
	0xF2(242)	Warning	The Position settings in the tappet switch exceeds the rotation axis modulus cycle	Check whether Position in the Switch parameter exceeds the rotation cycle value in the rotation axis mode for the current command
	0xF3(243)	Fault	The input parameters of the MC_CombineAxes command are not within the valid range	Check whether the command parameters are within the valid range, and call the MC_Reset command to reset the axis state
0x11(17)	0xF4(244)	Warning	Phase of the MC_GetCamTableDistance command is not within the valid range between the start and end points	Check whether the input parameter Phase of this command is within the valid range between the start and end points
Operation control fault	0xF5(245)	Warning	The CurveType parameter settings are not within the valid range	Check whether CurveType parameter settings are within the valid range for the current command
	0xF6(246)	Warning	The phases of the start and end points for the MC_GetCamTableDistance command is not arranged in ascending order	Check if the phase difference between the start and end points for this command is less than 0.001 Check whether Phase in CamTable is in ascending order
	0xF7(247)	Warning	The current master axis has entered the ErrorStop state, and the function block has stopped running	
	0xF8(248)	Warning	Multiple cam table save commands are used on the same axis	Check whether multiple cam table save commands are used on the same axis in the user program
	0xF9(249)	Warning	The cam table update command was not completed and the cam table save command was called instead	Check whether the user program has not completed the cam table update command and has called the cam table save command instead

Main			otter command mandat	
error code	ror Secondary Error		Possible cause	Solution
			The array length of the	Check if the array length of the output
	0xFA	\\/	output parameter Phase of	parameter Phase of the
	(250)	Warning	the MC_GetCamTablePhase	MC_GetCamTablePhase command is
			command is not 6	6
			The acceleration setting at	Check the acceleration setting for the
	0xFB(251)	Warning	the start or end point of the	start and end points of the
	0X1 D(231)	warriing	MC_GetCamTablePhase	MC_GetCamTablePhase command
			command is abnormal	mo_deteamrablet nase commana
			The input parameter	
			Distance of the	Check the Distance setting of the
	0xFC(252)	Warning	MC_GetCamTablePhase	MC_GetCamTablePhase command
			command is not within the	_
			valid range of the cam table	
			The start or end point reference for the	
	0xFD(253)	Warning	MC_GetCamTablePhase	Please contact INVT technical service
	0xFE(254)	Warning	command is abnormal	
			The input parameter	Check whether the command input
			RatioNumerator of the	parameter is within the valid range,
			MC_GearInPos command is	and the parameter should be set to a
			incorrectly set	positive number
	0xFF(255)	Warning	The input parameter	Check whether the command input
			RatioDenominator of the	parameter is within the valid range,
			MC_GearInPos command is	and the parameter is not allowed to
			incorrectly set	be set to 0
			The input parameter	Check whether the command input
	0x100(256)	Warning	Reference of the	parameter is within the valid range,
	0.100(230)	warriing	MC_GearInPos command is	and the valid range of the parameter
			incorrectly set	is 0-2
			The input parameter	
	0x101(257)	Warning	MasterSyncPosition of the	Check whether the command input
	, ,		MC_GearInPos command is	parameter is within the valid range
			incorrectly set	
0.11/17			The input parameter	Charles had a sale a sa
0x11(17)	0x102(258)	Warning	SlaveSyncPosition of the MC GearInPos command is	Check whether the command input
Operation			incorrectly set	parameter is within the valid range
control fault			The input parameter	Check whether the command input
lautt			MasterStartDistance of the	parameter is within the valid range,
	0x103(259)	Warning	MC_GearInPos command is	and the parameter should be set to a
			incorrectly set	positive number
			The input parameter	Check whether the command input
	/		Velocity of the	parameter is within the valid range,
	0x104(260)	Warning	MC_GearInPos command is	and the parameter should be set to a
			incorrectly set	positive number
	0x105(261)	Marnina	The input parameter	Check whether the command input
	07102(201)	Warning	Acceleration of the	parameter is within the valid range,

Main error code	Secondary error code	Error level	Possible cause	Solution
			MC_GearInPos command is incorrectly set	and the parameter should be set to a positive number
	0x106(262)	Warning	The input parameter Deceleration of the MC_GearInPos command is incorrectly set	Check whether the command input parameter is within the valid range, and the parameter should be set to a positive number
	0x107(263)	Warning	The input parameter Jerk of the MC_GearInPos command is incorrectly set	Check whether the command input parameter is within the valid range, and the parameter is not allowed to be set to a negative number
	0x108(264)	Warning	The input parameter AvoidReversalof the MC_GearInPos command is incorrectly set	Check whether the command input parameter is within the valid range, and the valid range of the parameter is 0-1
	0x109(265)	Warning	When the MC_GearInPos command is triggered, the slave axis that has not entered the catching phase possesses an initial velocity	Ensure that the slave axis remains stationary when it has not entered the catching phase
	0x10A(266)	Warning	During the catching phase, the MC_GearInPosa command was restarted to modify parameters	Do not restart the command for the slave axis during the catching phase
	0x10B(267)	Warning	The current motion direction of the master axis does not allow it to enter	Ensure that the master axis synchronization position MasterSyncPosition is set ahead of the master axis motion direction Ensure that MasterStartDistance is set within the valid range
	0x10C(268)	Warning	The slave axis is in the catching phase, but the master axis position reversely exceeds the effective range of the master axis phase	Avoid reverse operation of the master axis as much as possible
	0x10D(269)	Warning	When the parameter Reference of MC_DigitalCamSwitch is set to 3, only cam motion is supported	When the parameter Reference of MC_DigitalCamSwitch is set to 3, only cam motion is supported, no other motion commands are supported
	0x10E(270)	Warning	The cam action was re-entered during the cam exit process	It is not supported to re-engage the cam during the cam exit process

3.21.48 MC_MoveLinear

Graphic Block

Execute MC_MoveLinear AxesGroup Position Velocity Acceleration Done Deceleration Busy Jerk Active AbsRelMode CommandAborted BufferMode Error TransitionMode ErrorID

16-Bit		-							
32-Bit command		MoveLinear: Linear interpolation							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	AxesGroup	Axis group number	No	-	0–7	INT			
S2	Position	Positive/negative/0	No	-	Array (positive/ negative/0)	REAL [4]			
S3	Velocity	Positive number, which is the maximum absolute value of the velocity	Yes	100	Positive number	REAL			
S4	Acceleration	Positive number, which is the maximum absolute value of the acceleration or deceleration	Yes	1000	Positive number	REAL			
\$5	Jerk	Jerk=0: T-type acceleration and deceleration Jerk>0: S-type acceleration and deceleration; the larger the positive number, the poorer the S-type acceleration and deceleration effect	Yes	0	Positive/0	REAL			
S6	AbsRelMode	0: absolute mode 1: relative mode	Yes	0	0-1	INT			
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL			
D5	Error	Command fault flag	Yes	OFF	ON/OFF	BOOL			
D6	ErrorID	Fault code, which displays fault information	Yes	0	Positive/0	WORD			

		Soft Element								
Operand	Const	D	R	Υ	M	S	Custom Variables			
S1	✓			-	-	-	-			
S2		✓	✓	-	-	-	-			

		Soft Element									
Operand	Const	D	R	Υ	М	S	Custom Variables				
S3	✓	√	√	-	-	-	√				
S4	✓	√	✓	-	-	-	√				
S5	✓	√	√	-	-	-	✓				
S6	✓	√	✓	-	-	-	√				
D1	-	-	-	√	√	√	√				
D2	-	-	-	√	√	√	√				
D3	-	-	-	√	√	√	√				
D4	-	-	-	√	√	√	√				
D5	-	-	-	√	√	√	√				
D6	-	√	√	-	-	_	√				

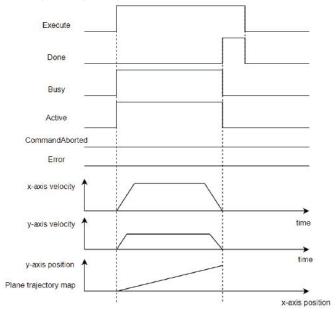
- 1. The rising edge triggers parameters to take effect, and this module is used to implement linear interpolation function, which support two-axis, three-axis, and four-axis linear interpolations.
- 2. When there is a single-axis motion in the axis group, the axis group command cannot be started. Therefore, you should ensure that: before starting the command, all axes in the axis group are in the enabled state; after starting, the axis group state switches from 6 (GroupStandStill) to 8 (GroupSynchronizedMotion). The axis group states are shown in the table below:

Axis Group Status	Status Code	Status Description
SingleDisabled	1	There is an axis in the disable state in the axis group
SingleStop	2	There is an axis in the single axis stop state in the axis group
SingleHoming	3	There is an axis in the homing state in the axis group
SingleMetion	4	There is an axis in the single axis or master-slave axes
SingleMotion	4	motion state in the axis group
GroupErrorStop	5	There is an axis in the error state in the axis group
GroupStandStill	6	All axes in the axis group are enabled
GroupStopping	7	Axis Group Stop or Axis Group Immediate Stop is called
GroupSynchronizeMotion	8	The function block of the axis group is pulled up and successfully enters this state

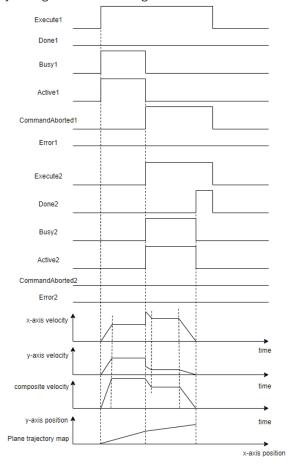
- 3. This command provide absolute and relative motion modes, and sets the current coordinate positions to (px, py) and the parameter target positions to (posx, posy). In case of AbsRelMode=0, it plans the target positions to (posx, posy); in case of AbsRelMode=1, it plans the target positions to (px+posx, py+posy).
- 4. The number of axes involved in linear interpolation is determined by the number of axes configured in the "Basic Settings" section of "Axis Group Settings" in the upper computer.
- 5. This command and commands MC_MoveCircular2D and MC_GroupHalt are allowed to interrupt each other, and using the MC_GroupSetOverride axis group velocity control function can adjust the velocity of interpolation operation online.

Resetting This Command

If triggered again during the validity period of its Busy signal, this command re-plans with new target parameters according to the current motion position, velocity, etc.


Multiple Starts of This Command

When multiple commands call the same axis group, if the next command is triggered during the Busy signal validity period of the previous command, the next command will take effect and re-plans with new target parameters according to the current motion position, velocity, etc., and the previous command will be interrupted and invalidated.



Timing diagram

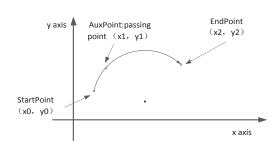
A single command is called to perform the linear interpolation on the X-axis and Y-axis planes. Note that the Position parameter is a REAL type array with a length of 4. Here D0–D7 are used as input element for this parameter to obtain D0=200, D2=80, D4=0, and D6=0.

For interrupting commands of the same type, two commands are called. During the operation of the first command, the second command is pulled up to modify the target composite velocity and target position. Note that a slight jump occurs in the single-axis velocity during the interrupt cycle. In this example, you can see the starting position (x, y)=(40, 0), the interruption position (x, y)=(100, 30), and the new target position (x, y)=(160, 45). During the interrupt cycle, the x-axis velocity jump becomes larger, the y-axis velocity jump becomes smaller, and the composite velocity of the axis group remains unchanged. Afterwards, the velocity of the axis group gradually changes to the new target value.

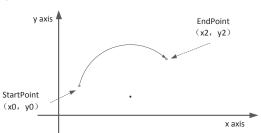
3.21.49 MC_MoveCircular2D

-	Execute	MC_MoveCircular2D
_	AxesGroup	
-	CircAxes	
-	CircMode	
-	AuxPoint	
-	EndPoint	
-	PathChoice	
_	Velocity	
_	Acceleration	Done
-	Deceleration	Busy
_	Jerk	Active
-	AbsRelMode	CommandAborted
-	BufferMode	Error
1	TransitionMode	ErrorID

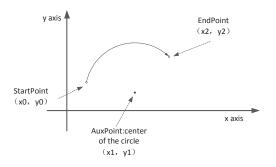
16-Bit				•							
command		-									
32-Bit command		MC_MoveCircular2D: Plane arc interpolation Default Date									
Operand	Name	Description	Nullable	Default value	Range	Data Type					
S1	AxesGroup	Axis group number	No	-	0–7	WORD					
S2	CircAxes	0: x-y plane 1: y-z plane 2: x-z plane	Yes	0	0–2	INT					
\$3	CircMode	0: _mcBorder, specified as the pass point 1: _mcCenter, specified as the circle center 2: _mcRadius, specified as the radius	Yes	0	0-2	INT					
S4	AuxPoint	CircMode=0: coordinates of pass midpoint CircMode=1: coordinates of circle center CircMode=2: coordinates of radius (only AuxPoint [0] is assigned; note that positive numbers select the superior arc, while negative numbers select the inferior arc) Superior arc: an arc with a center angle greater than 180°, that is, the arc longer than a semicircle	No	-	Array (positive/ negative/0)	REAL [2]					
S5	EndPoint	End point of arc	No	-	Array (positive/ negative/0)	REAL [2]					
S6	Velocity	Positive number, which is the maximum absolute value of the velocity	Yes	100	Positive number	REAL					


16-Bit command		-										
32-Bit command		MC_MoveCircular2D: Plane arc interpolation										
Operand	Name	Description	Nullable	Default value	Range	Data Type						
S7	Acceleration	Positive number, which is the maximum absolute value of the acceleration or deceleration	Yes	1000	Positive number	REAL						
S8	PathChoice	It is used as a supplementary condition 0: clockwise 1: counterclockwise	Yes	0	0-1	INT						
S 9	Jerk	Jerk=0: T-type acceleration and deceleration; Jerk>0: S-type acceleration and deceleration; the larger the positive number, the poorer the S-type acceleration and deceleration effect	Yes	0	Positive/0	REAL						
S10	AbsRelMode	0: absolute mode 1: relative mode	Yes	0	0-1	INT						
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL						
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL						
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL						
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL						
D5	Error	Command fault flag	Yes	OFF	ON/OFF	BOOL						
D6	ErrorID	Fault code, which displays fault information	Yes	0	Positive/0	WORD						

				Soft Element	t		
Operand	Const	D	R	Υ	М	S	Custom Variables
S1	✓	-	-	-	-	-	-
S2	√	✓	✓	-	-	-	✓
S3	√	✓	✓	-	-	-	✓
S4	-	√	✓	-	-	-	-
S5	-	✓	√	-	-	-	-
S6	\	\	√	-	-	-	✓
S7	\	\	√	-	1	-	✓
S8	✓	✓	√	-	-	-	✓
S9	✓	✓	√	-	-	-	✓
S10	√	✓	✓	-	-	-	✓
D1	-	-	-	✓	✓	√	✓
D2	-	-	-	✓	✓	✓	✓
D3	-	-	-	√	✓	✓	✓
D4	-	-	-	✓	✓	√	✓
D5	-	-	-	√	✓	✓	✓
D6	-	✓	✓	-	-	-	✓



- 1. The rising edge triggers parameters to take effect, and this module is used to implement arc interpolation function. Users can specify two axes within the axis group to participate in arc interpolation through CircAxes.
- 2. When there is a single-axis motion in the axis group, the axis group command cannot be started. Therefore, you should ensure that: before starting the command, all axes in the axis group are in the enabled state; after starting, the axis group state switches from 6 (GroupStandStill) to 8 (GroupSynchronizedMotion).
- 3. This command provide absolute and relative motion modes, and sets the current coordinate positions to (px, py) and the parameter target positions to (posx, posy). In case of AbsRelMode=0, it plans the target positions to (posx, posy); in case of AbsRelMode=1, it plans the target positions to (px+posx, py+posy).
- 4. The arc interpolation function supports three circle drawing modes, which are selected through the parameter CircMode. Note that the start point is the current position of the PLC, and the three modes are CircMode=0 (known start point, midpoint, and end point), CircMode=1 (known start point, circle center coordinates, and endpoint), and CircMode=2 (known start point, radius, and endpoint). In case of CircMode=2, the radius is set by AuxPoint [0], which selects the superior arc when set to a positive number or the inferior arc when set to a negative number.
- 5. This command and commands MC_MoveLinear and MC_ GroupHalt are allowed to interrupt each other, and using the MC_GroupSetOverride axis group velocity control function can adjust the velocity of interpolation operation online.
- 6. In addition to the CircMode=0 mode, the direction of circle drawing is determined by the parameter PathChoice supplementarily. See below for the diagrams of drawing circles through CircMode=0, CircMode=1, and CircMode=2.


Draw Circle Mode: CircMode =0, Specify the passing point and endpoint Direction: None

Draw Circle Mode: CircMode =2, Specify radius and endpoint
Direction: PathChoice=0, clockwise
circle radius: AuxPoint[0]
major or minor arc: AuxPoint[0]<0 minor arc

Draw Circle Mode: CircMode =1, Specify the center and endpoint of the circle Direction: PathChoice=0, clockwise

Resetting This Command

If triggered again during the validity period of its Busy signal, this command re-plans with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

When multiple commands call the same axis group, if the next command is triggered during the Busy signal validity period of the previous command, the next command will take effect and re-plans with new target parameters according to the current motion position, velocity, etc., and the previous command will be interrupted and invalidated.

Timing diagram

For the timing diagram of arcual interpolation, see the timing diagram of linear interpolation in the previous section.

3.21.50 MC_MoveEllipse

Reserved

3.21.51 MC_GroupSetOverride

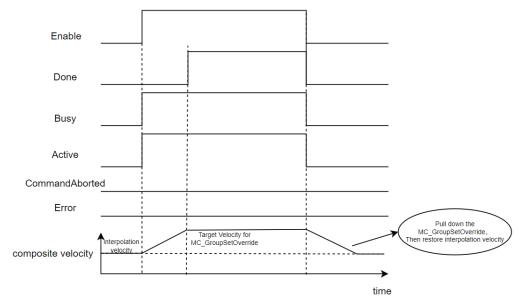
-	Enable	${\tt MC_GroupSet0verride}$	
-	AxesGroup		Done
-	Velocity		Busy
-	Acceleration		Active
-	Deceleration		Error
-	Jerk		ErrorID

16-Bit command		-										
32-Bit command	М	MC_GroupSetOverRide: Axis group velocity regulation										
Operand	Name	Description	Nullable	Default value	Range	Data Type						
S1	AxesGroup	Axis group number	No	-	0–7	INT						
S2	Velocity	Positive number, which is the maximum absolute value of the velocity	Yes	100	Positive number	REAL						
\$3	Acceleration	Positive number, which is the maximum absolute value of the acceleration or deceleration	Yes	1000	Positive number	REAL						
S4	Jerk	Jerk=0: T-type acceleration and deceleration Jerk>0: S-type acceleration and deceleration; the larger the positive number, the poorer the S-type acceleration and deceleration effect	Yes	0	Positive/ 0	REAL						
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL						
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL						
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL						
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL						
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL						
D6	ErrorID	Error code	Yes	0	Positive/ 0	WORD						

		Soft Element								
Operand	Const	D	R	Υ	М	S	Custom Variables			
S1	√	-	-	-	-	-	-			
S2	✓	✓	✓	-	-	-	√			
S3	✓	✓	✓	-	-	-	√			
S4	\	\	\	-	-	-	√			
D1	-	-	-	√	√	✓	√			
D2	-	-	-	√	√	✓	√			
D3	ı	ı	1	√	√	\	√			
D4	1	1	1	√	√	\	√			
D5	ı	-	1	√	√	\	√			
D6	-	√	√	-	-	-	√			

- 1. The high-level parameters take effect and are used to achieve the online variable velocity (composite velocity) processing of the axis group motion module.
- 2. The velocity regulation function does not change the axis group state machines.
- 3. The modified command parameters are user input values, which are constrained by the maximum values in the axis group configuration.
- 4. This command allows the parameters to be pulled up when the axis group state is 6 (GroupStandStill) and also allows the online modified parameters to take effect. After pulling down the velocity control function, interpolation restores the original interpolation velocity.

Resetting This Command


As an Enable-type command, this command becomes invalid when pulled down, is valid at high levels, and can be modified online.

Multiple Starts of This Command

When multiple commands call the same axis group, if the next command is triggered during the Busy signal validity period of the previous command, the next command will report error code 15, which means that multiple starts are not supported.

Timing diagram

A single command is called to trigger the velocity regulation command during the interpolation operation.

3.21.52 MC_GroupStop

Graphic Block

Execute	MC GroupStop	
DACCUTC	Mc_drddpbtop	Done
		Busy
		Active
AxesGroup		CommandAborted
Deceleration		Error
Jerk		ErrorID

16-Bit command		-										
32-Bit command		MC_GroupStop: Axis group stop										
Operand	Name	Description	Nullable	Default value	Range	Data Type						
S1	AxesGroup	Axis group number	No	-	0–7	INT						
S2	Deceleration	Positive number, which is the maximum absolute value of the deceleration	Yes	1000	Positive number	REAL						
\$3	Jerk	Jerk=0: T-type acceleration and deceleration Jerk>0: S-type acceleration and deceleration; the larger the positive number, the poorer the S-type acceleration and deceleration effect	Yes	0	Positive/0	REAL						
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL						
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL						
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL						
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL						
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL						
D6	ErrorID	Error code	Yes	0	Positive/0	WORD						

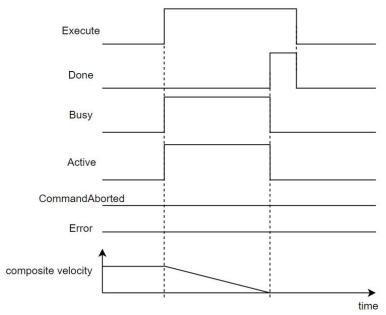
		Soft Element							
Operand	Const	D	R	Υ	М	S	Custom Variables		
S1	√	-	-	-	-	-	-		
S2	√	√	√	-	-	-	✓		
S3	√	√	√	-	-	-	✓		
D1	-	-	-	√	√	√	√		
D2	-	-	-	√	√	√	✓		
D3	-	-	-	√	√	√	✓		
D4	-	-	-	√	√	√	√		
D5	-	-	-	√	√	√	√		
D6	-	✓	√	-	-	-	✓		

Function Description

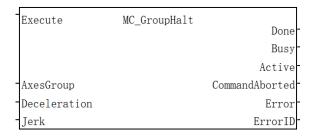
The rising edge triggers parameters to take effect, and this module is used to stop the existing motion
of the axis group (except for MC_GroupImmediateStop). MC_GroupStop has a higher priority than
MC_Halt and MC_GroupPause.

- 2. When there is a single-axis motion in the axis group, the axis group command cannot be started. Therefore, you should ensure that: before starting the command, the axis group is in state 6 (GroupStandStill) or state 8 (GroupSynchronizedMotion); after starting, the axis group state is 7 (GroupStopping).
- 3. After GroupStop stops, GroupStop must be pulled down to switch the axis group state back to 6 (GroupStandStill), so that new interpolation action can be performed.
- 4. When the deceleration settings are unreasonable, "Axis Group Fault Deceleration" in the axis group configuration interface will be used first. If the deceleration is still unreasonable, the axis will stop immediately.
- 5. This command and commands MC_MoveCircular2D and MC_GroupHalt are allowed to interrupt each other, and using the MC_GroupSetOverride axis group velocity control function can adjust the velocity of interpolation operation online.

Resetting This Command


If triggered again during the validity period of its Busy signal, this command re-plans with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command


When multiple commands call the same axis group, if the next command is triggered during the Busy signal validity period of the previous command, the previous command still runs normally, but the next command can not take effect and reports error code 309, which means that multiple starts are not supported.

Timing diagram

A single command is called to perform deceleration-based stop.

3.21.53 MC_GroupHalt

16-Bit command		-							
32-Bit command		MC_GroupHalt: Axis group halt							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	AxesGroup	Axis group number	No	-	0-7	INT			
S2	Deceleration	Positive number, which is the maximum absolute value of the deceleration	Yes	1000	Positive number	REAL			
\$3	Jerk	Jerk=0: T-type acceleration and deceleration Jerk>0: S-type acceleration and deceleration; the larger the positive number, the poorer the S-type acceleration and deceleration effect	Yes	0	Positive/0	REAL			
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL			
D5	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D6	ErrorID	Error code	Yes	0	Positive/0	WORD			

			:	Soft Elemen	t		
Operand	Const	D	R	Υ	М	S	Custom Variables
S1	√	-	-	-	-	-	-
S2	√	✓	✓	-	-	-	✓
S3	✓	√	✓	-	-	-	✓
D1	-	-	-	✓	✓	✓	✓
D2	-	-	-	√	√	√	√
D3	-	-	-	√	√	√	✓
D4	-	-	-	✓	✓	✓	✓
D5	-	-	-	✓	√	✓	✓
D6	-	√	√	-	-	-	✓

- 1. The rising edge triggers parameters to take effect, and this module is used to halt the existing motion of the axis group (except for MC_GroupImmediateStop and MC_GroupStop).
 - The difference between MC_GroupHalt and MC_GroupPause is that MC_GroupHalt interrupts the interpolation and cannot resume it, while MC_GroupPause can resume the interpolation movement by pulling it low after interrupting the interpolation.
- 2. When there is a single-axis motion in the axis group, the axis group command cannot be started. Therefore, you should ensure that: before starting the command, the axis group is in state 6 (GroupStandStill) or state 8 (GroupSynchronizedMotion); after starting, the axis group state is 8 (GroupSynchronizedMotion); after stopping, the axis group state is 6 (GroupStandStill).
- 3. This command and commands MC_MoveCircular2D and MC_GroupLinear are allowed to interrupt each other. This command does not support calling the velocity regulation module for velocity regulation during deceleration.

Resetting This Command

If triggered again during the validity period of its Busy signal, this command re-plans with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

When multiple commands call the same axis group, if the next command is triggered during the Busy signal validity period of the previous command, the next command will take effect and re-plans with new target parameters according to the current motion position, velocity, etc., and the previous command will be interrupted and invalidated.

Timing diagram

See the timing diagram for MC_GroupStop.

3.21.54 MC_GroupPause

Enable	MC_Gro	upPause
		Done-
		Busy-
		Active-
-AxesGroup	p	CommandAborted-
-Decelera	tion	Error-
Jerk		ErrorID-

16-Bit		-							
32-Bit command		MC_GroupPause: Axis group pause							
Operand	Name	Description	Nullable	Default value	Range	Data Type			
S1	AxesGroup	Axis group number	No	-	0-7	INT			
S2	Deceleration	Positive number, which is the maximum absolute value of the deceleration	Yes	1000	Positive number	REAL			
\$3	Jerk	Jerk=0: T-type acceleration and deceleration Jerk>0: S-type acceleration and deceleration; the larger the positive number, the poorer the S-type acceleration and deceleration effect	Yes	0	Positive/0	REAL			
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			
D3	Active	Execution validity flag	Yes	OFF	ON/OFF	BOOL			
D4	CommandAborted	Execution interrupt flag	Yes	OFF	ON/OFF	BOOL			
D5	Error	Command fault flag	Yes	OFF	ON/OFF	BOOL			
D6	ErrorID	Fault code, which displays fault information	Yes	0	Positive/0	WORD			

	Soft Element							
Operand	Const	D	R	Υ	М	S	Custom Variables	
S1	\	ı	-	-	-	-		
S2	✓	√	✓	-	-	-	✓	
S3	\	\	√	-	-	-	√	
D1	-	-	-	√	√	√	√	
D2	-	-	-	✓	✓	✓	✓	
D3	-	-	-	✓	✓	✓	✓	
D4	-	-	-	✓	√	✓	√	
D5	-	-	-	√	√	√	√	
D6	-	√	√	-	-	-	√	

- The rising edge triggers parameters to take effect, and this module is used to halt the existing motion of the axis group (except for MC_GroupImmediateStop and MC_GroupStop).
 - Different from other pauses, MC_GroupPause can resume the original interpolation motion by lowering itself.
- 2. Pulling MC_GroupPause up pauses the interpolation motion along the trajectory, while pulling MC_GroupPause down starts the interpolation motion along the trajectory and executes the original remaining path.
- 3. When there is a single-axis motion in the axis group, the axis group command cannot be started. Therefore, you should ensure that: before starting the command, the axis group is in state 6 (GroupStandStill) or state 8 (GroupSynchronizedMotion); after starting, the axis group state is 8 (GroupSynchronizedMotion); after stopping, the axis group state is 6 (GroupStandStill).

Resetting This Command

If triggered again during the validity period of its Busy signal, this command re-plans with new target parameters according to the current motion position, velocity, etc.

Multiple Starts of This Command

When multiple commands call the same axis group, if the next command is triggered during the Busy signal validity period of the previous command, the next command will take effect and re-plans with new target parameters according to the current motion position, velocity, etc., and the previous command will be interrupted and invalidated.

Timing diagram

See the timing diagram for MC_GroupSetOverride.

3.21.55 MC_GroupImmediateStop

Graphic Block

16-Bit command	MC_GroupImmediateStop: Immediate axis group stop								
32-Bit									
command			_						
Operand	Name	Description	Nullable	Default	Range	Data			
•		•		value	J	Type			
S1	AxesGroup	Axis group number	No	-	0–7	INT			
D1	Done	Execution completion flag	Yes	OFF	ON/OFF	BOOL			
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL			
D3	Error	Error sign	Yes	OFF	ON/OFF	BOOL			
D4	ErrorID	Error code	Yes	0	Positive/0	WORD			

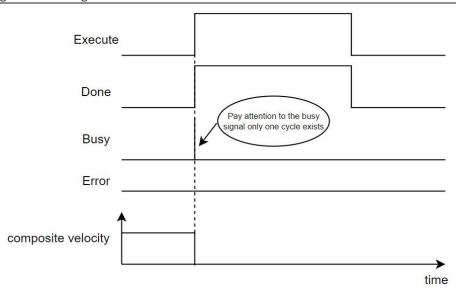
Operand	Const	D	R	Υ	М	S	Custom Variables
S1	√	-	-	-	-	-	-
D1	-	-	-	√	√	√	✓
D2	-	-	-	√	√	√	✓
D3	-	-	-	√	√	√	√
D4	-	√	√	-	-	-	√

Function Description

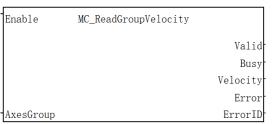
- 1. The rising edge triggers parameters to take effect, and this module is used to immediately stop the existing motion of the axis group. This command has the highest interrupt priority.
- 2. When there is a single-axis motion in the axis group, the axis group command cannot be started. Therefore, you should ensure that: before starting the command, the axis group is in state 6 (GroupStandStill) or state 8 (GroupSynchronizedMotion); after starting, the axis group state is 7 (GroupStopping).
- 3. After GroupImmediateStop stops, GroupImmediateStop must be pulled down to switch the axis group state back to 6 (GroupStandStill), so that new interpolation action can be performed.

Resetting This Command

After a successful pull-up, if you pull up this command again, it still outputs Done.


Multiple Starts of This Command

When multiple commands call the same axis group, if the next command is triggered during the Busy signal validity period of the previous command, the previous command outputs Done, but the next command can not take effect and reports error code 307, which means that multiple starts are not supported.


Timing diagram

A single command is called.

3.21.56 MC_ReadGroupVelocity

16-Bit command 32-Bit		MC_ReadGroupVelocity:	- Read com	posite axi	s group velocity			
Operand Operand	Name	Default						
S1	AxesGroup	Axis group number	No	-	0-7	INT		
D1	Valid	Execution validity flag	Yes	OFF	ON/OFF	BOOL		
D2	Busy	Ongoing execution flag	Yes	OFF	ON/OFF	BOOL		
D3	Velocity	Axis group command velocity	Yes	0	Positive/ negative/0	REAL		
D4	Error	Error sign	Yes	OFF	ON/OFF	BOOL		
D5	ErrorID	Error code	Yes	0	Positive/0	WORD		

			9	Soft Element	t			
Operand	Const	D	R	Υ	М	S	Custom Variables	
S1	√	-	-	-	-	-	-	
D1	-	-	-	√	√	✓	✓	
D2	1	-	-	√	√	\	✓	
D3	ı	√	√	-	-	ı	✓	
D4	-	-	-	√	√	√	√	
D5	-	√	√	-	-	-	√	

This command is valid at high levels, and the module is used to read the composite velocity of the specified axis group.

Resetting This Command

This command is valid at high levels, and it becomes invalid when pulled up or pulled down.

Multiple Starts of This Command

When multiple commands are run to call the same axis group, they don't affect each other.

3.21.57 Fault Codes of Axis Group Commands

Main error code	Secondary error code	Error level	Possible cause	Solution
	0x12D(301)	Fault	Input parameter error of function block	In plane arc interpolation mode 2, if the distance between the start and end points is greater than twice the radius, check and correct the parameters
	0x12E(302)	Fault	Axis group ID settings exceeds the range	Check and correct the axis group ID
	0x12F(303)	Fault	Two or more identical axis IDs are configured in the axis group	Check and correct the duplicated axis IDs in the axis group configuration interface
	0x130(304) Fault		The distance from the start end to the circle center is not equal to that from the end point to the circle center in the plane arc function block	In plane arc interpolation mode 1, check and modify the distance from the start point to the circle center and that from the and end point to the circle center
0x11(17)	0x131(305)	Fault	The start point, circle center, and end point are on the same straight line in the plane arc function block	In plane arc interpolation mode 0, ensure that the start point, auxiliary point, and end point are on the same straight line
Operation control fault	0x132(306)	Fault	The calculated circle center position is not unique in the plane arc function block	In plane arc interpolation mode 2, ensure that the start point is equal to the end point
	0x133(307)	Fault	In the GroupImmediateStop module, the same axis group can only call this function block once, and the second function block starts reporting an error	For the same axis group, the second immediate axis group stop module reports error
	0x134(308)	Fault	The axis group is in the GroupImmediate Stopping state	Pull down the MC_GroupImmediateStop module first, and then pull up the MC_GourpStop module
	0x135(309)	Fault	In the GroupStop module, the same axis group can only call this function block once, and the second function block starts reporting an error	For the same axis group, the second MC_GroupStop module reports error when pulled up

	Main error code	Secondary error code	Error level	Possible cause	Solution
		0x136(310)	Fault	The configured velocity parameters are not within a reasonable range	Check the corresponding parameters
		0x137(311)	Fault	The configured acceleration parameters are not within a reasonable range	Check the corresponding parameters
		0x138(312)	Fault	The configured deceleration parameters are not within a reasonable range	Check the corresponding parameters
		0x139(313)	Fault	The configured Jerk parameters are not within a reasonable range	Check the corresponding parameters
		0x13A(314) Fault 0x13B(315) Fault 0x13C(316) Fault		The configured AbsRelMode parameters are not within a reasonable range	Check the corresponding parameters
				Interpolation is not allowed as there a single axis is in the rotation mode in the axis group	De-select the rotation mode option in the single axis configuration interface
				Interpolation is not allowed as there a single axis is in the debugging mode in the axis group	De-select the debugging mode option in the single axis configuration interface
		0x13D(317)	Fault	The radius parameter is not allowed to be zero	Check the corresponding parameters
		0x13E(318)	Fault	The parameter CircAxes is not within the allowed range	Check the corresponding parameters
		0x13F(319)	Fault	The parameter CircMode is not within the allowed range	Check the corresponding parameters
		0x140(320)	Fault	The parameter PathChoice is not within the allowed range	Check the corresponding parameters
		0x141(321)	Fault	The array parameters passed in by the upper computer are incorrect	Enable upper computer error protection
		0x142(322) Fa		It is not allowed to modify the parameter CircAxes during the operation of arc interpolation	Interrupt the arc interpolation first, and then modify the parameter CircAxes
	0x143(3		Fault	The current state does not allow axis group velocity regulation	The current state does not allow axis group velocity regulation, including moderate axis group deceleration
		0x144(324)	Fault	An unconfigured axis group number has been used	Configure an axis group number for the used axis group in the "Axis Group Settings" list on the upper computer
		0x145(325)	Fault	There is a pulse axis velocity exceeding 200kHz	There is a pulse axis velocity exceeding 200kHz
L		0x146(326)	Fault	Two axis groups use the	Modify the reused axis, or run two axis

Main error code	Secondary error code	Possible cause	Solution
		same axis, so that when one axis group is in motion state, the other axis group cannot enter the motion state	groups at different times
	0x149(329)	The current axis group status does not allow the use of MC_GroupPause	Check the current axis group status

3.22 MC Axis Control (CANopen)

3.22.1 Command list

Command	Name
MC_Power_CO	Communication control servo axis enabling
MC_Reset_CO	Communication control servo axis reset
MC_ReadStatus_CO	Read axis state by communication control
MC_ReadActualVelocity_CO	Read actual axis velocity by communication control
MC_ReadActualPosition_CO	Read actual axis position by communication control
MC_Halt_CO	Communication control servo axis halt
MC_Stop_CO	Communication control servo axis stop
MC_MoveVelocity_CO	Velocity operation mode of communication control axis
MC_MoveRelative_CO	Relative positioning of communication control axis
MC_MoveAbsolute_CO	Absolute positioning of communication control axis
MC_Home_CO	Communication control axis homing
MC_Jog_CO	Communication control axis jogging
MC_ReadAcceleration_CO	Read axis acceleration by communication control
MC_ReadDeceleration_CO	Read axis deceleration by communication control
MC_ReadDlStatus_CO	Read axis DI output state by communication control
CO_ReadSDO	Read SDO by communication control
CO_WriteSDO	Write SDO by communication control

3.22.2 Axis State Machines

State Machine Description

State	Description
Disabled	Disable
ErrorStop	Stop due to fault
Standstill	Enabled state
Homing	Home
Stopping	Stop
Discrete Motion	Discretely move
Continuous Motion	Continuously move
Disabled	Disable

Conversion	Conversion Condition
1	When the fault detection logic of the axis detects a fault
2	When there is no fault with the axis and the energy flow of MC_Power is OFF
3	When MC_Reset is called to reset axis failure and MC_Power energy flow is OFF
4	When MC_Reset is called to reset axis failure and MC_Power energy flow is ON
5	When the energy flow of MC_Power is ON and the output flag Status is ON
6	When MC_Stop.Done is ON and the energy flow of the graphic block is OFF

3.22.3 MC_Power_CO

Graphic Block

16-Bit command	MC_Power_CO: Axis enabling						
32-Bit			-				
command							
Operand	Name	Description	Nullable	Default value	Supported element	Data Type	
S1	Axis	Axis name/axis ID	No	-	Const	WORD	
D1	Status	Axis status	Yes	OFF	Y, M, S	BOOL	
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL	
D3	Error	Error sign	Yes	OFF	Y, M, S	BOOL	
D4	ErrorID	Error code	Yes	0	D, R	WORD	

Function Description

Axis ID: specifies the number of the axis to be controlled; range: 1–30.

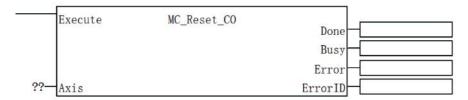
Axis status: the actual state output of the axis, where ON indicates that the axis is enabled, while OFF indicates that the axis is disabled.

Fault code: Refer to section 4.2 "Error Codes".

The MC_Power_CO command writes the corresponding control word (6040h) according to the read status word (6041h) to enable the axis.

The writing correspondence between the status word (6041h) and the control word (6040h) is shown in the table below, where x represents any value (for status word) or remains unchanged (for control word):

Energy flow state	State word	d (6041h)	Control word (6040h)		
	Not ready to switch on	xxxx xxxx x0xx 0000 b	Shutdown	0000 0000 0000 0110 b	
	Switch on disabled	xxxx xxxx x1xx 0000 b	Silutdowii	0000 0000 0000 0110 6	
	Ready to switch on	xxxx xxxx x01x 0001 _b	Switch on	0000 0000 0000 0111 _b	
ON	Switched on	xxxx xxxx x01x 0011 b	Switch on +	0000 0000 0000 1111 ь	
ON	Switched on	XXXX XXXX XUIX UUII P	enable operation		
	Fault reaction active	xxxx xxxx x0xx 1111 _b		xxxx xx00 xx00 xxxx h	
	Fault	xxxx xxxx x0xx 1000 b	-	XXXX XXUU XXUU XXXX b	
	Others		-	XXXX XXXX XXXX XXXX b	
	Ready to switch on	xxxx xxxx x01x 0001 _b			
OFF	Switched on	xxxx xxxx x01x 0011 _b	Disable voltage	0000 0000 0000 0000 ь	
OFF	Operation enabled	xxxx xxxx x01x 0111 _b			
	Others	<u> </u>	-	xxxx xx00 xx00 xxxx _b	


Precautions

This command supports a maximum of 2048 calls.

3.22.4 MC_Reset_CO

Graphic Block

16-Bit command	MC_Reset_CO: Communication control servo axis reset						
32-Bit command			-				
Operand	Name	Description	Nullable	Default value	Supported element	Data Type	
S1	Axis	Axis name/axis ID	No	-	Const	WORD	
D1	Done	Completion	Yes	OFF	Y, M, S	BOOL	
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL	
D3	Error	Error sign	Yes	OFF	Y, M, S	BOOL	
D4	ErrorID	Error code	Yes	0	D, R	WORD	

Function Description

This command is used to reset faults of the CANopen bus axis, causing the axis to enter the "Ready" or "Disabled" state.

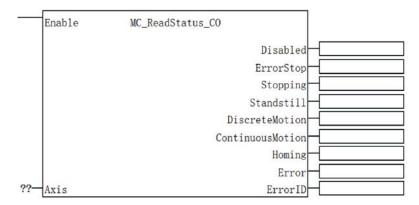
Axis number: specifies the number of the axis to be controlled; range: 1–30.

Done: completes the reset operation and outputs the result.

Error code: Refer to section 4.2 "Error Codes".

The MC_Reset_CO command writes the corresponding control word (6040h) according to the read status word (6041h) to reset the axis fault.

The writing correspondence between the status word (6041h) and the control word (6040h) is shown in the table below, where x represents any value (for status word) or remains unchanged (for control word):


Energy flow state	State w	ord (6041h)	Control word fault reset (6040h.bit7)
	Switch on disabled	xxxx xxxx x1xx 0000b	0
ON	Operation enabled	xxxx xxxx x01x 0111b	-
	Fault	xxxx xxxx x0xx 1000b	1
	-	Others	x
↑	-	xxxx xxxx xxxx xxxxb	0
OFF	-	xxxx xxxx xxxx xxxxb	x

Precautions

3.22.5 This command supports a maximum of 2048 calls. MC_ReadStatus_CO

Graphic Block

16-Bit command	MC_ReadStatus_CO: Read axis status						
32-Bit command			-				
Operand	Name	Description	Nullable	Default value	Supported element	Data Type	
S1	Axis	Axis name/axis ID	No	1	Const	WORD	
D1	Disabled	Disabled flag	Yes	OFF	Y, M, S	BOOL	
D2	ErrorStop	Fault message	Yes	OFF	Y, M, S	BOOL	
D3	Stopping	Stop	Yes	OFF	Y, M, S	BOOL	
D4	Standstill	Ready	Yes	OFF	Y, M, S	BOOL	
D5	DiscreteMotion	Discretely move	Yes	OFF	Y, M, S	BOOL	
D6	ContinuousMotion	Continuously move	Yes	OFF	Y, M, S	BOOL	
D7	Homing	Home	Yes	OFF	Y, M, S	BOOL	
D8	Error	Error sign	Yes	OFF	Y, M, S	BOOL	
D9	ErrorID	Error code	Yes	0	D, R	WORD	

Function Description

- 1. This command is used to read the states of the PLCOpen state machine, as well as the accelerating and decelerating states, of the axis, and is valid at high levels.
- 2. This command has no interrupt flag and therefor multiple commands can run simultaneously.

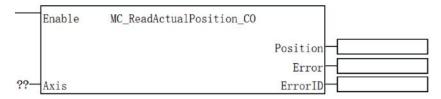
Precautions

3.22.6 This command supports a maximum of 2048 calls.MC_ReadActualVelocity_CO

Graphic Block

16-Bit		MC_ReadActualVelocity_CO: Read actual axis velocity						
command		MC_ReadActuatvelocit	y_co. Read a	Clual axis ve	locity			
32-Bit								
command			-					
				Default	Supported	Data		
Operand	Name	Description	Nullable	value	element	Type		
S1	Axis	Axis name/axis ID	No	-	Const	WORD		
D1	Velocity	Current actual velocity	Yes	OFF	D, R	REAL		
				٥٢٢	V M C	DOOL		
D2	Error	Error sign	Yes	OFF	Y, M, S	BOOL		

Function Description


- 1. MC_ReadActualVelocity_CO command is used to read the actual running velocity of the axis, and is valid at high levels.
- 2. This command has no interrupt flag and therefor multiple commands can run simultaneously.

Precautions

This command supports a maximum of 2048 calls.

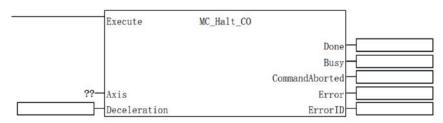
3.22.7 MC_ReadActualPosition_CO

Graphic Block

16-Bit command	MC_ReadActualPosition_CO: Read actual axis position						
32-Bit command		-					
Operand	Name	Description	Default	Supported	Data		
Operand	rand Name Description Nullable	Nuttable	value	element	Type		
S1	Axis	Axis name/axis ID	No	1	Const	WORD	
D1	Position	Current actual position	Yes	OFF	D, R	REAL	
D2	Error	Error sign	Yes	OFF	Y, M, S	BOOL	
D3	ErrorID	Error code	Yes	0	D, R	WORD	

Function Description

1. MC_ReadActualPosition_CO command is used to read the axis command position or axis feedback position, and is valid at high levels.


- 2. When the axis is a local pulse axis, the command output parameter Position is actually the command position.
- 3. This command has no interrupt flag and therefor multiple commands can run simultaneously.

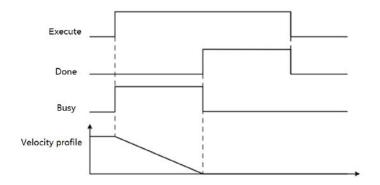
Precautions

This command supports a maximum of 2048 calls.

3.22.8 MC_Halt_CO

Graphic Block

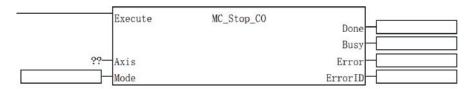
16-Bit command 32-Bit command	MC_Halt_CO: Control axis halt							
Operand	Name	Description	Nullable	Default value	Supported element	Data Type		
S1	Axis	Axis name/axis ID	No	i	Const	WORD		
S2	Deceleration	Deceleration	Yes	OFF	Const, D, R	REAL		
D1	Done	Completion	Yes	OFF	Y, M, S	BOOL		
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL		
D3	CommandAborted	Execution interrupt flag	Yes	OFF	Y, M, S	BOOL		
D4	Error	Error sign	Yes	OFF	Y, M, S	BOOL		
D5	ErrorID	Error code	Yes	0	D, R	WORD		


Function Description

- 1. This command is used to control the CANOpen bus axis to terminate the current motion and afterwards be able to respond to other commands that cause the axis to move.
- 2. The MC_Halt_CO command can be interrupted by the MC_MoveAbsolute_CO, MC_MoveRelative_CO, MC_MoveVelocity_CO, and MC_ Jog_CO commands.

Step	Action/Condition	Description			
1	6040h.bit4=0				
	6040h.bit5=0	The countries was the constitute to the constitu			
	6040h.bit6=0	The control word triggers the motion to stop The target velocity is zeroed			
	6040h.bit8=1	The target velocity is zeroed			
	60FFh=0				
2	606Ch=0				
	6061H=3 and 6041h.bit13=1	Wait for the completion of stop			
	6061H!=3 and 6041h.bit10=1				
3	6060h=1	Switch to the position mode			

Timing diagram



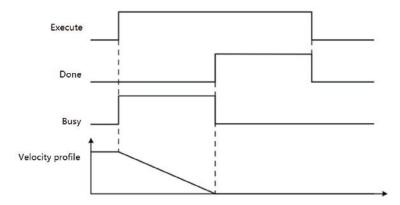
Precautions

This command supports a maximum of 2048 calls.

3.22.9 MC_Stop_CO

Graphic Block

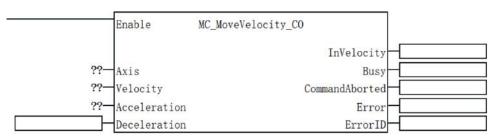
16-Bit command 32-Bit	MC_Stop_CO: Control axis stop					
command	-					
Operand	Name	Description	Nullable	Default value	Supported element	Data Type
S1	Axis	Axis name/axis ID	No	-	Const	WORD
S2	Mode	Stop mode	Yes	OFF	Const, Y, M, S	BOOL
D1	Done	Completion	Yes	OFF	Y, M, S	BOOL
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL
D3	Error	Error sign	Yes	OFF	Y, M, S	BOOL
D4	ErrorID	Error code	Yes	0	D, R	WORD


Function Description

This command is used to control the CANOpen bus axis to terminate the current motion, enter the "Stop" state, and no longer respond to any commands that cause the axis to move.

Step	Action/Condition	Description
1	6040h.bit4=0	
	6040h.bit5=0	The control word triggers the motion to
	6040h.bit6=0	stop
	6040h.bit8=1	The target velocity is zeroed
	60FFh=0	
2	606Ch=0	
	6061H=3 and 6041h.bit13=1	Wait for the completion of stop
	6061H!=3 and 6041h.bit10=1	
3	6060h=1	Switch to the position mode

Timing diagram



Precautions

This command supports a maximum of 2048 calls.

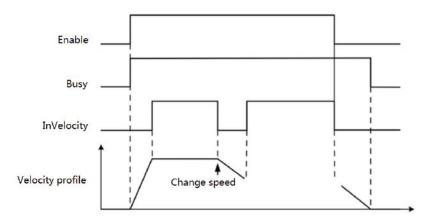
3.22.10 MC_MoveVelocity_CO

Graphic Block

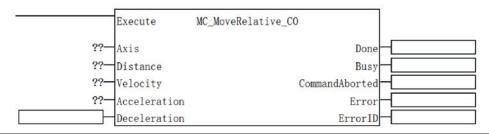
16-Bit	MC_MoveVelocity_CO: Control axis velocity motion							
command	MC_Movevelocity_co. Control axis velocity motion							
32-Bit								
command		-						
0	Manag	D	Madia la La	Default	Supported	Data		
Operand	Name	Description	Nullable	value	element	Туре		
S1	Axis	Axis name/axis ID	No	-	Const	WORD		
S2	Velocity	Speed	No	OFF	Const, D, R	REAL		
S3	Acceleration	Acceleration	No	OFF	Const, D, R	REAL		
S4	Deceleration	Deceleration	Yes	OFF	Const, D, R	REAL		
D1	InVelocity	Speed reached	Yes	OFF	Y, M, S	BOOL		
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL		
D3	CommandAborted	Execution interrupt flag	Yes	OFF	Y, M, S	BOOL		
D4	Error	Error sign	Yes	OFF	Y, M, S	BOOL		
D5	ErrorID	Error code	Yes	0	D, R	WORD		

Function Description

- 1. This command controls the CANOpen bus axis to specify the velocity motion.
- 2. When the specified velocity (Velocity) is greater than 0, the axis moves forward; when it is less than 0, the axis moves backward.
- 3. This command supports modifying speed parameters during runtime and allows them to take effect in real time. If the deceleration (Deceleration) is not specified (that is, the deceleration parameter is empty), it is equal to the specified acceleration by default.


Precautions

This command supports a maximum of 2048 calls.



Step	Action/Condition	Description
1	6040h.bit8=0	Reset the Halt bit of the control word
1	Reset the Halt bit of the control word	Reset the Hall bit of the control word
2	6083h = acceleration	Write the acceleration
3	6084h = deceleration	Write the deceleration
4	6060h=3	Switch to the velocity mode
5	6061h=3	Wait for the completion of velocity
5	000111-3	mode switching
	60FFh = target velocity	Set target velocity
	6041h.bit10=1	Reach target velocity
	60FFh<0 and 6041h.bit11=1 and 60FDh.bit0=1:	When the negative motion encounters
6	60FFh=0	the negative limit, the motion ends
0	607Ah>0 and 6041h.bit11=1 and 60FDh.bit1=1:	When the positive motion encounters
	60FFh=0	the positive limit, the motion ends
	 60FFh=0	When the energy flow of the command
		is invalid, the motion ends

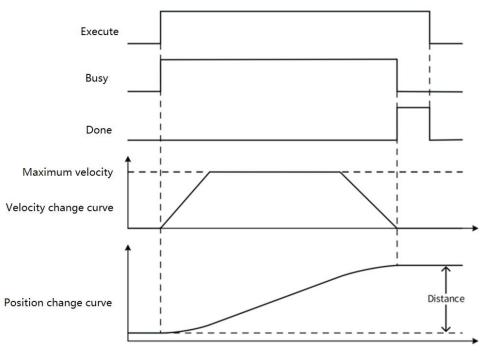
Timing diagram

3.22.11 MC_MoveRelative_CO

16-Bit command	MC_MoveRelative_CO: Relative positioning of control axis							
32-Bit								
command		- -						
Operand	Name	Description	Nullable	Default value	Supported element	Data Type		
S1	Axis	Axis name/axis ID	No	-	Const	WORD		
S2	Distance	Target distance	No	OFF	Const, D, R	REAL		
S3	Velocity	Maximum	No	OFF	Const, D, R	REAL		

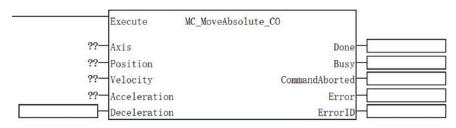
16-Bit command	MC_MoveRelative_CO: Relative positioning of control axis								
32-Bit command		-							
Operand	Name Description Nullable Default Supported Da								
S4	Acceleration	Acceleration	No	OFF	Const, D, R	REAL			
S5	Deceleration	Deceleration	Yes	OFF	Const, D, R	REAL			
D1	Done	Completion	Yes	OFF	Y, M, S	BOOL			
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL			
D3	CommandAborted	Execution interrupt flag	Yes	OFF	Y, M, S	BOOL			
D4	Error	Error sign	Yes	OFF	Y, M, S	BOOL			
D5	ErrorID	Error code	Yes	0	D, R	WORD			

This command achieves the relative positioning function of the CANopen bus axis, and controls the axis to move for a specified distance from the current position. If the deceleration (Deceleration) is not specified (that is, the deceleration parameter is empty), it is equal to the specified acceleration by default.


Precautions

This command supports a maximum of 2048 calls.

Step	Action/Condition	Description		
1	6060h=1	Switch to the position mode		
2	6061h=1	Wait for the completion of position		
	000111 1	mode switching		
	6040h.bit5=m	The control word writes the		
	6040h.bit6=1	corresponding mode.		
3	6040h.bit8=0	In case of cache mode (parameter		
	6040h.bit9=0	number: 1000) = 0, m =1; otherwise, m		
	004011.0119=0	= 0.		
4	607Ah = position	Write the (absolute) target position		
4	6081h = velocity	and positioning velocity		
5	6083h = acceleration	Write the acceleration		
6	6084h = deceleration	Write the deceleration		
7	6040h.bit4=1	Trigger positioning		
8	6041h.bit12=1	Wait for the start of positioning		
9	6040h.bit4=0	Reset the positioning trigger		
	CO7Ab < COCAb and COA1b bit11-1 and COFDb bit0-1	When the negative motion encounters		
	607Ah < 6064h and 6041h.bit11=1 and 60FDh.bit0=1	the negative limit, positioning ends		
10		When the positive motion encounters		
10	007AII > 0004II alid 004III.DICII – I alid 00FDII.DICI – I	the positive limit, positioning ends		
	6041h hit10/1 and 6041h hit12-0	When the target position is reached,		
	6041h.bit10/1 and 6041h.bit12=0	positioning is completed		



Timing diagram

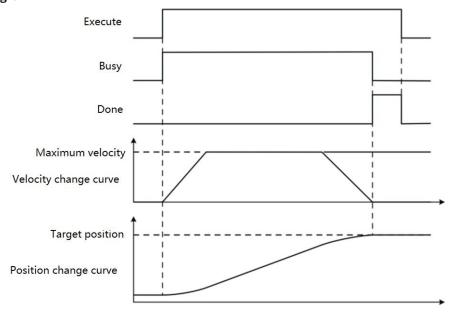
3.22.12 MC_MoveAbsolute_CO

Graphic Block

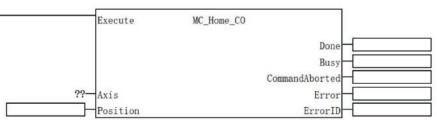
16-Bit	MC_MoveAbsolute_CO: Absolute positioning of control axis								
command	MC_MOVEABSOLUTE_CO. Absolute positioning of control axis								
32-Bit									
command		-							
Onewand	Name	Description	Nullabla	Default	Supported	Data			
Operand	Name	Description	Nullable	value	element	Type			
S1	Axis	Axis name/axis ID	No	-	Const	WORD			
S2	Position	Target position	No	OFF	Const, D, R	REAL			
S3	Velocity	Maximum velocity	No	OFF	Const, D, R	REAL			
S4	Acceleration	Acceleration	No	OFF	Const, D, R	REAL			
S5	Deceleration	Deceleration	Yes	OFF	Const, D, R	REAL			
D1	Done	Completion	Yes	OFF	Y, M, S	BOOL			
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL			
D3	CommandAborted	Execution interrupt flag	Yes	OFF	Y, M, S	BOOL			
D4	Error	Error sign	Yes	OFF	Y, M, S	BOOL			
D5	ErrorID	Error code	Yes	0	D, R	WORD			

Function Description

This command achieves the absolute positioning function of the CANopen bus axis, and controls the axis to move to the specified position. If the deceleration (Deceleration) is not specified (that is, the deceleration parameter is empty), it is equal to the specified acceleration by default.



Precautions


This command supports a maximum of 2048 calls.

Step	Action/Condition	Description
1	6060h=1	Switch to the position mode
2	6061h=1	Wait for the completion of position mode switching
	6040h.bit5=m	The control word writes the corresponding mode
3	6040h.bit6=0	In case of cache mode (parameter number: 1000) =
3	6040h.bit8=0	0, m = 1; otherwise, m = 0.
	6040h.bit9=0	0, 111 – 1, Other wise, 111 – 0.
4	607Ah = position	Write the (absolute) target position and positioning
4	6081h = velocity	velocity
5	6083h = acceleration	Write the acceleration
6	6084h = deceleration	Write the deceleration
7	6040h.bit4=1	Trigger positioning
8	6041h.bit12=1	Wait for the start of positioning
9	6040h.bit4=0	Reset the positioning trigger
	607Ah < 6064h and 6041h.bit11=1 and	When the negative motion encounters the negative
	60FDh.bit0=1	limit, positioning ends
10	607Ah>6064h and 6041h.bit11=1 and	When the positive motion encounters the positive
10	60FDh.bit1=1	limit, positioning ends
	6041h.bit10/1 and 6041h.bit12=0	When the target position is reached, positioning is completed

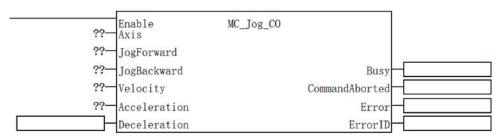
Timing diagram

3.22.13 MC_Home_CO

16-Bit command 32-Bit command	MC_Home_CO: Communication control axis home -							
Operand	Name	Description	Nullable	Default value	Supported element	Data Type		
S1	Axis	Axis name/axis ID	No	-	Const	WORD		
S2	Position	Target position after homing	Yes	OFF	Const, D, R	REAL		
D1	Done	Completion	Yes	OFF	Y, M, S	BOOL		
D2	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL		
D3	CommandAborted	Execution interrupt flag	Yes	OFF	Y, M, S	BOOL		
D4	Error	Error sign	Yes	OFF	Y, M, S	BOOL		
D5	ErrorID	Error code	No	0	D, R	WORD		

This command is used to achieve the homing of the CANopen bus axis. The homing mode and velocity should be set in the CANopen configuration interface. For various homing modes, see the manuals related to the servo/motor drivers.

Precautions


This command supports a maximum of 2048 calls.

Step	Action/Condition	Description
1	6060h=6	The control word triggers the motion to stop, and the target velocity is zeroed
2	6061h=6	Wait for the completion of home mode switching
3	607Ch = origin offset	Set the origin offset
4	6040h.bit4=1	Start homing
-	6041h.bit10/1 and 6041h.bit13=1	Homing failed
5	6041h.bit10/1 and 6041h.bit12=1	Homing done

3.22.14 MC_Jog_CO

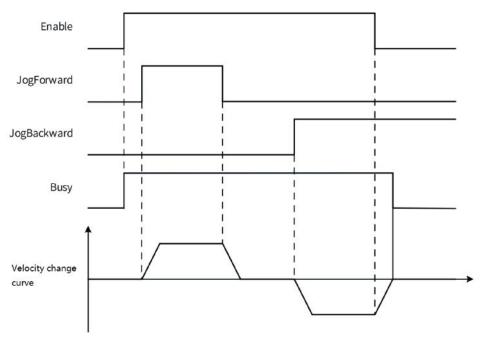
Graphic Block

16-Bit

command		MC_Jog_CO: Control axis jog						
32-Bit command		-						
Operand	Name	Name Description			Supporte d element	Data Type		
S1	Axis	Axis name/axis ID	No	-	Const	WORD		
S2	JogForward	Positive motion, effective at the rising edge	No	OFF	Y, M, S	BOOL		
S3	JogBackward Positive motion, effective at the rising edge		No	OFF	Y, M, S	BOOL		
S4	Velocity	Target velocity	No	OFF	Const, D, R	REAL		

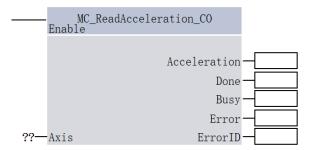
16-Bit command	MC_Jog_CO: Control axis jog							
32-Bit command		-						
	Nama	Description	Nullahla	Default	Supporte	Data		
Operand	Name	Description	Nullable	value	d element	Туре		
S5	Acceleration	Acceleration	No	OFF	Const, D, R	REAL		
S6	Deceleration	Deceleration	Yes	OFF	Const, D, R	REAL		
D1	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL		
D2	CommandAborted	Execution interrupt flag	Yes	OFF	Y, M, S	BOOL		
D3	Error	Error sign	Yes	OFF	Y, M, S	BOOL		
D4	ErrorID	Error code	Yes	0	D, R	WORD		

This command is used to achieve the jog function of the CANopen bus axis. When JogForward is valid, the axis moves forward at the velocity specified by Velocity; when JogBackward is valid, the axis moves backward at the velocity specified by Velocity. If JogForward and JogBackward are valid at the same time, the axis stops moving.


Precautions

This command supports a maximum of 2048 calls.

Step	Action/Condition	Description
1	6040h.bit8=0	Reset the Halt bit of the control word
2	6083h = acceleration/deceleration	Write the acceleration
3	6084h = acceleration/deceleration	Write the deceleration
4	6060h=3	Switch to the velocity mode
5	6061h=3	Wait for the completion of velocity mode switching
	Forward jog: 60FFh = target velocity Backward jog: 60FFh = - target velocity Others: 60FFh = 0	Forward jog and backword jog
6	60FFh<0 and 6041h.bit11=1 and 60FDh.bit0=1: 60FFh=0	When the negative motion encounters the negative limit, jog ends
	607Ah>6040h and 6041h.bit11=1 and 60FDh.bit1=1: 60FFh=0	When the positive motion encounters the positive limit, jog ends
	60FFh=0	When the energy flow of the command is invalid, jog ends



Timing diagram

3.22.15 MC_ReadAcceleration_CO

Graphic Block

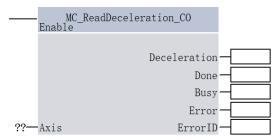
16-Bit command		MC_ReadAcceleration_CO: Read axis acceleration						
32-Bit		_						
command				- C 1:				
Operand	Name	Description	Nullable	Default value	Supported element	Data Type		
S1	Axis	Axis name/axis ID	No	-	Const	WORD		
D1	Acceleration	Present ACC speed	Yes	OFF	D, R	REAL		
D2	Done	Completion	Yes	OFF	Y, M, S	BOOL		
D3	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL		
D4	Error	Error sign	Yes	OFF	Y, M, S	BOOL		
D5	ErrorID	Error code	Yes	0	D, R	WORD		

Function Description

This command is used to read the current acceleration of the CANopen bus axis.

Axis number: specifies the number of the axis to be read; range: 1–30.

Acceleration: The current acceleration of the axis, which is a 32-bit floating-point number.

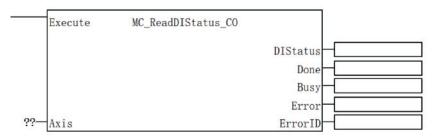

Precautions

This command supports a maximum of 2048 calls.

3.22.16 MC_ReadDeceleration_CO

Graphic Block

16-Bit command		MC_ReadDeceleration_CO: Read axis deceleration				
32-Bit command			-			
Operand	Name	Description	Nullable	Default	Supported	Data Type
Орогини		2000.191.011		value	element	- a.c : yp c
S1	Axis	Axis name/axis ID	No	-	Const	WORD
D1	Deceleration	Current deceleration	Yes	OFF	D, R	REAL
D2	Done	Completion	Yes	OFF	Y, M, S	BOOL
D3	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL
D4	Error					BOOL
D5	ErrorID	Error code	Yes	0	D, R	WORD


Function Description

- 1. This command is used to read the current deceleration of the CANopen bus axis.
- 2. Axis: specifies the number of the axis to be read; range: 1–30.
- 3. Deceleration: The current deceleration of the axis, which is a 32-bit floating-point number.

Precautions

This command supports a maximum of 2048 calls.

3.22.17 MC_ReadDIStatus_CO

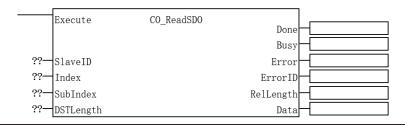
16-Bit command		MC_ReadDIStatus_CO: Read axis DI output state				
32-Bit						
command			-			
Operand	Name	Description	Nullable	Default	Supported	Data
Operand	Name	Description	Nuttable	value	element	Type
S1	Axis	Axis Axis name/axis ID No - Const WOF				WORD
D1	DIStatus	Current DI output state	Yes	OFF	D, R	DWORD

16-Bit command		MC_ReadDIStatus_CO: Read axis DI output state				
32-Bit command			-			
	Manage	D	No. Habla	Default	Supported	Data
Operand	Name	Description	Nullable	value	element	Type
D2	Done	Completion	Yes	OFF	Y, M, S	BOOL
D3	Busy	Busy flag	Yes	OFF	Y, M, S	BOOL
D4	Error	Error sign	Yes	OFF	Y, M, S	BOOL
D5	ErrorID	Error code	Yes	0	D, R	WORD

DI input state

[31:16]: manufacturer-defined; [15:3]: reserved; [1]: forward limit, where 0 means invalid and 1 means valid; [0]: backward limit, where 0 means invalid and 1 means valid.

Precautions

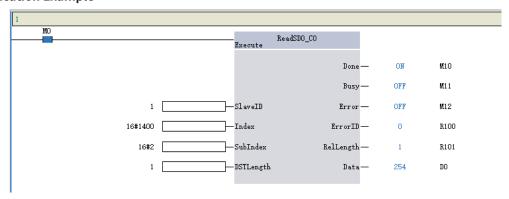

This command supports a maximum of 2048 calls.

3.23 Communication (CAN)

3.23.1 Command list

Command	Name
ReadSDO_CO	CANopen read SDO
WriteSDO_CO	CANopen write SDO
CANfree_Recv	Receiving data via CAN free format communication
CANfree_Send	Sending data via CAN free format communication

3.23.2 ReadSDO_CO


16-Bit				-			
command							
32-Bit		Poad	SDO CO-E	Poad obje	ct dictionary		
command		Reau	3DO_CO. F	reau obje	ct dictionary		
Onevend	Nama	Description	Nullable	Default	Dongo	Supported	Data
Operand	Name	Description	Nuttable	value	Range	element	Type
S1	SlaveID	Slave ID	No	0	1-30	Const	WORD
S2	Index	Index	No	0	Positive number	Const, D, R	WORD
S3	SubIndex	Sub-index	No	0	Positive number	Const, D, R	WORD
S4	DSTLength	Target length	No	0	0–4	Const, D, R	WORD
D1	Done	Completion	Yes	OFF	-	Y, M, S	BOOL
D2	Busy	Busy flag	Yes	OFF	-	Y, M, S	BOOL

16-Bit				-			
32-Bit		ReadSDO_CO: Read object dictionary					
Operan	d Name	Description	Nullable	Default	Range	Supported	Data
•		2 333		value		element	Type
D3	Error	Error sign	Yes	value OFF	-	element Y, M, S	Type BOOL
•		•			-		
D3	Error	Error sign	Yes	OFF		Y, M, S	BOOL

- 1. This command is used to read the object dictionary data of the CANopen slave station, and is valid to the rising edge.
- 2. SlaveID is used to specify the configuration address of the CANopen slave station.
- 3. On the rising edge of Execute, the command latches the left-side input parameters and triggers the reading of the object dictionary data specified by Index and SubIndex.
- 4. DSTLength is used to specify the length of the object dictionary data to be read in bytes.
- 5. After successful reading, the Done signal is valid, Data is used to display the read value, and RelLength is used to display the actual length of the object dictionary data read. In case of failed reading, the Error output is valid, and ErrorID is used to determine the cause of the read failure.
- 6. In this command, the Data parameter is a DINT type parameter, which occupies 4 bytes of space. When the object dictionary read is SINT or INT, the result read is placed in the low 8 or 16 bits of the Data parameter, and then the unused high 24 or 16 bits are padded with 0. For example, when reading (-8) data of SINT and INT types, the actual stored data of Data are 0x000000f8 and 0x0000fff8, respectively.

Application Example

As shown in the figure, SlaveID=1, Index=16#1400, SubIndex=2, DSTLength=1, indicates to read data of 1 byte in length of object dictionary primary index 16#1400, sub-index 16#2 from the device whose CANopen slave node ID is 1 (indicating the transmission method of receiving PDO1).

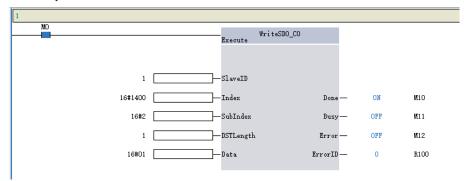
After running, one byte of data was actually received, which is 254 (0xFE), indicating that the transmission mode for receiving PDO1 is set to the manufacturer-defined mode.

Error code

The error code is used for inquiring and diagnosing SDO error information. For details, see section 8.6.2.1 SDO Error Code in the *TS600 Series Programmable Logic Controller Programming and Application Manual.*

3.23.3 WriteSDO_CO

Graphic Block



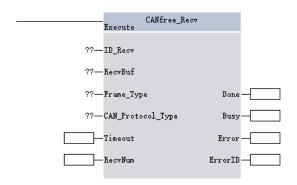
16-Bit							
command							
32-Bit		WriteSDO	_CO: Write o	hiect dict	ionary		
command		Willesbo_	_co. write c	bject dict	ionary		
Operand	Name	Description	Nullable	Default value	Range	Supported element	Data Type
S1	SlaveID	Slave ID	No	0	-	Const	WORD
S2	Index	Index	No	0	-	Const, D, R	WORD
S3	SubIndex	Sub-index	No	OFF	1	Const, D, R	WORD
S4	DSTLength	Target length	No	OFF	-	Const, D, R	WORD
S5	Data	Write data	No	OFF	-	Const, D, R	DINT
D1	Done	Completion	Yes	OFF	-	Y, M, S	BOOL
D2	Busy	Busy flag	Yes	OFF	-	Y, M, S	BOOL
D3	Error	Command fault flag	Yes	OFF	-	Y, M, S	BOOL
D4	ErrorID	Fault code	Yes	0	-	D, R	WORD

Function Description

- 1. This command is used to write the object dictionary data of the CANopen slave station, and is valid to the rising edge.
- 2. SlaveID is used to specify the configuration address of the CANopen slave station.
- 3. On the rising edge of Execute, the command latches the left-side input parameters and writes the data from Data to the object dictionary addresses specified by Index and SubIndex of the slave station.
- 4. DSTLength is used to specify the length of the object dictionary data to be read in bytes.
- 5. After successful reading, the Done signal is valid. In case of failed reading, the Error output is valid, and ErrorID is used to determine the cause of the read failure.

Application Example

As shown in the figure, SlaveID=1, Index=16#1400, SubIndex=2, DSTLength=1, indicates to write data of 1 byte in length of object dictionary primary index 16#1400, sub-index 16#2 to the device whose CANopen slave node ID is 1 (indicating that the transmission method of receiving PDO1 is changed to the sync mode with 1 sync cycle period).



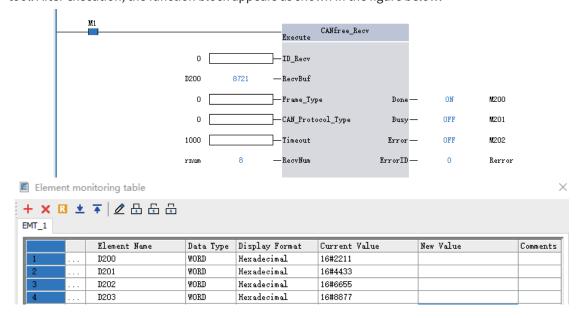
After running, Done=ON indicates a successful run.

Error code

The error code is used for inquiring and diagnosing SDO error information. For details, see section 8.6.2.1 SDO Error Code in the *TS600 Series Programmable Logic Controller Programming and Application Manual.*

3.23.4 CANfree_Recv

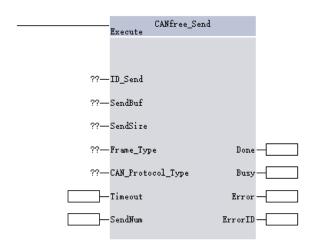
16-Bit command	CAN	CANfree_Recv: Receiving data via CAN free format communication					
32-Bit command		-					
Operand	Name	Description	Nullable	Default value	Range	Supported element	Data Type
S1	ID_Recv	ID number for data receiving	No	0	CAN2.0A: 0x000- 0x7FF CAN2.0B: 0x00000000- 0x1FFFFFFF	Const, D, R	DWORD
S2	RecvBuf	Local receive register starting address number	No	0	0-2	D, R	INT
\$3	Frame_Type	Received frame type	No	0	0: Data frame 1: Remote frame 2: Error frame	Const, D, R	INT
S4	CAN_Protocol _Type	CAN communication protocol	No	0	0: CAN2.0A 1: CAN2.0B	Const, D, R	INT
S5	Timeout	Receiving timeout time (ms)	Yes	500	0-65535	Const, D, R	WORD
D1	Done	Completion sign	Yes	OFF	ON: Incompleted OFF: Completed	Y, M	BOOL
D2	Busy	Busy flag	Yes	OFF	ON: Working OFF: Not working	Y, M	BOOL
D3	Error	Error sign	Yes	OFF	ON: Normal OFF: Error	Y, M	BOOL
D4	ErrorID	Error code	Yes	0	-	D, R	WORD
D5	RecvNum	Actual received bytes	Yes	0	0-8	D, R	WORD


- 1. This command is used to read CAN messages from the CAN bus, and is valid to the rising edge.
- 2. ID_Recv is used to specify the CAN message ID number to be received, Frame_Type is used to specify the type of frame to be received, CAN_Protocol_Type is used to specify whether the CAN communication to be received adopts the extended frame format, and Timeout is used to specify the valid time for receiving data, during which if no data is received, a receiving timeout error will be reported.
- 3. On the rising edge of Execute, the command latches the left input parameter, reads a frame of CAN message specified by the parameter, and stores the read data into RecvBuf. RecvBuf stores the data in a small end format, i.e., the low-order byte data is stored in the low-order bit and the high-order byte data is stored in the high-order bit.
- 4. After successful reading, the Done signal is valid, and RecvNum displays the actual number of bytes received. In case of failed reading, the Error output is valid, and ErrorID is used to determine the cause of the read failure.

Application Example

To receive a CAN2.0A data frame using the CANfree_Recv command, specify the following parameters: received CAN ID as 0, received frame type as data frame (Frame_Type=0), received CAN communication protocol as standard frame (CAN_Protocol_Type=0), and a timeout time of 1000ms.

When M0=ON, a rising edge is generated, triggering the CANfree_Recv command to execute the receive operation. Simultaneously, a CAN 2.0A data frame with the data 0x8877665544332211 is sent using the PCAN tool. After execution, the function block appears as shown in the figure below.

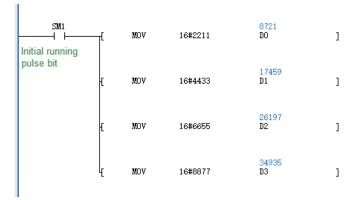


Error code

Error code	Error type	Solution
16#40	Internal system error	Restart the PLC
16#41	Incorrect parameter settings	Check the input parameters of the function block
		1. Check whether the CAN baud rate is configured
16#42	Send data timeout (timeout	correctly
10#42	parameter)	2. Check whether the CAN hardware connection is normal
		3. Check the terminal matching resistor
		1. Check whether the CAN baud rate is configured
16#43	Receive data timeout	correctly
10#45	(timeout parameter)	2. Check whether the CAN hardware connection is normal
		3. Check the terminal matching resistor
1.0444	D о очиои	1. Reduce environmental interference
16#44	Bus error	2. Check the baud rate configuration
16#45	CANfree is not configured	Configure CAN2.0 communication

3.23.5 CANfree_Send

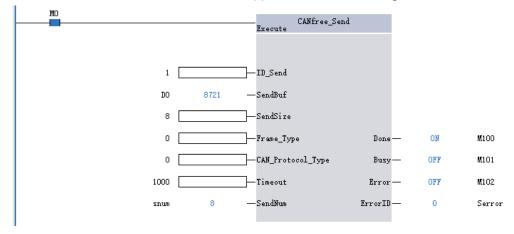
16-Bit command	CA	CANfree_Send: Sending data via CAN free format communication					
32-Bit command				-			
Operand	Name	Description	Nullable	Default value	Range	Supported element	Data Type
S1	ID_Send	ID number for remote communication	No	0	CAN2.0A: 0x000– 0x7FF CAN2.0B: 0x00000000– 0x1FFFFFFF	Const, D, R	DWORD
S2	SendBuf	Local send register starting address number	No	0	-	D, R	INT
S3	SendSize	Number of bytes sent	No	OFF	0-8	Const, D, R	WORD
S4	Frame_Type	Sent frame type	No	OFF	0: Data frame 1: Remote frame	Const, D, R	INT

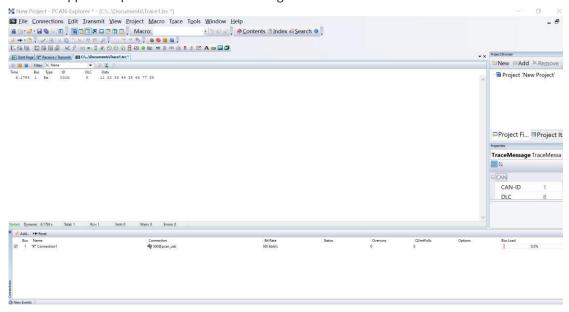


16-Bit command	CA	CANfree_Send: Sending data via CAN free format communication					
32-Bit command		-					
Operand	Name	Description	Nullable	Default value	Range	Supported element	Data Type
S5	CAN_Protocol _Type	CAN communication protocol	No	OFF	0: CAN2.0A 1: CAN2.0B	Const, D, R	INT
S6	Timeout	Sending timeout time (ms)	Yes	500	0-65535 WORD	Const, D, R	WORD
D1	Done	Completion sign	Yes	OFF	ON: Incompleted OFF: Completed	Υ, Μ	BOOL
D2	Busy	Busy flag	Yes	OFF	ON: Working OFF: Not working	Υ, Μ	BOOL
D3	Error	Error sign	Yes	OFF	ON: Normal OFF: Error	Υ, Μ	BOOL
D4	ErrorID	Error code	Yes	0	-	D, R	WORD
D5	SendNum	Actual sent bytes	Yes	0	0-8	D, R	WORD

- 1. This command is used to write CAN messages to the CAN bus, and is valid to the rising edge.
- 2. ID_Send is used to specify the CAN message ID number to be sent, Frame_Type is used to specify the type of frame to be sent, CAN_Protocol_Type is used to specify whether the CAN communication to be sent adopts the extended frame format, and Timeout is used to specify the valid time for sending data, during which if no data is sent, a sending timeout error will be reported.
- 3. On the rising edge of Execute, the command latches the left input parameter, and sends the data in SendBuf as a CAN message to the CAN bus according to the specified parameters. SendBuf stores the data in a small end format, i.e., the low-order byte data is stored in the low-order bit and the high-order byte data is stored in the high-order bit.
- 4. After successful sending, the Done signal is valid, and SendNum displays the actual number of bytes sent. In case of failed sending, the Error output is valid, and ErrorID is used to determine the cause of the send failure.

Application Example


To send a CAN2.0A data frame using the CANfree_Send command, specify the send CANID as 1 and 8 bytes of data as 0x8877665544332211. The ladder diagram is shown below.




```
CANfree_Send
                     Execute
                  -ID_Send
DO
         8721
                  —SendBuf
                  —SendSize
                  -Frame_Type
                                                          OFF
                                                                     M100
                                              Done -
                  -CAN_Protocol_Type
                                                                     M101
                                              Busy-
                                                          OFF
                  -Timeout
                                                                     M102
                  —SendNum
                                           ErrorID -
                                                           0
                                                                     Serror
```

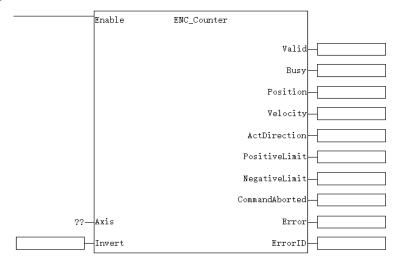
When M0=ON, a rising edge is generated, triggering the CANfree_Send command to execute a CAN data send operation. After execution, the function block appears as shown in the figure below.

The PCAN upper computer can receive the message as shown below.

Error code

Error code	Error type	Solution
16#40	Internal system error	Restart the PLC
16#41	Incorrect parameter settings	Check the input parameters of the function block

Error code	Error type	Solution
	Send data timeout	1. Check whether the CAN baud rate is configured correctly
16#42	(timeout parameter)	2. Check whether the CAN hardware connection is normal
	(timeout parameter)	3. Check the terminal matching resistor
16#43	Dosoivo data timoout	Check whether the CAN baud rate is configured correctly
	(timeout parameter)	2. Check whether the CAN hardware connection is normal
		3. Check the terminal matching resistor
16#44	Bus error	1. Reduce environmental interference
10#44	bus error	2. Check the baud rate configuration
16#45	CANfree is not	Configure CANA O communication
16#45	configured	Configure CAN2.0 communication

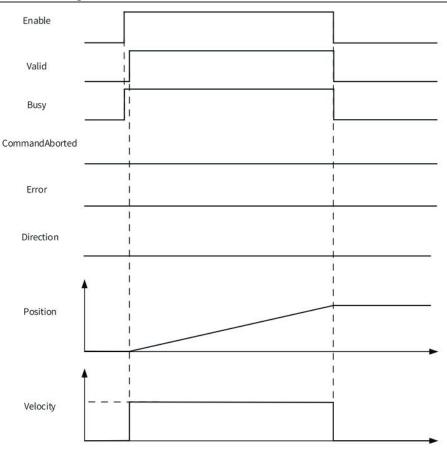

3.24 ENC Axis Control (Pulse Output)

3.24.1 Command list

Command Category	Name	Function
	ENC_Counter	Encoder enable (high-speed counter)
	ENC_Reset	Encoder reset
	ENC_Preset	Encoder preset
	ENC_TouchProbe	Encoder probe
	ENC_Compare	Single-point comparison of encoder
Local encoder axis	ENC_ArrayCompare	Unidimensional array comparison of encoder
	FNC CharGaranana	Unidimensional step size comparison of
	ENC_StepCompare	encoder
	ENC_ResetCompare	Encoder reset comparator
	ENC_SetUnit	Set axis gear ratio
	ENC_SetLineRotationMode	Set axis operation mode

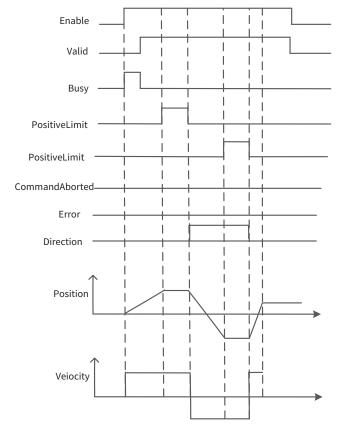
3.24.2 ENC_Counter

This command (ENC_Counter) controls the counting enable (high-speed counter) of the encoder axis. **Graphic Block**



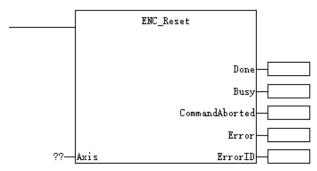
16-Bit command			-								
32-Bit command	E	ENC_Counter: Encoder enable (high-speed counter)									
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type				
S1	Axis	Axle number	-	No	-	-	-				
S2	Invert	Counter direction	const, D, R, custom variable	Yes	0	0-1	INT				
D1	Valid	Validity status	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D2	Busy	Executing	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D3	Position	Current position	D, R, custom variable	Yes	0	Negative, positive	REAL				
D4	Velocity	Current velocity	D, R, custom variable	Yes	0	Negative, positive	REAL				
D5	ActDirection	Counting direction	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D6	PositiveLimit	Positive limit state in linear mode	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D7	NegativeLimit	Negative limit state in linear mode	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D8	CommandAborted	Execution interrupt	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D9	Error	Error sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D10	ErrorID	Error code	D, R, custom variable	Yes	0	0-65535	INT				

- 1. In case of the command input Enable=ON, Busy=ON and Valid=ON are set, and the encoder axis starts counting.
- 2. In case of the command input Enable=OFF, Busy=OFF and Valid=OFF are set, and the encoder axis stops counting.


∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

In the linear mode, if the software limit is enabled, after the counting value reaches the limit value, the counter stops counting, and the limit signal output is valid; after the pulse input inverses, the limit signal resets, and the counter performs inverse counting.

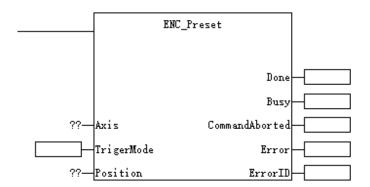
Timing diagram



3.24.3 ENC_Reset

This command is used to reset faults of the bus encoder axis. ENC_Reset - encoder reset.

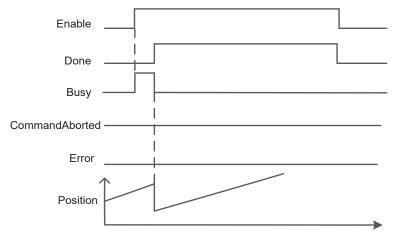
Graphic Block


16-Bit command		ENC_Reset: Encoder reset									
32-Bit command			-								
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type				
S1	Axis	Axle number	-	No	-	-	-				
D1	Done	Completion sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D2	Busy	Executing	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D3	CommandAborted	Execution interrupt	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D4	Error	Error sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D5	ErrorID	Error code	const, D, R, custom variable	Yes	0	0-65535	INT				

Function Description

If the command input Enable is on the rising edge, the corresponding counter continues to count after being reset once

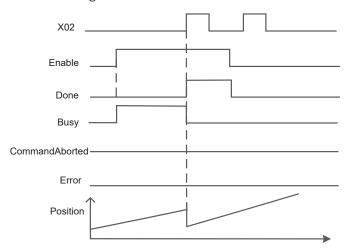
3.24.4 ENC_Preset


Encoder Preset - encoder preset.

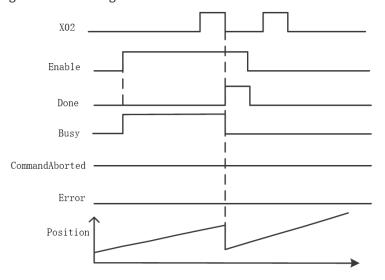
16-Bit command			-							
32-Bit command	Encoder Preset: Encoder preset									
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type			
S1	Axis	Axle number	-	No	-	-	-			
D1	Done	Completion sign	M,S,Y	Yes	OFF	ON, OFF	BOOL			
D2	Busy	Executing	M,S,Y	Yes	OFF	ON, OFF	BOOL			
D3	CommandAborted	Execution interrupt	M,S,Y	Yes	OFF	ON, OFF	BOOL			
D4	Error	Error sign	M,S,Y	Yes	OFF	ON, OFF	BOOL			
D5	ErrorID	Error code	Const, D, R	Yes	0	0-65535	INT			

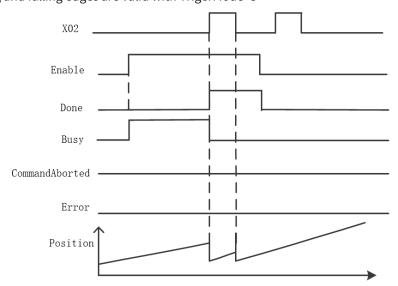
1. In case of TrigerMode=0, Enable inputs a high level to complete the encoder position settings.

2. In case of TrigerMode=1–3, it is necessary to configure relevant parameters in the corresponding control axis and trigger IO externally.

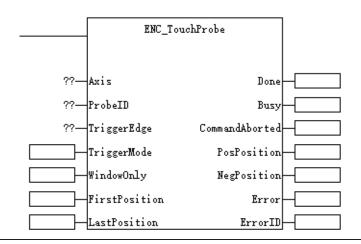


∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.


Timing diagram


• The rising edge is valid with TrigerMode=1.

• The falling edge is valid with TrigerMode=2.


• Both rising and falling edges are valid with TrigerMode=3

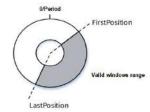
3.24.5 ENC_TouchProbe

ENC_TouchProbe - encoder probe

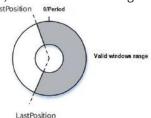
16-Bit command			-				
32-Bit command		ENC_Touc	chProbe: Enco	oder probe	9		
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type
S1	Axis	Axle number	-	No	-	-	-
S2	ProbeID	Probe ID 0: probe 1; 1: probe 2	const, D, R, custom variable	No	-	0-1	INT
\$3	TriggerEdge	Edge type 0: only falling edge triggered 1: only falling edge triggered 2: both rising and falling edges triggered	const, D, R, custom variable	No	-	0-2	INT
S4	TriggerMode	Trigger type 0: single trigger 1: continuous trigger	const, D, R, custom variable	Yes	0	0-1	INT
\$5	WindowOnly	Enable probe window 0: disables the probe window function 1: enables the probe window function	X,M,S,Y, custom variable	Yes	OFF	ON, OFF	BOOL
S6	FirstPosition	Start position of probe window	const, D, R, custom variable	Yes	0	Positive/ negative/0	REAL
S7	LastPosition	End position of probe serial port	const, D, R, custom variable	Yes		Not equal to FirstPositon	REAL

16-Bit command			-								
32-Bit command	ENC_TouchProbe: Encoder probe										
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type				
D1	Done	Completion sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D2	Busy	Executing	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D3	CommandAborted	Execution interrupt	M,S,Y	Yes	OFF	ON, OFF	BOOL				
D4	PosPostion	Rising edge latch position	D,R	Yes	0	Positive/ negative/0	REAL				
D5	NegPositon	Falling edge latch position	D,R	Yes	0	Positive/ negative/0	REAL				
D6	Error	Error sign	M,S,Y	Yes	OFF	ON, OFF	BOOL				
D7	ErrorID	Error code	D,R	Yes	0	0-65535	INT				

This command starts the probe function module and requires the relevant hardware configuration to be activated.



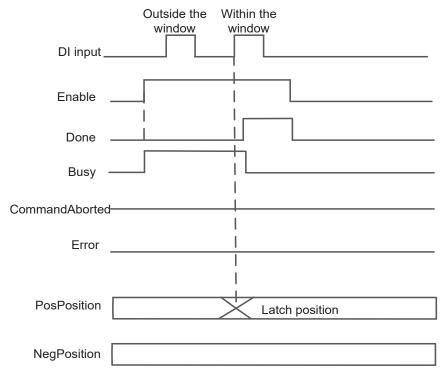
In case of Enable=ON, when the command detects that the probe input specified by ProbeID is valid and meets the probe detection conditions, the function block latches the current position of the axis. In case of WindowOnly=OFF, the window detection function is invalid. As long as the probe input signal is valid, the position of the axis during the validity period of the probe signal can be latched. In case of WindowOnly=ON, the window detection function is valid.

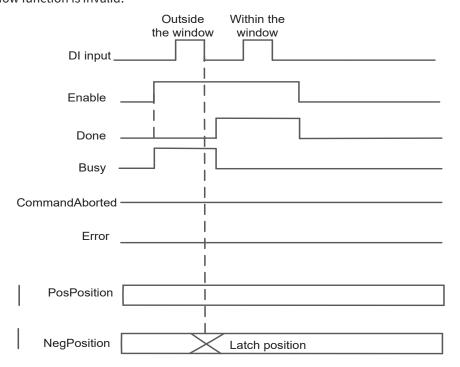

∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

In the linear mode, this command detects the probe signal only when the current position of the axis is within the range specified by FirstPosition and LastPosition.

In the circular mode, in case of FirstPosition < LastPosition, the valid window range is shown in the figure below.

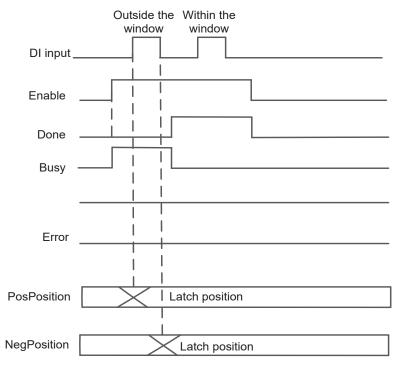
In case of FirstPosition > LastPosition, the valid window range is shown in the figure below.



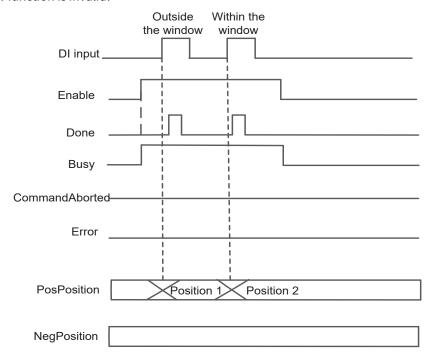

This command can the rising and falling edges of the probe signal separately or simultaneously. When detecting the rising (falling) edge only, the command writes the value detected on the rising (falling) edge to PosPosition (NegPosition); at this time, a detection cycle is completed to set the Done signal. If the rising and falling edges are detected simultaneously, after Enable of the command is valid, the command writes the position to the PosPosition/NegPosition as soon as it has detected the rising/falling edge; at this time, a complete detection cycle is done to output the Done signal, and there is no requirement for the input order of the rising and falling edges.

Timing diagram

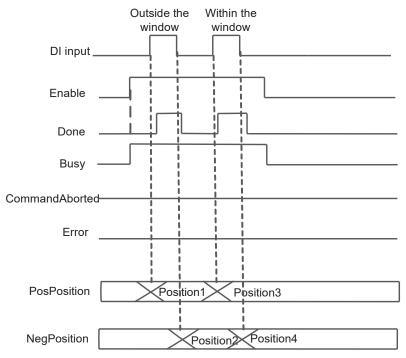
• For probe 1, the rising edge is valid, the single trigger mode is applied, and the window function is valid.



• For probe 1, the falling edge is valid, the DI terminal is triggered in the single trigger mode, and the window function is invalid.

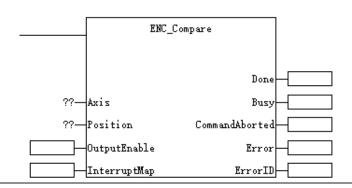


• For probe 1, both the rising and falling edges are valid, the DI terminal is triggered in the single trigger mode, and the window function is invalid.



• For probe 1, the rising edge is valid, the DI terminal is triggered in the continuous trigger mode, and the window function is invalid.

• For probe 1, both the rising and falling edges are valid, the DI terminal is triggered in the continuous trigger mode, Done generates a valid signal for one cycle after both the rising and falling edges of DI are valid, and the window function is invalid.

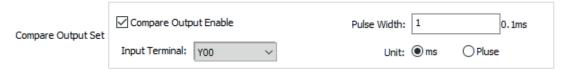


3.24.6 ENC_Compare

ENC_Compare - single-point comparison output

Graphic Block

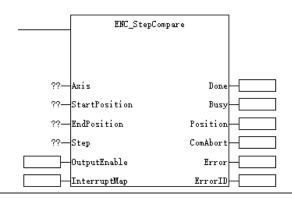
16-Bit



command											
32-Bit command		ENC_Compare: Continuous execution									
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type				
S1	Axis	Axle number	-	No	-	-	-				
S2	Position	Comparison position	const, D, R, custom variable	No	-	-	REAL				
S3	OutPutEnable	Hardware output enable, where ON: Enable; OFF: Disable	X,M,S,Y, custom variable	Yes	OFF	ON, OFF	BOOL				

16-Bit command			-							
32-Bit command	ENC_Compare: Continuous execution									
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type			
S4	InterruptMap	Interrupt number, where 0: does not associate comparison interrupt; 1: associates comparison interrupt 1 16: associates comparison interrupt 16	const, D, R, custom variable	Yes	0	0–16	INT			
D1	Done	Completion sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL			
D2	Busy	Executing	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL			
D3	CommandAborted	Execution interrupt	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL			
D4	Error	Error sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL			
D5	ErrorID	Error code	D, R, custom variable	Yes	0	0- 65535	INT			

In the "Compare Output Set" interface of the local pulse axis, check "Compare Output Enable", select the comparison output terminal, and choose whether to output pulses by time or by unit.

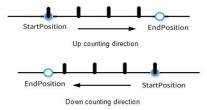

If OutputEnable is set to 1, the set comparison output terminal generates a comparison output signal; if it is set to 0, no comparison output signal is generated. InterruptMap is used to associate comparison interrupt subroutines. When it is set to 0, interrupt subroutines are not associated; when it is set to 1-16, interrupt subroutines are associated.

∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

3.24.7 ENC_StepCompare

 ${\sf ENC_StepCompare-unidimensional\, step\, size\, comparison\, of\, encoder.}$

16-Bit									
command			-						
32-Bit	ENC Ston	Campaga, Unidinana	: a m a l at a m a i =		icon of ou				
command	ENC_StepCompare: Unidimensional step size comparison of encoder								
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type		
S1	Axis	Axle number	-	No	-	-	-		
S2	StartPosition	Starting comparison set	Const, D, R	No	-	-	REAL		
S3	EndPosition	Ending comparison set	Const, D, R	No	ı	-	REAL		
S4	Step	Step length	Const, D, R	No	-	-	REAL		
S5	OutPutEnable	Hardware output enable, where ON: Enable; OFF: Disable	X,M,S,Y	Yes	OFF	ON, OFF	BOOL		
S6	InterruptMap	Interrupt number, where 0: does not associate comparison interrupt 1: associates comparison interrupt 1 16: associates comparison interrupt 1 int	Const, D, R	Yes	0	0-16	INT		
D1	Done	Completion sign	M,S,Y	Yes	OFF	ON, OFF	BOOL		
D2	Busy	Executing	M,S,Y	Yes	OFF	ON, OFF	BOOL		
D3	position	Output position	D,R	Yes	0	-	REAL		
D4	CommandAborted	Execution interruption	M,S,Y	Yes	OFF	ON, OFF	BOOL		
D5	Error	Error sign	M,S,Y	Yes	OFF	ON, OFF	BOOL		
D6	ErrorID	Error code	D,R	Yes	0	0-65535	INT		

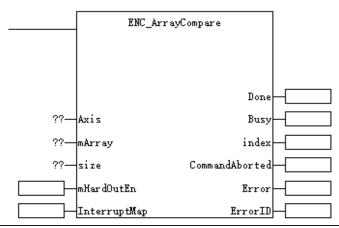


In the "Compare Output Set" interface of the local pulse axis, check "Compare Output Enable", select the comparison output terminal, and choose whether to output pulses by time or by unit.

If OutputEnable is set to 1, the set comparison output terminal generates a comparison output signal; if it is set to 0, no comparison output signal is generated. InterruptMap is used to associate comparison interrupt subroutines. When it is set to 0, interrupt subroutines are not associated; when it is set to 1-16, interrupt subroutines are associated.

Comparison point settings: In this command, StartPosition is used to set the start position of the comparison point, and EndPosition is used to set the end position of the comparison point. In the linear mode, the comparison point settings follow the rules below: when the value of StartPosition is less than the value of EndPosition, Step should be set to a positive number, which represents the additive count comparison method; when the value of StartPosition is greater than the value of EndPosition, Step should be set to a negative number, which represents the subtractive count comparison method.

In the circular mode, the comparison point settings follow the rules below: when the value of StartPosition is less than the value of EndPosition, Step should be set to a positive number, which represents the additive count comparison method; when the value of StartPosition is greater than the value of EndPosition, Step should be set to a negative number, which represents the subtractive count comparison method.



∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

3.24.8 ENC_ArrayCompare

 ${\sf ENC_ArrayCompare-unidimensional}\ array\ comparison\ of\ encoder.$

16-Bit command			-								
32-Bit command	ENC_Arı	ENC_ArrayCompare: Unidimensional array comparison of encoder									
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type				
S1	Axis	Axle number	-	No	-	-	-				
S2	mArray	Starting comparison position	const, D, R, custom variable	No	-	-	REAL				
S3	Size	Length	const, D, R, custom variable	No	-	1–100	REAL				
S4	OutPutEnable	Hardware output enable ON: Enable OFF: Disable	X,M,S,Y, custom variable	Yes	OFF	ON, OFF	BOOL				
\$5	InterruptMap	Interrupt number, where 0: does not associate comparison interrupt 1: associates comparison interrupt 1 16: associates comparison interrupt 16	const, D, R, custom variable	Yes	0	0-16	INT				
D1	Done	Completion sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				
D2	Busy	Executing	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL				

16-Bit command			-							
32-Bit command	ENC_Arr	ENC_ArrayCompare: Unidimensional array comparison of encoder								
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type			
D3	Index	Next comparison position	D, R, custom variable	Yes	0	0-100	INT			
D4	CommandAborted	Execution interrupt	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL			
D5	Error	Error sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL			
D6	ErrorID	Error code	D, R, custom variable	Yes	0	0- 65535	INT			

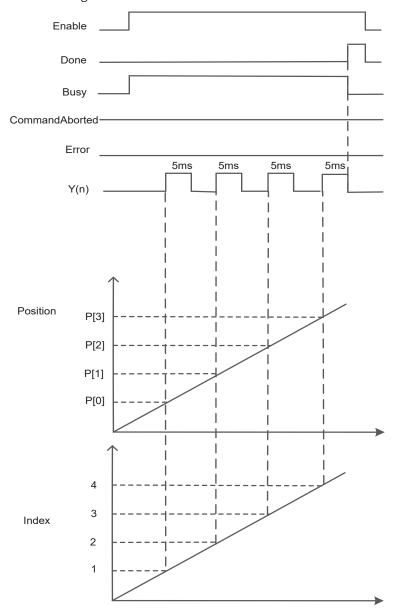
1. System Parameter Settings:

In the "Compare Output Set" interface of the local pulse axis, check "Compare Output Enable", select the comparison output terminal, and choose whether to output pulses by time or by unit.

2. Graphic Block Settings:

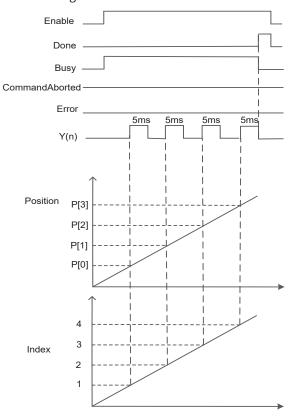
If OutputEnable is set to 1, the set comparison output terminal generates a comparison output signal; if OutputEnable is set to 0, no comparison output signal is generated. InterruptMap is used to associate comparison interrupt subroutines. When it is set to 0, interrupt subroutines are not associated; when it is set to 1-16, interrupt subroutines are associated.

3. Comparison Settings:

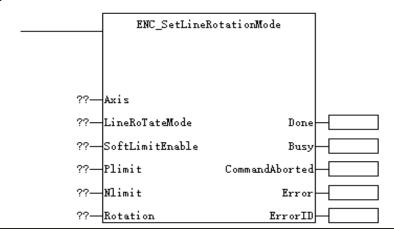

After the encoder axis reaches the comparison point, the digital output terminal changes to a high level, and the duration of the high level is determined by the parameters set in the background configuration interface. The number of comparison points is specified by Size, and the comparison point array is specified by Array. Index represents the next array coordinate point to be compared for output, and the array content must be incremented or decremented sequentially.

∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

Timing diagram


• The comparison point group P[4] is set, the output time at each comparison point is 5 ms, and the command starts running after Enable is enabled.

∠Note: If point Y is configured as a comparison output point, normal output control will be invalid.



• The comparison point group P[4] is set, the output time at each comparison point lasts for 2 pulses, and the command starts running after Enable is enabled.

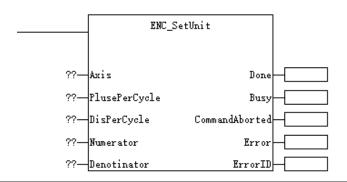
3.24.9 ENC_SetLineRotationMode

ENC_SetLineRotationMode - set axis operation mode

16-Bit							
command							
32-Bit	FMC Colling Polation Marks Collection and the						
command	ENC_SetLineRotationMode: Set axis operation mode						
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type
S1	Axis	Axle number	-	No	-	-	-
S2	LineRoTateMode	Mode selection 0: linear mode; 1: periodic mode	const, D, R, custom variable	No	-	0-1	INT

16-Bit command			-				
32-Bit command	ENC_SetLineRotationMode: Set axis operation mode						
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type
\$3	SoftLimitEnable	Limit function	X,M,S,Y, custom variable	No	-	ON, OFF	BOOL
S4	Plimit	Positive limit value	const, D, R, custom variable	No	-	-	REAL
S5	Nlimit	Negative limit value	const, D, R, custom variable	Yes	-	-	REAL
S6	Rotation	Periodic value	const, D, R, custom variable	Yes	-	-	REAL
D1	Done	Completion sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL
D2	Busy	Executing	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL
D4	CommandAborted	Execution interrupt	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL
D5	Error	Error sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL
D6	ErrorID	Error code	D, R, custom variable	Yes	0	0- 65535	INT

- This command enables the PLC to reconfigure the linear rotation mode of the local encoder axis after powering on, downloading programs, or executing a RUN/STOP operation and before enabling the counting of the local encoder axis.
- 2. In case of LineRotateMode=0, the local encoder axis is in linear mode. In the linear mode, SoftLimitEnable=OFF indicates disabling the limit; SoftLimitEnable=ON indicates enabling the limit, where PLimit represents the positive limit value and NLimit represents the negative limit value.
- 3. In case of LineRotateMode=1, the local encoder axis is in rotary mode. At this point, Rotation represents the value of the rotation cycle. When the encoder axis counts positively, the counting value cycles from 0 to the cycle value; when the encoder axis counts negatively, the counting value cycles from the cycle value to 0.


∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

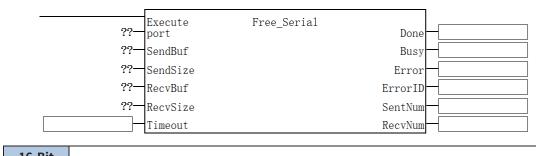
3.24.10 ENC_SetUnit

ENC_SetUnit - set axis gear ratio

Graphic Block

16-Bit command			-					
32-Bit command	ENC_SetUnit: Continuous execution							
Operand	Name	Description	Supported element	Nullable	Default value	Range	Data Type	
S1	Axis	Axle number	-	No	-	-	-	
S2	PlusePerCycle	The number of pulses per revolution of the encoder	const, D, R, custom variable	No	-	Positive number	Dword	
S3	DisPerCycle	The distance per revolution of the workbench	const, D, R, custom variable	No	-	0.01- 9999999	REAL	
S4	Numerator	Numerator of gear ratio	const, D, R, custom variable	No	-	Positive number	Dword	
S5	Denotinator	Denominator of gear ratio	const, D, R, custom variable	Yes	-	Positive number	Dword	
D1	Done	Completion sign	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL	
D2	Busy	Executing	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL	
D4	CommandAborted	Execution interrupt	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL	
D5	Error	Error state	M, S, Y, custom variable	Yes	OFF	ON, OFF	BOOL	
D6	ErrorID	Error code	M, S, Y, custom variable	Yes	0	0-65535	INT	

∠Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the constant ON state, it is invalid to modify the input parameters in the graphic block being executed.


3.25 Communication Commands

3.25.1 Command list

Command Category	Communication protocol	Name	Function
	Free Protocol for Serial Ports	Free_Serial	Sending and receiving under free protocol for serial ports
		TCP_Server	Server socket creation
	Free Protocol for	TCP_Accept	Reception of client connection request by server
	TCP/IP	TCP_Client	Client socket creation
	TCP/IP	TCP_Send	Send TCP data
	Free Protocol for	TCP_Recv	Receive TCP data
		TCP_Close	Close TCP socket
Communication		UDP_Peer	UDP socket creation
Protocol		UDP_Send	Send UDP Data
Command	ODP/IP	UDP_Recv	Receive UDP data
		ECAT_ReadParameter_CoE	Read SDO parameter from slave station
	EtherCAT	ECAT_WriteParameter_CoE	Write SDO parameter to slave station
		ECAT_RestartMaster_CoE	Restart EtherCAT master station
	Modbus protocol	MB_TCP_Master	Modbus TCP master read/write function

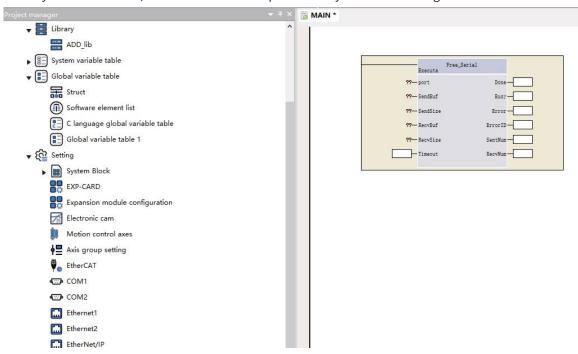
3.25.2 Free_Seral Commands

Graphic Block

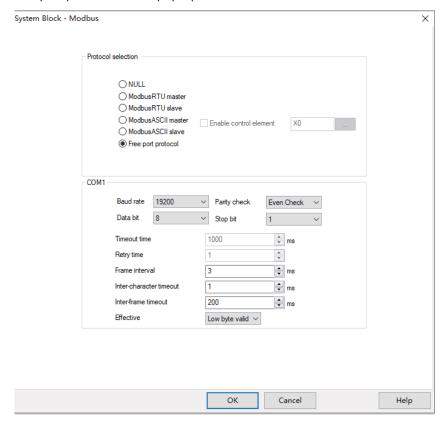
16-Bit command	Free_Seral: Sending and receiving under free protocol for serial ports								
32-Bit command			-						
Operand	Name	Name Description Nullable Default value Range Data Type							
S1	port	Port number	No	-	1-3	WORD			
S2	SendBuf	Sending buffer	No	-	-	INT			
S3	SendSize	Number of bytes transmitted	No	-	-	INT			
S4	RecvBuf	Receiving buffer	No	-	-	INT			

16-Bit command	Free_Ser	al: Sending and rece	eiving und	er free pro	tocol for serial	ports
32-Bit command			-			
Operand	Name	Description	Nullable	Default value	Range	Data Type
S5	RecvSize	Number of bytes received	No	-	-	INT
S6	Timeout	Receiving timeout time	Yes	1000	-	WORD
D1	Done	Completion sign	Yes	OFF	ON, OFF	BOOL
D2	Busy	Ongoing execution flag	Yes	OFF	ON, OFF	BOOL
D3	Error	Error sign	Yes	OFF	ON, OFF	BOOL
D4	ErrorID	Error code	Yes	0	-	WORD
D5	SentNum	The number of bytes already sent	Yes	0	-	WORD
D6	RecvNum	The number of bytes already received	Yes	-	-	WORD

Operand	Const	Υ	M	S	D	R
S1	✓	-	-	-	-	-
S2		-	-	-	✓	✓
S3	✓	-	-	-	✓	✓
S4		-	-	-	✓	✓
S5	✓	-	-	-	✓	✓
S6	✓	-	-	-	✓	✓
D1	-	✓	✓	✓	-	-
D2	-	✓	✓	✓	-	-
D3	-	✓	✓	✓	-	-
D4	-	-	-	-	✓	✓
D5	-	-	-	-	√	√
D6	-	-	-	-	✓	✓


Function Description

This command implements the sending and receiving of the data under the free protocol for serial ports. After the rising edge of the command is triggered, the command sends data of the specified length (SendSize) in the specified sending buffer (SendBuf) through the specified port (Port). After sending, the command receives data of the specified length (RecvSize) and places it in the specified receiving buffer (RecvBuf).



Instructions for System Block Configuration

1. Before using a free protocol command, it is necessary to configure the corresponding COM port in the system block. First, double-click the COM port in the system block configuration.

2. Select "Free port protocol" in the pop-up box.

Instructions for System Block Parameters

- 1. "Baud rate", "Parity check", "Data bit", and "Stop bit" can be set as needed, just like the peer device.
- 2. For the free port protocol, there is no need to configure "Timeout time" and "Retry time".
- 3. "Frame interval": The sending interval (in ms) between every two frames of data.

- 4. "Inter-frame timeout": A value, which causes the time for receiving two received bytes to be discarded when exceeded.
- 5. Effective byte. Low byte active: When transmitting or receiving data, manipulate the low byte of a word element, if two bytes are to be transmitted, then transmit the low byte of two word elements. High and low byte active: When transmitting or receiving data, manipulate the high and low byte of a word element, if two bytes are to be transmitted, then transmit the high byte and low byte of a word element.

Instructions for Command Parameters

S1: port number. COM1 corresponds to port1, and so on.

S2: sending buffer. When SendSize is 0, this parameter is invalid, and the data from the specified element is sent

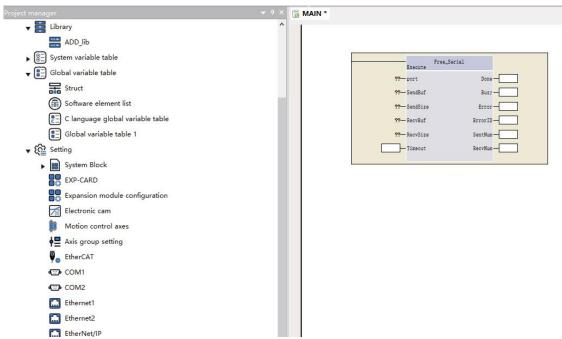
S3: the number of bytes sent. The data of specified bytes is sent. When the port only receives data, SendSize is set to 0.

S4: receiving buffer. When SendSize is 0, this parameter is invalid, and the received data is placed in the specified element. When the port only sends data, RecvSize is set to 0.

S5: the number of bytes received. The data of specified bytes is received. When the port only sends data, RecvSize is set to 0.

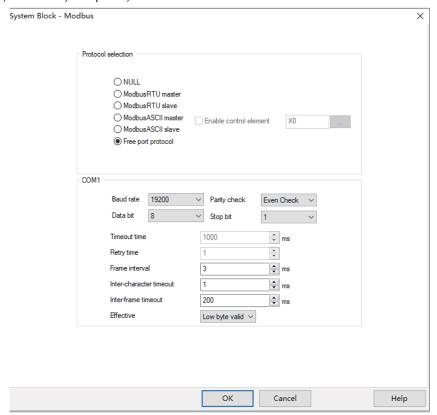
When both SendSize and RecvSize are 0, this command is invalid.

When neither SendSize nor RecvSize is 0, the port sends data and receives data within the timeout time.

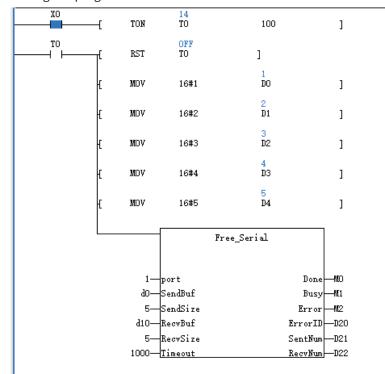

Precautions

This command supports a maximum of 512 calls.

Application Example


The COM1 serial port is used to send 5 bytes of data from D0–D4 (taking the low bytes of the word elements), and then receive 5 bytes of data to store it in D10–D14.

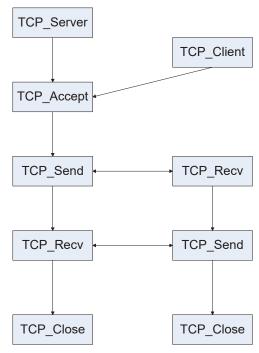
1. Firstly, double click on "COM1" in the system block.


2. In the system block settings, set communication port 1 as a free port, and then set "Baud rate", "Parity check", "Data bit", "Stop bit", etc.

3. Write the data to be sent to the sending buffer. In this example, the data in the following table is sent.

D0	D1	D2	D3	D4
0x01	0x02	0x03	0x04	0x05

4. Write a ladder diagram program to send and receive data.



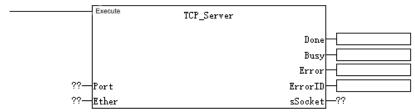
5. In the ladder diagram program, taking every 100 ms as an interval, use COM1 to take the low bytes of D0–D4, send 5 bytes of data, and wait for 1000 ms to receive 5 bytes of data and place them in D10–D14.

3.25.3 TCP communication

TCP is a connection-oriented full duplex communication, where each TCP connection can only have two endpoints and can only be made in a point-to-point manner. TCP provides reliable delivery services. The data transmitted through a TCP connection is error-free, non-lost, and non-duplicated, and arrives in sequence. The software framework for TCP communication is shown in the following figure.

Precautions

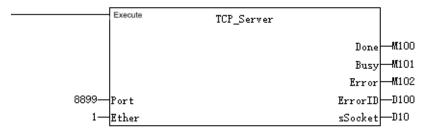
The TCP client and server currently support a single connection, and the number of data in the data transmission and reception function block cannot exceed 16.


Due to functional limitations, sSocket is temporarily a DINT type array with a size of 10. The meanings of each member of the array are shown in the table below:

Member	Meaning
	Bit0: validity state, which indicates the socket validity (client)
cCocket[0]	Bit1: connection state, which indicates whether the socket is connected
sSocket[0]	Bit2: listening state
	Other bits: reserved
sSocket[1]	Socket ID
	Low 16 bits: free protocol type, where 1 indicates TCP and 2 indicates UDP
sSocket[2]	High 16 bits: the number of connected devices (server side)
sSocket[3]	Peer IP address
sSocket[4]	Socket
sSocket[5]	Local port number
sSocket[6]	Reserved
sSocket[7]	Reserved
sSocket[8]	Reserved
sSocket[9]	Reserved

3.25.4 TCP_Server Commands

Graphic Block

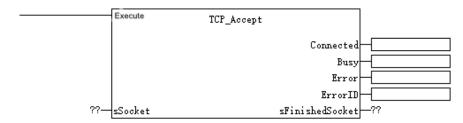

Command list		Function block form		Applicabl	e model	TS600 series	
16-Bit command		TCP_Server: Server socket creation					
32-Bit command			-				
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type	
S1	Port	Port number	Const, D, R	No	No	WORD	
S2	Ether	Network interface number	Const	No	No	WORD	
D1	Done	Completion sign	M,S,Dx.y	No	No	BOOL	
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	No	BOOL	
D3	Error	Error sign	M,S,Dx.y	No	No	BOOL	
D4	ErrorID	Error code	D,R	No	No	WORD	
D5	sSocket	Output socket	D,R	No	No	DINT	

Function Description

- 1. For a server, this command is mainly used to create a socket for the server and return the corresponding creation state and creation value.
- 2. This command is executed on the rising edge.

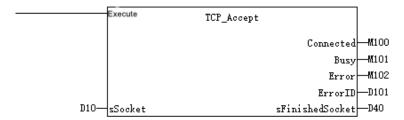
Precautions

After a successful connection, if the socket is not closed, it is prohibited to trigger the function block again.



3.25.5 TCP_Accept Commands

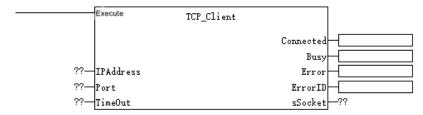
The socket at the socket communication server side of TCP receives client requests to create connection sockets.


Graphic Block

Command list	Function block form Applicable model					TS600 series
16-Bit command	TCP	_Accept: Reception o	f client connec	tion request by	server	
32-Bit command			-			
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type
S1	sSocket	Server-side socket	D,R	No	No	WORD
D1	Connected	Connection made or not	M,S,Dx.y	No	Yes	BOOL
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL
D4	ErrorID	Error code	D,R	No	Yes	WORD
D5	sFinishedSocket	Socket already connected	D,R	No	No	WORD

Function Description

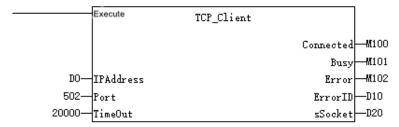
- 1. For a server, this command is mainly used to create a socket for the client and return the successfully connected socket.
- 2. This command is valid at high levels.



3.25.6 TCP_Client Commands

The PLC uses this command to create a TCP server and input the server port number and network interface serial number.

Graphic Block

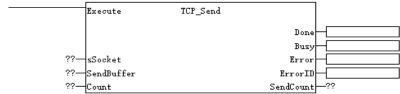

Command list		Function block form		Applicable i	nodel	TS600 series
16-Bit command		TCP_Clien	t: Client socke	et creation		
32-Bit command			-			
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type
S1	IPAddress	Server IP address	Const, D, R	No	No	DWORD
S2	Port	Port number	Const, D, R	No	No	WORD
S3	TimeOut	Timeout time	Const, D, R	No	No	WORD
D1	Connected	Connection made or not	M,S,Dx.y	No	Yes	BOOL
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL
D4	ErrorID	Error code	D,R	No	Yes	WORD
D5	sSocket	Output socket	D,R	No	No	DINT

Function Description

- 1. For a client, this command is mainly used to create a socket for the client and return the corresponding creation state and creation value.
- 2. This command is executed on the rising edge.

Precautions

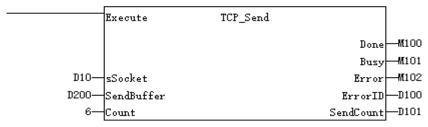
After a successful connection, if the socket is not closed, it is prohibited to trigger the function block again.



3.25.7 TCP_Send Commands

TCP uses this command to send data for socket communication.

Graphic Block

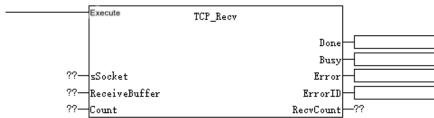

Command		count	Sendount			TS600
list		Function block form		Applicable	e model	series
16-Bit command		TCP_Send	l: Send TCP dat	a		
32-Bit command			-			
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type
S1	sSocket	Input socket	D,R	No	No	DINT
S2	SendBuffer	Sending data storage array	D,R	No	No	INT
S3	Count	The number of data sent (it should be less than or equal to the number of members in the data storage array)	Const, D, R	No	No	WORD
D1	Done	Completion signal flag	M,S,Dx.y	No	Yes	BOOL
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL
D4	ErrorID	Error code	D,R	No	Yes	WORD
D5	SendCount	The number of data sent (if it is less than the number of data input, sending cannot be enabled again)	D,R	No	No	WORD

Function Description

- 1. This command is used as a function to send socket data.
- 2. This command is executed on the rising edge.

Precautions

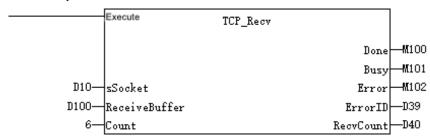
The number of data sent cannot exceed the capacity of the sending data storage area.



3.25.8 TCP_Recv Commands

TCP uses this command to receive data for socket communication.

Graphic Block

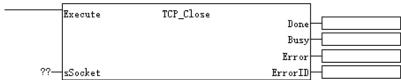

	!!					
Command list		Function block form		Applicabl	le model	TS600 series
16-Bit command		TCP_Recv	: Receive TCP da	ıta		0000
32-Bit command			-			
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type
S1	sSocket	Input socket	D,R	No	No	DINT
S2	ReceiveBuffer	Receiving data storage array	D,R	No	No	INT
S3	Count	The number of data received (it should be less than or equal to the number of members in the data storage array)	Const, D, R	No	No	WORD
D1	Done	Completion signal flag	M,S,Dx.y	No	Yes	BOOL
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL
D4	ErrorID	Error code	D,R	No	Yes	WORD
D5	RecvCount	The number of stored received data	D,R	No	No	WORD

Function Description

- 1. This command is used as a function to receive socket data.
- 2. This command is executed on the rising edge.

Precautions

The number of data received cannot exceed the capacity of the receiving array.

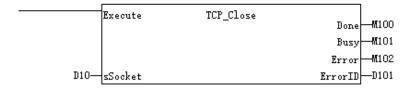


3.25.9 TCP_Close Commands

This command to used to close the socket communication of the TCP connection.

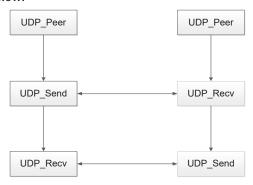
Graphic Block

Command list 16-Bit		Function block form	Applicabl	e model	TS600 series	
command		TCP_	Close: Close	TCP socket		
32-Bit command			-			
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type
S1	sSocket	Input socket	D,R	No	No	DINT
D1	Done	Completion sign	M,S,Dx.y	No	Yes	BOOL
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL
D4	ErrorID	Error code	D,R	No	Yes	WORD


Function Description

- 1. This command closes the TCP socket.
- 2. This command is executed on the rising edge.

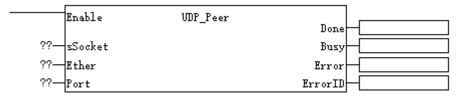
Precautions


After a successful connection, if the socket is not closed, it is prohibited to trigger the function block again.

Application Example

3.25.10 UDP communication

UDP (User Datagram Protocol) is a packet-oriented connectionless communication, which is characterized by no congestion control, low latency during data transmission, and high data transmission efficiency. Therefore, it is suitable for applications that don't require high reliability. The main framework for UDP communication is shown below:

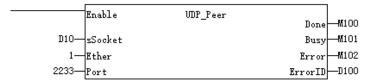

Precautions

UDP currently support a single connection, and the number of data in the data transmission and reception function block cannot exceed 16.

3.25.11 UDP_Peer Commands

This command mainly functions to return the description word of the connected UDP socket and bind it to the local port number.

Graphic Block

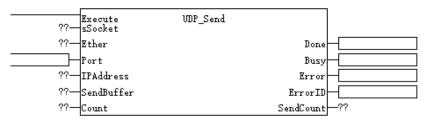

Command list		Function block form	l	Applicabl	e model	TS600 series
16-Bit command		UDP_	Peer: UDP soc	ket creation		
32-Bit command		-				
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type
S1	sSocket	Socket	D,R	No	No	DINT
S2	Ether	Network interface number	Const	No	No	WORD
S3	Port	Port number	Const, D, R	No	No	WORD
D1	Done	Completion sign	M,S,Dx.y	No	Yes	BOOL
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL
D4	ErrorID	Error code	D,R	No	Yes	WORD

Function Description

- 1. For a client, this command is mainly used to create a socket for the client and return the corresponding creation state and creation value.
- 2. This command is executed on the rising edge.

Precautions

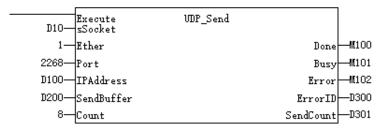
After a successful connection, if the socket is not closed, it is prohibited to trigger the function block again.



3.25.12 UDP_Send Commands

This command mainly functions to send data to the target IP address and port.

Graphic Block

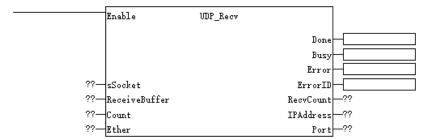

Command list		Function block form		Applicabl	e model	TS600 series			
16-Bit command		UDP_Send: Send UDP data							
32-Bit command									
Operand	Name	Description	Supported element	Element Z indexing	Nullable	Data Type			
S1	sSocket	Input socket	D,R	No	No	DINT			
S2	Ether	Network interface number	Const	No	No	WORD			
S3	Port	Port number	Const, D, R	No	Yes	WORD			
S4	IPAddress	Peer IP address	Const, D, R	No	No	DWOR D			
S5	SendBuffer	Sending data storage array	D,R	No	No	INT			
S6	Count	The number of data sent (it should be less than or equal to the number of members in the data storage array)	Const, D, R	No	No	WORD			
D1	Done	Completion signal flag	M,S,Dx.y	No	Yes	BOOL			
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL			
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL			
D4	ErrorID	Error code	D,R	No	Yes	WORD			
D5	SendCount	The number of data sent (if it is less than the number of data input, sending cannot be enabled again)	D,R	No	No	WORD			

Function Description

- 1. This command is used as a function to send UDP data.
- 2. This command is executed on the rising edge.

Precautions

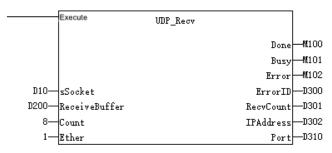
The number of data sent cannot exceed the capacity of the sending data storage area.



3.25.13 UDP_Receive Commands

This command mainly functions to receive the data send from a remote end $% \left(1\right) =\left(1\right) \left(1\right)$

Graphic Block

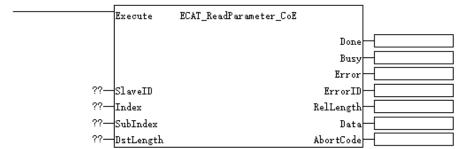

Command list		Function block form		Applicable	e model	TS600 series			
16-Bit command		UDP_Receive: Receive UDP data							
32-Bit command			-						
Operand	Name	Description	Element Z indexing	Nullable	Data Type				
S1	sSocket	Input socket	D,R	No	No	DINT			
S2	ReceiveBuffer	Receiving data storage array	D,R	No	No	INT			
S3	Count	The number of data received (it should be less than or		No	No	WORD			
S4	Ether	Network interface number	Const	No	No	WORD			
S5	Port	Port number	Const, D, R	No	Yes	WORD			
S6	IPAddress	Peer IP address	Const, D, R	No	No	DWORD			
D1	Done	Completion signal flag	M,S,Dx.y	No	Yes	BOOL			
D2	Busy	Ongoing execution flag	M,S,Dx.y	No	Yes	BOOL			
D3	Error	Error sign	M,S,Dx.y	No	Yes	BOOL			
D4	ErrorID	Error code	D,R	No	Yes	WORD			
D5	RecvCount	The number of stored received data	D,R	No	No	WORD			

Function Description

- 1. This command is used as a function to receive UDP data.
- 2. This command is executed on the rising edge.

Precautions

The number of data received cannot exceed the capacity of the receiving array.



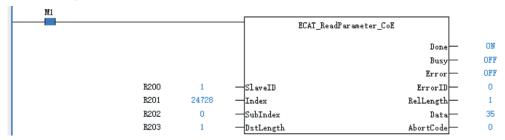
3.25.14 EtherCAT Communication

3.25.15 ECAT_ReadParameter_CoE

It reads SDO parameters from the slave station.

Graphic Block

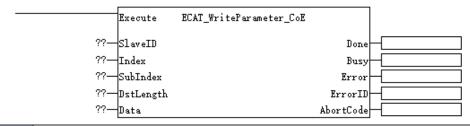
16-Bit command		-				
32-Bit command		ECAT_ReadPara	meter_Co	E		
Operand	Name	Description	Nullable	Default value	Range	Data Type
S1	SlaveID	Only the configuration address of the slave station can be entered	No	0	0-71	INT
S2	Index	Index	No	0	Positive number	INT
S3	SubIndex	Sub-index	No	0	Positive number	INT
S4	DSTLength	Target data length	No	0	1, 2, and 4	INT
D1	Done	Completion signal flag	Yes	OFF	ON, OFF	BOOL
D2	Busy	Ongoing execution flag	Yes	OFF	ON, OFF	BOOL
D3	Error	Error sign	Yes	OFF	ON, OFF	BOOL
D4	ErrorID	Error code	Yes	0	-	INT
D5	RelLength	The actual length read, in bytes	No	0	1, 2, and 4	INT
D6	Data	Data read	No	0	-	DINT
D7	AbortCode	AbortCode generated when reading slave station failed	No	0	-	DINT


Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	√	-	-	-	√	√	√
S3	✓	-	-	-	√	✓	√
S4	√	-	-	-	√	√	√
D1	-	√	√	√	√	√	✓
D2	-	√	√	√	√	√	√
D3	ı	√	√	√	√	\	√
D4	1	-	-	-	√	\	√
D5	-	-	-	-	√	\	√
D6	ı	-	-	-	√	\	√
D7	-	-	-	-	√	√	✓

Function Description

- 7. This command is used to read the object dictionary of the EtherCAT slave station, and is valid to the rising edge.
- 8. SlaveID is used to specify the configuration address of the EtherCAT slave station.
- 9. On the rising edge of Execute, the command latches the left-side input parameters and triggers the reading of the object dictionaries specified by Index and SubIndex.
- 10. DstLength is used to specify the length of the object dictionary to be read in bytes.
- 11. After successful reading, the Done signal is valid, Dstate is used to display the read value, and RelLength is used to display the actual length of the object dictionary read. In case of failed reading, the Error output is valid, and AbortCode and ErrorID work together to determine the cause of the failure.
- 12. In this command, the Data parameter is a DINT type parameter, which occupies 4 bytes of space. When the object dictionary read is SINT or INT, the result read is placed in the low 8 or 16 bits of the Data parameter, and then the unused high 24 or 16 bits are padded with 0. For example, when reading -8 of SINT and INT types, the actual stored data of Data are 0x000000f8 and 0x0000fff8, respectively.

Application Example


Fault code

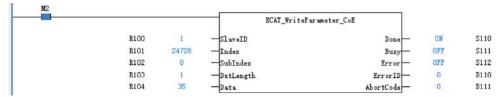
Fault code	Possible cause	Solution
1	Slave station ID out of range	Check whether the slave station ID is out of range
2	Master station configuration failed	Check whether the EtherCAT communication is estalished
3	SDO communication failed	Check whether the SDO parameters are correct
4	Slave station disabled	Check whether the slave station is disabled

3.25.16 ECAT_WriteParameter_CoE

This command is used to write the SDO parameters of slave station.

Graphic Block

16-Bit							
command		-					
32-Bit		FCAT With David					
command		ECAT_WritePara	meter_CoE				
Operand	Name	Name Description Nullable Default value Data					
S1	SlaveID	Only the configuration address of the slave station	No	0	0-71	INT	

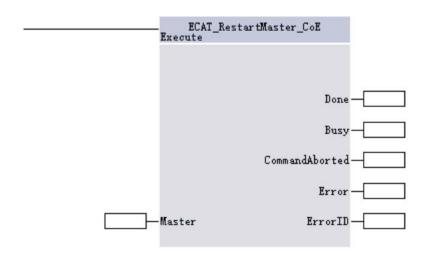


16-Bit command		-				
32-Bit command		ECAT_WritePara	meter_CoE			
Operand	Name	Name Description Nullable Default value Range				
		can be entered				
S2	Index	Index	No	0	Positive number	INT
S3	SubIndex	Sub-index	No	0	Positive number	INT
S4	DSTLength	Length of the data written	No	0	1, 2, and 4	INT
S5	Data	Data written	No	0	-	DINT
D1	Done	Completion signal flag	Yes	OFF	ON, OFF	BOOL
D2	Busy	Ongoing execution flag	Yes	OFF	ON, OFF	BOOL
D3	Error	Error sign	Yes	OFF	ON, OFF	BOOL
D4	ErrorID	Error code	Yes	0	-	INT
D5	AbortCode	AbortCode generated when reading slave station failed	No	0	-	DINT

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	-	-	-
S2	√	-	-	-	√	√	√
S3	√	-	-	-	√	√	√
S4	√	-	-	-	√	√	√
S5	√	-	-	-	√	√	√
D1	-	√	√	√	\	\	√
D2	-	√	√	√	√	√	√
D3	-	√	√	√	√	√	√
D4	-	-	-	-	√	√	√
D5	_	-	-	-	√	√	√

Function Description

- 1. This command is used to write the object dictionary of the EtherCAT slave station, and is valid to the rising edge.
- 2. SlaveID is used to specify the configuration address of the EtherCAT slave station.
- 3. On the rising edge of Execute, the command latches the left-side input parameters and writes the data from Data to the object dictionaries specified by Index and SubIndex.
- 4. DstLength is used to specify the length of the object dictionary to be written in bytes.
- 5. After successful writing, the Done signal is valid. In case of failed writing, the Error output is valid, and AbortCode and ErrorID work together to determine the cause of the failure.


Fault code

Fault code	Possible cause	Solution
1	Slave station ID out of range	Check whether the slave station ID is out of range
2	O	Check whether the EtherCAT communication is estalished
3	SDO communication failed	Check whether the SDO parameters are correct
4	Slave station disabled	Check whether the slave station is disabled

3.25.17 ECAT_RestartMaster_CoE

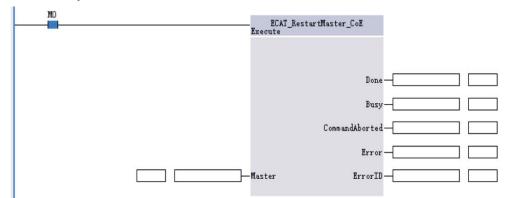
This command is used to restart the EtherCAT master station.

Graphic Block

16-Bit command	ECAT_RestartMaster_CoE							
32-Bit command								
Operand	Name	Description	Nullable	Default value	Range	Data Type		
S1	Master	EtherCAT master station	Yes	-	-	-		
D1	Done	Completion signal flag	Yes	OFF	ON, OFF	BOOL		
D2	Busy	Ongoing execution flag	Yes	OFF	ON, OFF	BOOL		
D3	CommandAborted	Execution abortion	Yes	OFF	ON, OFF	BOOL		
D4	Error	Error sign	Yes	OFF	ON, OFF	BOOL		
D5	ErrorID	Error code	Yes	0	-	INT		

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	√	-	-	-	√	√	✓
D1	-	√	✓	√	-	-	✓
D2	-	√	√	√	-	-	√
D3	-	√	\	√	-	-	✓
D4	-	√	√	√	-	-	√
D5	-	-	-	-	√	√	✓

Function Description


Calling this command restarts the EtherCAT bus.

Precautions

This command does not allow multiple triggers. If the second command is triggered during the execution of the first command, the second command will not be executed, and the first command will continue to be executed.


Application Example

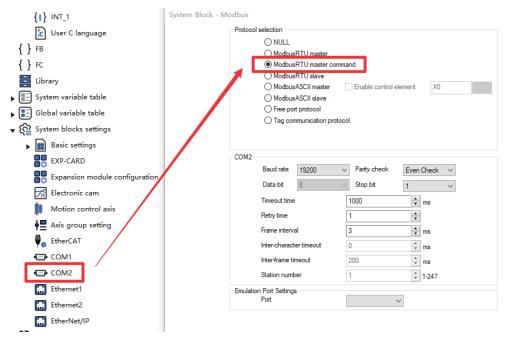
3.25.18 MB_Master Commands

Modbus RTU master station communication command.

Graphic Block

16-Bit		MB_Master: Proto	ocol data sen	d/receive	MB_Master: Protocol data send/receive											
command 32-Bit																
command			-													
Operand	Name	Description	Nullable	Default value	Range	Data Type										
S1	port	Serial port number	No	-	1–2	WORD										
S2	SlaveID	Slave node ID	No	1	0-255	WORD										
S3	FunCode	Function code	No	-	1-6, 15, 16	WORD										
S4	DataAddr	Slave data address accessed	No	-	0-65535	DWORD										
S5	DataCounts	Number of bits or words to access the slave	No	-	-	WORD										
S6	DataBuffer	Data buffer	No	-	-	INT[]										
D1	Done	Completion sign	Yes	OFF	ON, OFF	BOOL										
D2	Busy	Ongoing execution flag	Yes	OFF	ON, OFF	BOOL										
D3	Error	Error sign	Yes	OFF	ON, OFF	BOOL										
D4	ErrorID	Error code	Yes	0	-	WORD										

Operand	Const	Υ	М	S	D	R
S1	✓	-	-	-	-	-
S2	✓	-	-	-	✓	✓


Operand	Const	Υ	M	S	D	R
S3	✓	-	-	-	✓	✓
S4	✓	-	-	-	✓	✓
S5	✓	-	-	-	✓	✓
S6	-	-	-	-	✓	✓
D1	-	✓	✓	✓	-	-
D2	-	✓	✓	✓	-	-
D3	-	✓	✓	✓	-	-
D4	-	-	-	-	✓	✓
D5	-	-	-	-	✓	✓

Function Description

Implement the sending of Modbus RTU master station request data and the parsing of received responses. After triggered by rising edge, the specified request data is sent through the specified port. After the sending is completed, the master station waits for the response data from the slave station. Upon completion of the reception, the data is parsed and the corresponding result is fed back.

Instructions for System Block Configuration

Before using a ModbusRTU master protocol command, it is necessary to configure the corresponding COM port in the system block. First, double-click the COM port in the system block configuration. Select "ModbusRTU master" in the pop-up box.

Instructions for System Block Parameters

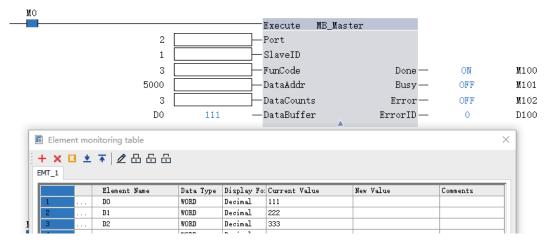
"Baud rate", "Parity check", "Data bit", and "Stop bit" can be set as needed, just like the peer device.

The timeout time and number of retries are generally set to their default values.

"Frame interval": The sending interval (in ms) between every two frames of data.

"Inter-character timeout": A value, which causes the time for receiving two received bytes to be discarded when exceeded.

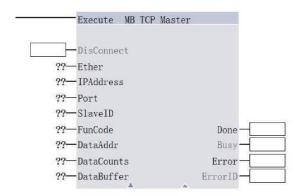
Precautions


The Port parameter in the function block must be consistent with the port designed in the system block. Different function blocks are used for different ports. Additionally, after using ModbusRTU communication commands, it is prohibited to add a slave station.

Application Example

The COM2 serial port is used to call function code 03 to access 3 data starting from address 5000 using function code 03, and store the read data in 3 word data D0–D3.

First, double-click the COM2 port in the system block. In the system block settings, set communication port 2 as a ModbusRTU master, and then set "Baud rate", "Parity check", "Data bit", "Stop bit", etc.



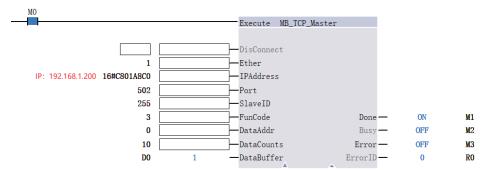
The ModbusRTU master command function block is called in the program, with the port number set to 2, function code set to 3, address set to 5000, data quantity set to 3, data storage address set to D0. Write a ladder diagram program that triggers this function block on a rising edge (when using multiple function blocks, write polling logic to ensure that only one function block is triggered at the same time).

3.25.19 MB_TCP_Master Commands

Modbus TCP master read/write command.

Graphic Block

16-Bit command		MB_TCP_Master: Read/Write command											
32-Bit command			-										
Operand	Name	Description	Nullable	Default value	Range	Data Type							
S1	DisConnect	Disconnect	Yes	OFF	ON, OFF	BOOL							
S2	Ether	Network interface number	No	-	1, 2	WORD							
S3	IPAddress	Slave node IP address	No	-	0-4294967295	DWORD							
S4	Port	Slave node port number	No	-	0-65535	WORD							
S5	SlaveID	Slave node ID.	No	-	0-255	WORD							
S6	FunCode	Modbus function code	No	-	1, 2, 3, 4, 5, 6, 15, 16	WORD							


16-Bit command 32-Bit command		MB_TCP_Master: Read/Write command -										
Operand	Name	Description	Nullable	Default value	Range	Data Type						
S 7	DataAddr	Modbus slave address for reading or writing	No	-	0-65535	WORD						
S8	DataCounts	Amount of data read or written	No	-	-	WORD						
S 9	DataBuffer	Data buffer for reading or writing	No	-	-	INT[]						
D1	Done	Completion signal flag	Yes	OFF	ON, OFF	BOOL						
D2	Busy	Ongoing execution flag	Yes	OFF	ON, OFF	BOOL						
D3	Error	Function block error flag	Yes	OFF	ON, OFF	BOOL						
D4	ErrorID	Error code	Yes	0	-	WORD						

Operand	Const	Υ	М	S	D	R	Custom Variables
S1	1	-	✓	✓	-	1	✓
S2	✓	-	-	-	-	1	-
S3	✓	-	-	-	✓	✓	✓
S4	✓	-	-	-	✓	✓	✓
S5	✓	-	-	-	✓	✓	✓
S6	✓	-	-	-	✓	✓	✓
S7	✓	-	-	-	✓	✓	✓
S8	✓	-	-	-	✓	✓	✓
S9	-	-	-	-	✓	✓	✓
D1	-	-	✓	✓	-	-	✓
D2	-	-	✓	✓	-	-	✓
D3	-	-	✓	√	-	-	√
D4	-	-	-	-	✓	✓	✓

Function Description

- 1. The Modbus TCP master read/write command does not interface with the slave configuration table functions.
- 2. The command function block is executed on the rising edge. During execution, the command function block is in the busy state and cannot be interrupted.

Application Example

When M0 is at the rising edge, the command function block will connect to the Modbus TCP slave with IP address 192(C0).168(A8).1(01).200(C8) and port number 502, and then read the register values from Modbus slave addresses 0–9 and store them in elements D0–D9 respectively.

3.26 Real-time Clock Command

3.26.1 Command list

Command Category	Name	Function		
	TRD	Real-time clock read		
	TWR	Real-time clock write		
	TADD	Clock addition operation		
	TSUB	Clock subtraction operation		
	HOUR	Hour meter		
	DCMP=	Date comparison equal to		
	DCMP>	Date comparison greater than		
	DCMP<	Date comparison less than		
	DCMP<>	Date comparison not equal to		
	DCMP≽	Date comparison greater than or equal to		
Real-time Clock Command	DCMP<=	Date comparison less than or equal to		
	TCMP=	Time comparison equal to		
	TCMP>	Time comparison greater than		
	TCMP<	Time comparison less than		
	TCMP<>	Time comparison not equal to		
	TCMP≽	Time comparison greater than or equal to		
	TCMP<=	Time comparison less than or equal to		
	HTO*S	Conversion from hours, minutes, or seconds to		
	піоз	word/doubleword second data		
	*STOH	Conversion from word/doubleword second data		
	31011	to hours, minutes, or seconds		

3.26.2 TRD: Real-Time Clock Read

Comma	Command list TRD (D)			Applicable model	TS600 series			
16-Bit cor	mmand	TRD: Real-time clock read						
32-Bit cor	mmand	-						
	Туре	Bit			W	ord ord		
Operand		X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		T, C, S	DA.y	variable	С	variable		
D	WORD/ Array*7	-	-	-	√ [1]	✓	√	-

Remark:

[1]Only the D, V, and R elements are supported.

Operand Description

D: The destination operand, which reads the starting unit that stores the system time, occupying seven consecutive units starting from the unit specified by D.

Function Description

- When this command is driven, the time in the system is read and stored in the storage unit specified by D.
- 2. The addresses starting from D store year, month, day, hour, minute, second, and week, respectively.

Precautions

When there is a clock setting error in the system, TRD time reading is unsuccessful.

Application Example

In case of M500=ON, the system time is sent to the 7 units starting from D10. See below for the process.

	System variables	Item	Clock Data		Element	Item
Curriel Data	mYear	Year	2000-2099	→	D10	Year
Special Data	mMouth	Month	1–12	→	D11	Month
Registers for	mDay	Day	1-31		D12	Day
Real-Time Clock	mHour	Hour	0-23	-	D13	Hour
Clock	mMinute	Minute	0-59		D14	Minute
	mSecond	Second	0-59		D15	Second
	mWeekday	Week	0-6		D16	Week

3.26.3 TWR: Real-Time Clock Write

Comma	Command list TWR (S)			Applicable model	TS600 series			
16-Bit co	mmand		TWR: Real-time clock write					
32-Bit co	mmand	-						
	Туре	Bit			W	ord		
Operand		X, Y, M,		Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	С	variable		
S	WORD/				√ [1]	,	,	
5	Array*7	-	_	-	٧ اتا	V	V	-

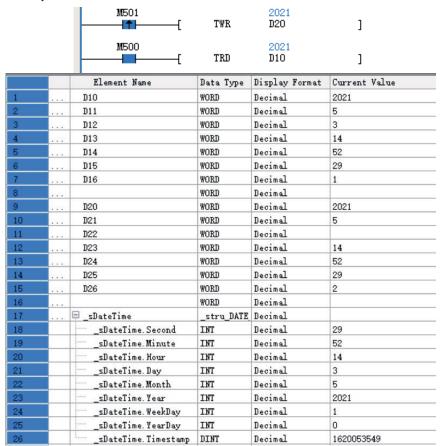
Remark:

[1]Only the D, V, and R elements are supported.

Operand Description

S: The source operand, which indicates the starting address of the soft element that writes the system time.

Function Description


When the system time differs from the actual time, the TWR command can be used to change the system time.

Precautions

- The written time data must meet the requirements of the Gregorian calendar, otherwise a clock reading-writing error will be reported, and this command will not be executed.
- It is recommended to execute this command by using the edge trigger.

Application Example

When M501 is ON, the time data of the 7 units starting from D20 is written into the system time, and the time data is updated to the system variable _sDateTime. The process is shown below.

	Element	Item	Clock Data	-	System variables	Item
	D10	Year	2000-2099	→	mYear	Year
Data fau Claula	D11	Month	1-12	→	mMouth	Month
Data for Clock	D12	Day	1-31	→	mDay	Day
Settings	D13	Hour	0-23	→	mHour	Hour
	D14	Minute	0-59	-	mMinute	Minute
	D15	Second	0-59	>	mSecond	Second
	D16	Week	0–6		mWeekday	Week

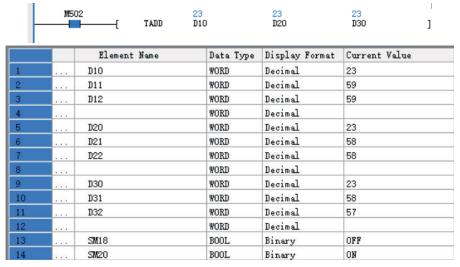
3.26.4 TADD: Clock Addition Operation

Command list		TADD (S1)		(S2) (D)	Applicable model	TS600 series						
16-Bit co	mmand		TADD: Clock addition operation									
32-Bit co	mmand				-							
			Bit		V	Vord						
Operand	Type	X, Y, M, Dx.y	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant				
		LM, T, C, S	Dx.y	variable	T, C	variable						
S1	WORD/				√ [1]	./	./					
31	Array*3	-	_	_	V . 1	V	V	_				
S2	WORD/				√ [1]	./	,					
32	Array*3	-	•	-	V ₁-₁	V	V	-				
D	WORD/				/ [1]	,	,					
ט	Array*3	-	i	-	√ ^[1]	√	√	-				

Remark:

[1]Only the D, V, and R elements are supported.

Operand Description


- S1: The source operand, which indicates clock data 1.
- S2: The source operand, which indicates clock data 2.
- D: The destination operand, which indicates the time result storage unit

Function Description

When the is command is driven, the data processed by the time addition operation is stored in the 3 storage units referred to by D. Depending on the processed result, the carry flag SM20 and the zero flag SM18 may be affected.

Precautions

- The time data involved in the calculation should conform to the following time formats:
 - ♦ The set range of "hour": 0-23
 - ◆ The set range of "minute": 0-59
 - ♦ The set range of "second": 0-59
- When any data does not meet the time format, the system prompts a command operand error, and this command is not executed.

When M502 is ON, the 3 storage units starting from D10 are added to the 3 storage units starting from D20, and the processed results are stored in the 3 storage units starting from D30.

The carry flag (SM20) is set to ON, and the zero flag (SM18) is set to OFF. See below for the process.

	S1		S 2			D	
D10	23 hours		D20	23 hours	_	D30	23 hours
D11	59 minutes	+	D21	58 minutes	=	D31	58 minutes
D12	59 seconds		D22	58 seconds		D32	57 seconds

3.26.5 TSUB: Clock Subtraction Operation

Comma	ınd list	TSUB (S1) (S2) (D) Applicable model TS600 series						
16-Bit co	mmand			TSUB: Clo	ock subtract	ion operation		
32-Bit co	mmand				-			
			Bit		V	Vord		
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S1	WORD/				√ [1]			
31	Array*3	-	_	-	V 1-3	√	V	-
S2	WORD/				√ [1]	_	_	
32	Array*3	-	-	-	V 1-3	V	V	-
D	WORD/				√ [1]	,	,	
D	Array*3	-		-	V [2]	√	√	-

Remark:

[1]Only the D, V, and R elements are supported.

Operand Description

- S1: The source operand, which indicates clock data 1.
- S2: The source operand, which indicates clock data 2.
- D: The destination operand, which indicates the time result storage unit

Function Description

When the is command is driven, the data processed by the time subtraction operation is stored in the 3 storage units referred to by D. Depending on the processed result, the carry flag SM20 and the zero flag SM18 may be affected.

Precautions

- The time data involved in the calculation should conform to the following time formats:
 - ♦ The set range of "hour": 0-23
 - ♦ The set range of "minute": 0–59
 - ♦ The set range of "second": 0-59
- When any data does not meet the time format, the system prompts a command operand error, and this command is not executed.

	Element Name	Data Type	Display Format	Current Value
1	 D10	WORD	Decimal	23
2	 D11	WORD	Decimal	59
3	 D12	WORD	Decimal	59
4		WORD	Decimal	
5	 D20	WORD	Decimal	23
6	 D21	WORD	Decimal	58
7	 D22	WORD	Decimal	58
8		WORD	Decimal	
9	 D30	WORD	Decimal	23
10	 D31	WORD	Decimal	58
11	 D32	WORD	Decimal	57
12		WORD	Decimal	
13	 SM18	BOOL	Binary	OFF
14	 SM20	BOOL	Binary	ON

When M503 is ON, the 3 storage units starting from D20 are subtracted from the 3 storage units starting from D10, and the processed results are stored in the 3 storage units starting from D30.

The borrow flag bit (SM19) is set to ON, and the zero flag bit (SM20) is set to OFF. See below for the process.

S	51		S2			D	
D10	23 hours		D20	23 hours	_	D30	23 hours
D11	59 minutes	_	D21	59 minutes	_	D31	59 minutes
D12	58 seconds		D22	59 seconds		D32	59 seconds

3.26.6 HOUR: Hour Meter Commands

Comma	nd list	HOUR (HOUR (S) (D1) (D2) Applicable model TS600 series							
16-Bit co	mmand		Hour: Hour meter							
32-Bit co	mmand		-							
			Bit Word							
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant		
S	WORD	-	-	-	✓	✓	✓	✓		
D1	WORD/ Array*2	-	-	-	√ [1]	√	✓	-		
D2	BOOL	√ [2]	-	√	-	-	-	-		

Remark:

[1]Only the D, V, and R elements are supported.

[2]The X element is not supported.

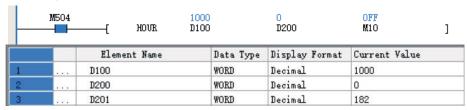
Operand Description

S: The source operand, which indicates the hour comparison data. The data value ranges between 0 and 32767.

D1: Destination operand, which indicates a time storage unit, where the data unit of D1 the stores hour data, and the data unit of D1+1 stores the second data.

D2: Destination operand, which indicates an alarm output address. When the data of D1 is greater than or equal to the data specified by S, the alarm point becomes ON output.

Function Description


This command is used to record the accumulated time when the energy flow is ON. When the set time is reached, the corresponding alarm point output of this command is valid.

Precautions

- The set value of D1 ranges between 0 and 32767, in hours. D1+1 represents the current time value less than 1 hour, which ranges between 0 and 3599, in seconds.
- To still use the current data after cutting off the power supply of the PLC, specify D1 as the holding soft element unit against power outage. If an ordinary soft element is used, the current data will be cleared when the power supply of the PLC is cut off or when the RUN → STOP operation is performed.
- Even if the alarm output D2 is ON, the hour meter can still continue counting.
- In this command, hour is 16-bit integer data. When the hour data is greater than 32767, counting starts from 0 again.
- Up to 128 HOUR commands are supported.

Application Example

When M504 is ON, HOUR performs time accumulation on the input contact.

When the accumulated time of the ON state of M1 is greater than or equal to 1000, M10 is in the ON state.

3.26.7 DCMP (=, <, >, <>, >=, <=): Date Comparison Commands

Comma	nd list	DCMP (S	S1) ((S2) (D)	Applicable model	TS600 series			
16-Bit command DCMP=: Date comparison equa						son equal to			
32-Bit co	mmand				-				
16-Bit co	mmand			DCMP>: Da	te comparisc	n greater than			
32-Bit co	mmand				-				
16-Bit co	mmand			DCMP<: D	ate compari	son less than			
32-Bit co	mmand				-				
16-Bit co	mmand			DCMP<>: Da	ate comparis	on not equal to			
32-Bit co	mmand	-							
16-Bit co	mmand	DCMP>=: Date comparison greater than or equal to							
32-Bit co	mmand				-				
16-Bit co	mmand		DC	DCMP<=: Date comparison less than or equal to					
32-Bit co	mmand				-				
			Bit		V	/ord			
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		T, C, S	DA.y	variable	T, C	variable			
S1	INT,	_	_	_	√ [1]	√	_	_	
	Array*3				V	v	v		
S2	INT,	_	_	_	√ [1]	√	_	_	
	Array*3				*	v	, ,		
D	BOOL	√ [2]	✓	✓	-	-	-	-	

Remark:

[1]Only the D, V, and R elements are supported.

[2] The X element is not supported.

Operand Description

- S1: The source operand, which indicates date comparison data 1, occupying the first 3 characters of the specified unit in S1. The data in these 3 units must conform to the Gregorian format, otherwise the system will report an operand error.
- S2: The source operand, which indicates date comparison data 2, occupying the first 3 characters of the specified unit in S2. The data in these 3 units must conform to the Gregorian format, otherwise the system will report an operand error.
- D: The destination operand, which indicates the comparison the output state. If the data meets the comparison conditions, D is set to ON; otherwise it is set to OFF.

Function Description

When driven, this command performs a comparison between the date data respectively starting from the S1 and S2 units and assigns the comparison result to D.

Precautions

The date data starting from S1 and S2 must comply with the Gregorian calendar, otherwise an operand error (such as 2004-9-31 or 2003-2-29) will be reported, and this command will not be executed.

Application Example

	Element Name	Data Type	Display Format	Current Value
1	 DO	WORD	Decimal	2004
2	 D1	WORD	Decimal	10
3	 D2	WORD	Decimal	25
4		WORD	Decimal	
5	 D10	WORD	Decimal	2004
6	 D11	WORD	Decimal	10
7	 D12	WORD	Decimal	24

The command performs a BIN comparison between the date data respectively starting from the D0 and D10 units and assigns the comparison result to the destination data (M0, etc.).

3.26.8 TCMP (=, <, >, <>, >=, <=): Time Comparison Commands

Comma	and list	TCMP (S	51)	(S2) (D)	Applicable model	TS	TS600 series		
16-Bit co	mmand			TCMP=: T	ime compar	ison equal to			
32-Bit co	mmand		-						
16-Bit co	mmand			TCMP>: Tin	ne comparis	on greater than	1		
32-Bit co	mmand				-				
16-Bit co	mmand			TCMP<: T	ime compar	ison less than			
32-Bit co	mmand				-				
16-Bit co	mmand			TCMP<>: Ti	me comparis	on not equal to	0		
32-Bit co	mmand	-							
16-Bit co	mmand	TCMP>=: Time comparison greater than or equal to							
32-Bit co	mmand				-				
16-Bit co	mmand		TCI	MP<=: Time o	omparison l	ess than or equ	ıal to		
32-Bit co	mmand				-				
			Bit		W	/ord			
Operand	Туре	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
	15.17	T, C, S		variable	T, C	variable			
S1	INT,	-	-	-	√ [1]	✓	√	-	
	Array*3								
S2	INT, Array*3	-	-	-	√ [1]	✓	✓	-	
D	BOOL	√ [2]	✓	✓	-	-	-	-	

Remark:

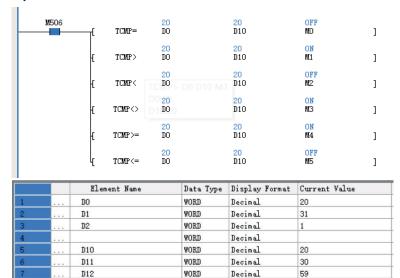
[1]Only the D, V, and R elements are supported.

[2] The X element is not supported.

Operand Description

- S1: The source operand, which indicates time comparison data 1, occupying the first 3 characters of the specified unit in S1. The data in these 3 units must conform to the 24-hour time format, otherwise the system will report an operand error.
- S2: The source operand, which indicates time comparison data 2, occupying the first 3 characters of the specified unit in S2. The data in these 3 units must conform to the 24-hour time format, otherwise the system will report an operand error.
- D: The destination operand, which indicates the comparison the output state. If the data meets the comparison conditions, D is set to ON; otherwise it is set to OFF.

Function Description


When driven, this command performs a comparison between the time data respectively starting from the S1 and S2 units and assigns the comparison result to D.

Precautions

The time data starting from S1 and S2 must comply with the 24-hour system, otherwise an operand error (such as 24-10-31 or 13-59-60) will be reported, and this command will not be executed.

Application Example

The command performs a comparison between the time data respectively starting from the D0 and D10 units and assigns the comparison result to the destination data (M0, etc.).

3.26.9 HTO*S: Commands for Conversion from Hours, Minutes, or Seconds to Word/Doubleword Second Data

Comma	and list	HTOS (S) (D) Applicable model TS		6600 series				
16-Bit co	mmand	HTOS: Conversion from hours, minutes, or seconds to word second dat					nd data	
32-Bit co	mmand	HTODS: Con	HTODS: Conversion from hours, minutes, or seconds to doubleword second data					
			Bit		Word			
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S	WORD,				√ [1]	,	,	
3	Array*3	-	-	-	V 1-3	V	٧	-
D	WORD/				√ [2]	,	,	
D	DWORD	-		-	V [2]	V	V	-

Remark:

[1]The Z element is not supported.

[2]The Z element is not supported; for the 32-bit command HTODS, the Z, T, and C elements are not supported.

Operand Description

S: The source operand, which indicates the starting number of the soft element storing the time data before conversion

D: The destination operand, which indicates the number of the soft element storing the time data after conversion.

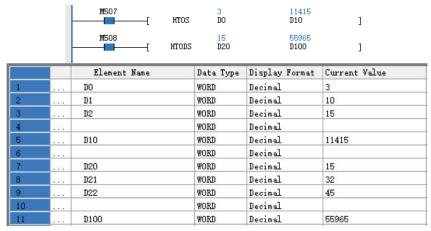
Function Description

1. HTOS command: When driven, this command converts the time data (hours, minutes, seconds) of [S, S+1, S+2] into seconds, and stores the result in D.

● Hour range: 0–18

Minute range: 0–59

Second range: 0–59



- 2. DHTOS command: When driven, this command converts the time data (hours, minutes, and seconds) of [S, S+1, S+2] into seconds, and stores the result in [D, D+1].
- Hour range: 0-32767Minute range: 0-59
- Second range: 0–59

Precautions

- If the operands (hour, minute, and second) of the HTOS/DHTOS command exceeds their respective ranges, the system will report an operand error, and this command will not be executed.
- If the HTOS conversion result is greater than 65535, the system will report an operand error, and this command will not be executed.

Application Example

In case of M507=ON, this command converts the time data of the hours, minutes, and seconds starting from D0 unit to word seconds, and stores the results in D10. In case of D0=3, D1=10, and D2=15, D10=11415 is obtained.

In case of M508=ON, this command converts the time data of the hours, minutes, and seconds starting from D20 unit to doubleword seconds, and stores the results in (D100, D101). In case of D20=15, D21=32, and D22=45, (D100, D101)=55965 is obtained.

3.26.10 *STOH: Commands for Conversion from Word/Doubleword Second Data to Hours, Minutes, or Seconds

Comma	and list	STOH (S) (D)			Applicable model	TS600 series		
16-Bit co	mmand	STOH: 0	Convers	ion from wor	d second da	ata to hours, mi	nutes, or se	conds
32-Bit co	mmand	DSTOH Con	OSTOH Conversion from doubleword second data to hours, minutes, or second					
			Bit		V	Vord		
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD/ DWORD	-	-	-	√ [1]	√	√	-
D	WORD, Array*3	-	-	-	√ [2]	√	√	-

Remark:

[1]The Z element is not supported; for the 32-bit command HTODS, the Z, T, and C elements are not supported.

[2] The Z element is not supported.

Operand Description

S: The source operand, which indicates the starting number of the soft element storing the time data before conversion.

D: The destination operand, which indicates the number of the soft element storing the time data after conversion.

Function Description

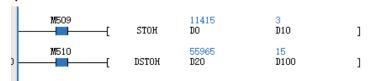
- 1. STOH command: When driven, this command converts the second data of S into hours, minutes, and seconds, and stores the results in [D, D+1, D+2].
- The value range of S is 0–65535

Hour range: 0–18Minute range: 0–59

• Second range: 0–59

- 2. DSTOH command: When driven, this command converts the second data of [S, S+1] into hours, minutes, and seconds, and stores the results (hours, minutes, and seconds) in [D, D+1, D+2].
- The value range of [S, S+1] is 0–235929599

● Hour range: 0–32767


● Minute range: 0–59

Second range: 0–59

Precautions

- If the hours, minutes, and seconds after conversion by the HTOS/DHTOS command exceeds their respective ranges, the system will report an operand error, and this command will not be executed.
- If the second data to be converted by the STOH/DSTOH command has exceeded the upper limit (235929599), the system will report an operand error.

Application Example

	Element Name	Data Type	Display Format	Current Value
1	 DO DO	WORD	Decimal	11415
2		WORD	Decimal	
3	 D10	WORD	Decimal	3
4	 D11	WORD	Decimal	10
5	 D12	WORD	Decimal	15
6		WORD	Decimal	
7	 D20	WORD	Decimal	55965
8		WORD	Decimal	
9	 D100	WORD	Decimal	15
10	 D101	WORD	Decimal	32
11	 D102	WORD	Decimal	45

In case of M509=ON, this command converts the word second data in D0 into hours, minutes, and seconds, and then stores the results in the 3 units starting from D10. In case of D0=11415, D10=3, D11=10, and D12=15 are obtained.

In case of M510=ON, the command converts the second data in (D20, D21) into hours, minutes, and seconds, and then stores the results in the 3 units starting from D100. In case of D20=55965, D100=15, D101=32, and D102=45 are obtained.

3.27 Control Calculation Command

3.27.1 Command list

Command Category	Name	Function	
	PID	PID Function Commands	
Control Coloulation	RAMP	Ramp signal output	
Command	HACKLE	Hackled wave signal output	
Command	TRIANGLE	Triangular wave signal output	
	MSC	Multi-station control	

3.27.2 PID: PID Control Commands

Command list		PID (S1)	(S2) (D)	(S3) (S4)	Applicable model	TS600 series		
16-Bit command		-						
32-Bit command		PID control						
Operand	Туре	Bit			Word			
		X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S1	REAL	-	1	-	√ [1]	✓	√	-
S2	REAL	ı	ı	-	√ [1]	√	\	-
S3	INT	-	1	-	√ [1]	✓	✓	✓
S4	INT/ Array* indefinite	1	-	-	√ [1]	-	√	-
D1	REAL	-	1	-	√ [1]	✓	✓	-
D2	BOOL	√ [2]	-	-	-	√	-	-

Remark:

- [1] Only the D and R elements are supported.
- [2] Only Y, M elements are supported.

Operand Description

- S1: Source operand 1, which indicates the set target value.
- S2: Source operand 2, which indicates the current measurement value.
- S3: Source operand 3, which indicates th PID mode option that currently supports 0–2.
- S4: Source operand 4, which indicates a PID parameter.
- D1: Destination operand 1, which indicates the PID output with a range defined by the upper and lower output limits in S4. The application depends on the actuating mechanism and can be used to control analog quantities such as valve opening, flow rate, or voltage, current, speed, etc.
- D2: Destination operand 2, which indicates the PWM output of PID. This output achieves a duty cycle based on the defined output range, implementing pulse width modulation according to the upper and lower output limits set in S4 as well as the control cycle. The application depends on the specific actuating mechanism and is commonly used for controlling relays.

Mode 0: Positional PID Mode

S4: The setting of parameter required for PID operation.

Address	Name	Setting range	Meaning
S4	110	- coungrunge	This parameter is used to calculate the
S4+1	Proportional		proportional term output, where a
	gain (Kp)	1%-FLT_MAX%	floating-point number input occupies 2
			elements.
S4+2			This parameter is used to calculate the integral
	Integral time	0-FLT_MAX(*100ms)	term output, where a floating-point number
S4+3	(Ti)	U-FLI_MAX(100IIIS)	input occupies 2 elements. There is no integral
			function when it is 0.
S4+4			This parameter is used to calculate the
	Differential	0-FLT_MAX(*10ms)	differential term output, where a floating-point
S4+5	time (Td)	0 121	number input occupies 2 elements. There is no
			differential function when it is 0.
	Differential		This parameter is used to handle the differential
S4+6	gain (Kd)	0-100%	term output, and no differential processing is
	. ,		performed when it is 0.
	Sampling time		PID operation cycle, which should be greater
S4+7	(Ts)	1–32767ms	than the PLC program scan cycle (100 by
			default)
S4+8	Control cycle	(S4+7) – 32767ms	PWM control output cycle time, which should be
	time (Tc)		greater than the sampling time.
			Bit0:
			0: forward ; 1: reverse
			Bit1:
			0: Input variation alarm is invalid; 1: Input
			variation alarm is valid
	Action, alarm,		Bit2:
64.0	and		0: Output variation alarm is invalid; 1: Output variation alarm is valid
S4+9	upper/lower limit function	-	Bit3-bit4: Reserved
	setting word		Bit5:
	setting word		0: Upper and lower limit settings for output
			values are invalid;
			1: Upper and lower limit settings for output
			values are valid
			Bit 6-Bit 15: Reserved
	Filter		
S4+10	parameter	0–99%	There is no filtering when it is 0.
S4+11 -	For internal		
23	calculation		-
S4+24	PID input		
	variation		Valid when bit1 of S4+9 is set to 1, and a
S4+25	(increasing	0-FLT_MAX	floating-point number input occupies 2
34123	side) alarm set		elements
	value		
S4+26	PID input		
	variation		Valid when bit1 of S4+9 is set to 1, and a
S4+27	(decreasing	0-FLT_MAX	floating-point number input occupies 2
JT ' Z I	side) alarm set		elements
	value		

Address	Name	Setting range	Meaning
S4+28 S4+29	PID output variation (increasing side) alarm set value/Output upper limit set value	Output variation (increasing side) alarm set value: 0–FLT_MAX Output upper limit set value: -FLT_MAX– FLT_MAX	When bit2 of S4+9 is 1 and bit5 is 0, this word represents the PID output variation (increasing side) alarm set value. When bit2 of S4+9 is 0 and bit5 is 1, this word represents the output upper limit set value. The floating-point number input occupies 2 elements
S4+30	PID output	Output variation	When bit2 of S4+9 is 1 and bit5 is 0, this word
S4+31	variation (decreasing side) alarm set value/Output lower limit set value	decreasing side) alarm set value: 0–FLT_MAX Output lower limit set value: -FLT_MAX FLT_MAX	represents the PID output variation (decreasing side) alarm set value. When bit2 of S4+9 is 0 and bit5 is 1, this word represents the output lower limit set value. The floating-point number input occupies 2 elements
S4+32 -	For internal	_	
36	calculation		
S4+37	PWM output percentage	0–100%	According to the duty ratio of the control cycle specified by S4+8, it is valid when bit2 of S4+9 is 0 and bit5 is 1.
S4+38	PID alarm output	-	Bit0: Input variation (increasing side) overflow Bit1: Input variation (decreasing side) overflow Bit2: Output variation (increasing side) overflow Bit3: Output variation (decreasing side) overflow

Note: FLT_MAX = 3.402823E + 38; FLT_MIN = 1.175495E - 38.

Function Description

- 1. When the energy flow is valid and reaches the sampling time, this command performs PID operation. The following parameters need to be configured.
 - Proportional gain
 - Integral time
 - Differential time
 - Sampling time
 - Action, alarm, and upper/lower limit function setting word

Among the parameters, the proportional gain, integral time, and differential time can be obtained through trial and error methods, industrial experience, or auto-tuning. However, the parameters obtained through auto-tuning may not fully meet the requirements, and in such cases, users may need to fine-tune these parameters. The other parameters in the list can be set as needed.

Example: In a temperature-controlled environment, a proportional gain Kp of 2000%, an integral time Ti of 180s=1800(*100ms), and a differential time Td of 20s=2000(*10ms) can be obtained through tuning.

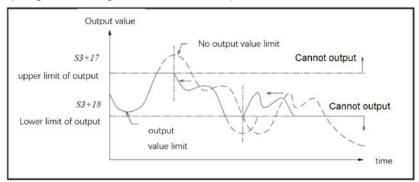
Here are the other parameter settings:

differential gain (Kd) = 100%;

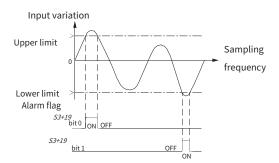
sampling time (Ts) = 100ms;

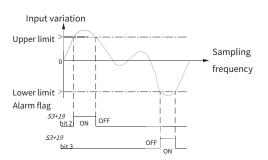
control cycle (Tc) = 2000ms;

action, alarm, and upper/lower limit function setting word = 33 (indicating reverse action and that output upper and lower limit alarms are enabled);


filter parameter = 0;

output upper and lower limit is the output upper and lower limit of the control relay (220V/0V); Input variation = 100;




output variation = 0 The program can be found in the "Application Example" section.

- 2. The proportional gain (S4+0,1) can directly affect the output of the proportional term, which is proportional to the error. Increasing this value can speed up the response, but may lead to oscillations.
- 3. The integral time (S4+2,3) is inversely proportional to the integral term output, meaning that as the integral time increases, the integral term output decreases. The integral term can eliminate steady-state errors by causing the control output to increase with accumulated errors over time, helping to stabilize the system at the set value. However, excessive integration can lead to overshoot.
- 4. The differential time (S4+4,5) can be used to calculate the differential term, which predicts the trend of error changes. Increasing this value can reduce overshoot and oscillation, but it is sensitive to noise. Therefore, incomplete differentiation is added to allow the system to filter out low-frequency noise.
- 5. The differential gain S4+6 can mitigate drastic changes in the output value caused by input noise, with a larger differential gain resulting in a smoother output value.
- 6. The sampling time S4+7 is the time for data sampling and PID calculation. A shorter sampling time can enhance the system's response speed and control accuracy. However, for systems with large pure lag, it may lead to frequent changes in the controller output, which is detrimental to system stability. It is recommended to set the sampling time to 100ms.
- 7. The control cycle S4+8 refers to the periodic time used for outputting PWM digital signals. This value needs to be greater than the sampling period, but an excessively large control cycle can negatively impact the relay's lifespan and result in lower control accuracy.
- 8. Action direction: The bit0 of S4+9 is used to set the forward action (positive feedback) and reverse action (negative feedback) modes of the system.
- 9. Output upper and lower limits settings: When the setting of output upper and lower limits is valid (S4+9 bit5 = ON and bit2 = OFF), it can suppress the integral term of the PID control from becoming excessively large. See the figure below for the output value.

10. Alarm setting: When the set output upper and lower limits are valie (S4+9 bit1=ON, bit2=ON and bit5=OFF), the PID command will compare the input and output variations with the set values in units S4+24 to S4+31. If the input variation or output variation exceeds the set value, the corresponding function bits in unit S4+38 of PID alarm output will be set immediately after the execution of the PID command. In this way, users can monitor the input and output variations. See the figure below for the output value.

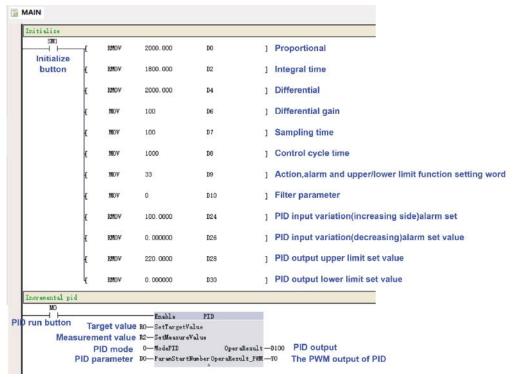
- 11. The input filter constant S4+10 allows for a smooth transition in the measured value changes. The larger the parameter, the smoother the measured value becomes, but the greater the lag in the measured value. When the parameter is 0, there is no filtering effect.
- 12. The basic operation formula of PID command.

Action direction	PID operation formula
Forward action	$\begin{split} \Delta \text{MV} &= \text{KP}\left\{\!\!\left(\text{EV}_{\textbf{n}}\!\!-\text{EV}_{\textbf{n}-1}\!\right) + \frac{T\textbf{s}}{T_{1}}\text{EV}_{\textbf{n}}\!\!+\!D_{\textbf{n}}\!\!\right\} \\ &= EV_{n} = PV_{nf-1} - SV \\ D_{n} &= \frac{T_{D}}{T_{S}\!\!+\!\alpha_{D}\!\!*\!T_{D}}\!\left(\!PV_{nf}\!\!+\!PV_{nf-2}\!-\!2PV_{nf-1}\!\right) \!+\! \frac{\alpha_{D}\!\!*\!T_{D}}{T_{S}\!\!+\!\alpha_{D}\!\!*\!T_{D}}\!\!*\!D_{n-1} \\ MV_{n} &= \sum\!\Delta\!MV \end{split}$
Reverse action	$\Delta M \mathbb{V} = KP \left\{ \left(E\mathbb{V}_{\mathbf{n}^{-}} E\mathbb{V}_{\mathbf{n}^{-}} 1 \right) + \frac{T\mathfrak{s}}{T_{I}} E\mathbb{V}_{\mathbf{n}^{+}} D_{\mathbf{n}} \right\}$ $EV_{n} = SV - PV_{nf-1}$ $D_{n} = \frac{T_{D}}{T_{S} + \alpha_{D} * T_{D}} \left(2PV_{nf-1} - PV_{nf} - PV_{nf-2} \right) + \frac{\alpha_{D} * T_{D}}{T_{S} + \alpha_{D} * T_{D}} * D_{n-1}$ $MV_{n} = \sum \Delta MV$

See the table below for the symbol description:

Symbol	Description	
EVn	Current sampling deviation	
EV_{n-1}	Deviation from one cycle ago	
SV	Target value	
PV_{nf}	-*/	
PV _{nf-1}	Sampled value from one cycle ago	
	(filtered)	
PV _{nf-2}	Sampled value from two cycles	
F V nt-2	ago (filtered)	
$\triangle MV$	Output variation	
MV	Current operation volume	

Symbol	Description	
Dn	Current differential term	
D_{n-1}	Differential term from one cycle ago	
Кр	Proportional gain	
Ts	Sampling cycle	
Ti	Integral time	
Td	Differential time	
$\alpha_{ extsf{D}}$	Differential gain	


Precautions

- For D1, please specify the data register region to be held during the non-shutdown period. When specifying the data register region to be held during the shutdown period, always make sure to reset it to 0 (LD SM0 MOV 0 D****) at the time of first run.
- The positional PID command needs to occupy 39 data registers starting from S4. Do not overlap with elements used by other commands.
- The maximum error for the sampling time T_s is [- (1 scan cycle + 1ms), + (1 scan cycle)]. When the sampling time is small, it can affect the PID effect. It is recommended to use the PID command in the timing interrupt for best results.
- When the sampling time is less than or equal to 1 scan cycle, the default sampling time is 1 scan cycle. If data overflow occurs during the calculation process, a warning will appear, and the PID command calculation will continue to execute.
- When the upper and lower limits of PID input/output are set to be effective, if the upper limit value is smaller than the lower limit value, the system will swap the upper and lower limit values and issue an error warning, and the command will continue to run.

- Before executing the PID command, it is necessary to initialize each operand. If the operands remain unchanged during the runtime, the control operand unit will not be overridden by other programs, and the initialization program can be executed only once.
- When the energy flow is disconnected or an error occurs, the PID output will maintain its last output value, and the user can manually reset it to zero.

Application Example

When the main module starts running the first scan cycle, it initializes the PID configuration parameters. After that, the PID operands are no longer initialized in the subsequent scan cycles.

Initialization: The starting address D0 stores PID parameters. In the example, through empirical methods, it is known that the proportional gain (D0, D1) = 2000.0%, the integral time (D2, D3) = 1800.0 (*100ms), the differential time (D4, D5) = 2000.0 (*10ms), the differential gain D6 = 100%, the sampling period D7 = 100ms, the control time D8 = 1000ms, the action and alarm control word D9 = 33 which indicates reverse action of PID and enabling upper and lower limit alarms for output, the filtering parameter D10 = 50%, the upper output limit (D28, D29) = 220.0, and the lower output limit (D30, D31) = 0.0.

Run: When M0=ON, the current measurement value is read from an external A/D module (in actual applications, this can be done in other ways) and filled into the measurement value unit. At each sampling period, the PID calculation is performed, and the result of this calculation is output at D100. Meanwhile, Y0 outputs the corresponding PWM digital value according to the control period.

Mode 1: Positional PID Mode

S4: The setting of parameter required for PID operation.

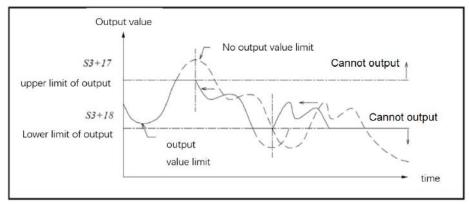
Address	Name	Setting range	Meaning
S4	Duan antianal		This parameter is used to calculate the
S4+1	Proportional gain (Kp)		proportional term output, where a floating-point number input occupies 2 elements.
S4+2			This parameter is used to calculate the integral
S4+3	Integral time (Ti)	I() ()ς_⊢I I M/Δ X	term output, where a floating-point number input occupies 2 elements. There is no integral function when it is 0.

Address	Name	Setting range	Meaning
S4+4			This parameter is used to calculate the
	Differential	0.0s-FLT_MAX	differential term output, where a floating-point
S4+5	time (Td)	0.03 121_11/1/	number input occupies 2 elements. There is no
			differential function when it is 0.
S4+6	Sampling time	1–32767ms	PID operation cycle, which should be greater than
31.0	(Ts)	321011113	the PLC program scan cycle (100 by default)
S4+7	Control cycle	(S4+6) – 32767ms	PID output PWM control period, which needs to
31.1	time	(31.0) 321011113	be greater than the sampling period
S4+8	Filter	0-100%	There is no filtering when it is 0.
	parameter		Ŭ.
S4+9	Operation	0-1	0: forward PID (heating); 1: backward PID
	mode		(cooling)
S4+10			0: invalid (default)
	Deadband	0-FLT_MAX	Non 0: the deviation is considered as 0 if it is less
S4+11	width	0 1 21_111100	than this value. The floating-point number input
			occupies 2 elements
S4+12	Upper limit of	-FLT_MAX-FLT_MAX	Maximum value of input, floating-point input
S4+13	input		occupying 2 elements
S4+14	Lower limit of	-FLT_MAX-FLT_MAX	Minimum value of input, floating-point input
S4+15	input	TET_MOVETET_MOV	occupying 2 elements
S4+16	Upper limit of	-FLT_MAX-FLT_MAX	Maximum value of output, floating-point input
S4+17	output	TET_M/OX TET_M/OX	occupying 2 elements
S4+18	Lower limit of	-FLT_MAX-FLT_MAX	Minimum value of output, floating-point input
S4+19	output	TET_WAXTET_WAX	occupying 2 elements
S4+20	Cumulative	-FLT_MAX-FLT_MAX	Cumulative integral value, floating-point input
S4+21	integral	-I LI WAY-LTI MAY	occupying 2 elements
S4+22	Feedforward	-FLT_MAX-FLT_MAX	It is used to compensate for PID input values. The
S4+23	input	I-I LI _IVIAA-I LI _IVIAA	floating-point number input occupies 2 elements

Note: FLT_MAX = 3.402823E + 38; FLT_MIN = 1.175495E - 38.

Function Description

- 1. When the energy flow is valid and reaches the sampling time, this command performs PID operation.
- Proportional gain
- Integral time
- Differential time
- Sampling time
- Operation mode
- Input upper and lower limits
- Output upper and lower limits


Among the parameters, the proportional gain, integral time, and differential time can be obtained through trial and error methods, industrial experience, or auto-tuning. However, the parameters obtained through auto-tuning may not fully meet the requirements, and in such cases, users may need to fine-tune these parameters. The other parameters in the list can be set as needed.

Example: In a temperature-controlled environment, a proportional gain Kp of 2000%, an integral time Ti of 180s=1800(*100ms), and a differential time Td of 20s=2000(*10ms) can be obtained through tuning.

Here are the other parameter settings: sampling time (Ts) = 100ms, control cycle (Tc) = 2000ms, filter parameter = 0, operation mode = 0(heating), deadband width = 0, the upper and lower limits of input are the allowable upper and lower limits of the temperature (100° C / 0° C), and the upper and lower limits of the output are the upper and lower limits of the output of the control relay (220V/0V). The program can be found in the "Application Example" section.

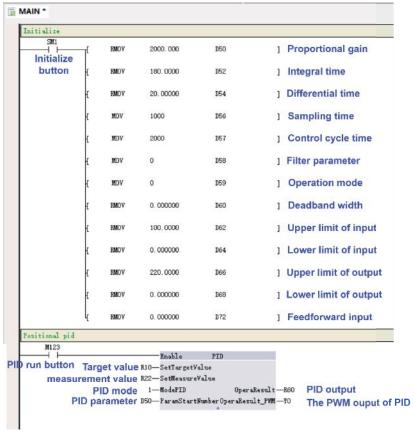
- 2. The proportional gain (S4+0,1) can directly affect the output of the proportional term, which is proportional to the error. Increasing this value can speed up the response, but may lead to oscillations.
- 3. The integral time (S4+2,3) is inversely proportional to the integral term output, meaning that as the integral time increases, the integral term output decreases. The integral term can eliminate steady-state errors by causing the control output to increase with accumulated errors over time, helping to stabilize the system at the set value. However, excessive integration can lead to overshoot.
- 4. The differential time (S4+4,5) can be used to calculate the differential term, which predicts the trend of error changes. Increasing this value can reduce overshoot and oscillation, but it is sensitive to noise. Therefore, incomplete differentiation is added to allow the system to filter out low-frequency noise.
- 5. The sampling time S4+6 is the time for data sampling and PID calculation. A shorter sampling time can enhance the system's response speed and control accuracy. However, for systems with large pure lag, it may lead to frequent changes in the controller output, which is detrimental to system stability. It is recommended to set the sampling time to 100ms.
- 6. The control cycle S4+7 refers to the periodic time used for outputting PWM digital signals. This value needs to be greater than the sampling period, but an excessively large control cycle can negatively impact the relay's lifespan and result in lower control accuracy.
- 7. The input filter constant S4+8 allows for a smooth transition in the measured value changes. The larger the parameter, the smoother the measured value becomes, but the greater the lag in the measured value. When the parameter is 0, there is no filtering effect.
- 8. Operation mode S4+9: The point is used to switch the position deviation calculation formulas. When the operation mode is 0, e(k) = Sv(k) Pv(k), corresponding to the heating system; when the operation mode is 1, e(k) = Pv(k) Sv(k), corresponding to the cooling system.
- 9. The deviation deadband (S4+10,11) can be used to avoid excessively frequent control and eliminate oscillations caused by frequent actions.
- 10. The upper and lower limits of the output suppress excessively large integral terms in PID control. See the figure below for the output value.

11. The basic operation formula of PID command: $u(k) = Kp * e(k) + Ki * T * \sum e(i) + (Kd/T) * [e(k) - e(k-1)]$.

See the table below for the symbol description:

Symbol	Description	
u(k)	Current output value	

Symbol	Description
o/lc 1\	Deviation value from the
e(k-1)	previous moment


Symbol	Description	
e(k)	Current deviation	
Σe(i) Current cumulative integrat		
Sv(k)	Current set value	
Pv(k) Current feedback value		

Symbol	Description
Т	Sampling time
Кр	Proportional gain
Ki=Kp/Ti	Integral gain
Kd=Kp*Td	Differential gain

Precautions

- The positional PID command needs to occupy 24 data registers starting from S4. Do not overlap with elements used by other commands.
- When the upper and lower limits of PID input/output are set to be effective, if the upper limit value is smaller than the lower limit value, the system will swap the upper and lower limit values and issue an error warning, and the command will continue to run.
- When the set operand of PID is not within the valid range, the system reports operand error and the PID command operation is not carried out.
- When the sampling time is less than or equal to 1 scan cycle, the default sampling time is 1 scan cycle. If data overflow occurs during the calculation process, a warning will appear, and the PID command calculation will continue to execute.
- Before executing the PID command, it is necessary to initialize each operand. If the operands remain
 unchanged during the runtime, the control operand unit will not be overridden by other programs, and
 the initialization program can be executed only once.
- If the PID input exceeds the upper/lower limit of the input range, the system reports an error stating that the PID input is out of range, and the PID output is 0.
- In the same project, only 128 PID commands can be called.
- When the energy flow is disconnected or an error occurs, the PID output will maintain its last output value, and the user can manually reset it to zero.

Application Example

When the main module starts running the first scan cycle, it initializes the PID configuration parameters. After that, the PID operands are no longer initialized in the subsequent scan cycles.

Initialization: The starting address D50 stores PID parameters. In the example, through empirical methods, it is known that the proportional gain (D50, D51) = 2000.0%, the integral time (D52, D53) = 180.0s, the differential time (D54, D55) = 20.0s, the sampling period D56 = 1000ms, the control time D57 = 2000ms, the filter parameter D58 = 0%, the operation mode D59 = 0 (heating), the deadband width (D60, D61) = 0.0, the upper input limit (D62, D63) = 100.0, the lower input limit (D64, D65) = 0.0, the upper output limit (D66, D67) = 0.0, the lower output limit (D68, D69) = 0.0, and the feedforward input (D72, D73) = 0.0.

Run: When M0=ON, the current measurement value is read from an external A/D module (in actual applications, this can be done in other ways) and filled into the measurement value unit. At each sampling period, the PID calculation is performed, and the result of this calculation is output at D100. Meanwhile, Y0 outputs the corresponding PWM digital value according to the control period.

Mode 2: Temperature control self-tuning PID mode

S4: The setting of parameter required for PID operation.

Address	Name	Setting range	Meaning
S4	Proportional	1.0%-FLT_MAX	Proportional gain, floating-point input occupying 2
S4+1	gain (Kp)	1.0%0-FLI_MAX	elements
S4+2	Into aval time a (Ti)	0.0° ELT MAY	Integral time, 0 = no integral processing, floating-point
S4+3	Integral time (Ti)	U.US-FLI_MAX	input occupying 2 elements
S4+4	Differential time	0.0° ELT MAY	Derivative time, 0 = no derivative processing,
S4+5	(Td)	0.0s-FLT_MAX	floating-point input occupying 2 elements
S4+6	Sampling time (Ts)	1–32767ms	PID calculation cycle should be greater than the PLC program scan cycle and less than the relay control cycle
	Control cycle	(S4+6) –	On-off control cycle time of the relay, which should be
S4+7	time (Tc)	32767ms	greater than the sampling time
S4+8	Filter parameter		There is no filtering when it is 0.
			0: default PID (default); 1: self-tuning PID; 2: Manual PID;
S4+9	Function mode	0–3	3: ON/OFF mode
	Self-tuning		Bit0:
S4+10	configuration	-	0: Limit cycle; 1: ascending curve
	parameters		Bit1-bit7: Reserved
04.44	Autotuning	1 10	The larger the parameter, the faster the adjustment, but
S4+11	coefficient	1–10	the overshoot increases, default is 5
S4+12	Upper	ELT MAY	Maximum input temperature value, which is greater
C4 : 12	temperature	-FLT_MAX- FLT_MAX	than the input temperature lower limit, with
S4+13	limit	FLI_MAX	floating-point input occupies 2 elements
S4+14	Temperature	ELT MAY	Minimum input temperature value, which is less than the
S4+15	lower limit	-FLT_MAX- FLT_MAX	input temperature upper limit, with floating-point input occupies 2 elements
S4+16			PID output upper limit, which is greater than the output
34110	Upper limit of	-FLT_MAX-	lower limit, with floating-point input occupies 2
S4+17	output	FLT_MAX	elements
S4+18	Lauran Particip		PID output lower limit, which is less than the output
S4+19	Lower limit of	-FLT_MAX-	upper limit, with floating-point input occupies 2
	output	FLT_MAX	elements
S4+20	Stop heating function	0–1	0: heating (default); 1: stop heating
		0-3	0: No self-tuning task; 1: Self-tuning in progress; 2:
S4+21	Self-tuning state		Self-tuning successful;
			3: Self-tuning failed
S4+22	Cumulative	-FLT_MAX-	Cumulative integral value, which can be manually

Address	Name	Setting range	Meaning				
S4+23	integral	FLT_MAX	refreshed, with floating-point input occupying 2				
34123			elements				
S4+24	Tuning		Droportional gain obtained by tuning floating point				
S4+25	proportional	1%-FLT_MAX	Proportional gain obtained by tuning, floating-point input occupying 2 elements				
34+23	gain						
S4+26	Tuning integral	0s-FLT_MAX	Integral time obtained by tuning, floating-point input				
S4+27	time	US-FLI_MAX	occupying 2 elements				
S4+28	Tuning	Oo FLT MAY	Differential time obtained by tuning, floating-point input				
S4+29	derivative time	0s-FLT_MAX	occupying 2 elements				

∠Note: FLT_MAX = 3.402823E + +38; FLT_MIN = 1.175495E - 38.

Function Description

- 1. Temperature control PID command can be effectively executed when the power flow is available. If self-tuning PID is not used, the following parameters need to be configured.
- Proportional gain
- Integral time
- Differential time
- Sampling time
- Function mode
- Temperature upper and lower limits
- Output upper and lower limits

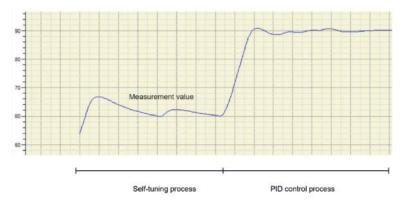
Among the parameters, the proportional gain, integral time, and differential time can be obtained through trial and error methods, industrial experience, or auto-tuning. However, the parameters obtained through auto-tuning may not fully meet the requirements, and in such cases, users may need to fine-tune these parameters. The other parameters in the list can be set as needed.

Example: A proportional gain Kp of 2000%, an integral time Ti of 180s=1800(*100ms), and a differential time Td of 20s=2000(*10ms) can be obtained through tuning.

Here are the other parameter settings: sampling time Ts = 100ms, control cycle Tc = 1000ms, filter parameter = 0, operation mode = 2 (manual PID), deadband width = 0, allowable upper and lower limits of the temperature (100° C / 0° C), and the upper and lower limits of the output are the upper and lower limits of the output of the control relay (220V/0V).

- 2. If self-tuning PID is used, the following parameters need to be configured.
- Sampling time
- Self-tuning configuration parameters
- Autotuning coefficient
- Function mode
- Temperature upper and lower limits
- Output upper and lower limits

Example: If the limit cycle method is used to tune the parameters, the settings can be configured as follows: the sampling time Ts = 100ms, the control cycle Tc = 2000ms, the self-tuning configuration parameter = 0 (limit cycle method), the self-tuning coefficient = 5, the function mode = 1 (self-tuning mode), the upper temperature limit = 100.0° C, and the lower temperature limit = 0.0° C.


- 3. The proportional gain (S4+0,1) can directly affect the output of the proportional term, which is proportional to the error. Increasing this value can speed up the response, but may lead to oscillations.
- 4. The integral time (S4+2,3) is inversely proportional to the integral term output, meaning that as the

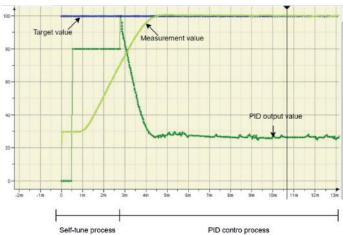
integral time increases, the integral term output decreases. The integral term can eliminate steady-state errors by causing the control output to increase with accumulated errors over time, helping to stabilize the system at the set value. However, excessive integration can lead to overshoot.

- 5. The differential time (S4+4,5) can be used to calculate the differential term, which predicts the trend of error changes. Increasing this value can reduce overshoot and oscillation, but it is sensitive to noise. Therefore, incomplete differentiation is added to allow the system to filter out low-frequency noise.
- 6. The sampling time S4+6 is the time for data sampling and PID calculation. A shorter sampling time can enhance the system's response speed and control accuracy. However, for systems with large pure lag, it may lead to frequent changes in the controller output, which is detrimental to system stability. It is recommended to set the sampling time to 100ms.
- 7. The control cycle S4+7 refers to the periodic time used for outputting PWM digital signals. This value needs to be greater than the sampling period, but an excessively large control cycle can negatively impact the relay's lifespan and result in lower control accuracy.
- 8. The input filter constant S4+8 allows for a smooth transition in the measured value changes. The larger the parameter, the smoother the measured value becomes, but the greater the lag in the measured value. When the parameter is 0, there is no filtering effect.
- 9. Function modes include: default manual PID control mode, self-tuning PID control mode, manual PID control mode, ON/OFF control mode.
- 10. Default manual PID control mode: It is the default mode of the command, in which a set of default PID initial parameters are given internally, and you just need to set the target temperature, real-time temperature, temperature upper and lower limits, output upper and lower limits, and the control cycle time. The command will have a certain degree of overshooting for the first temperature rise, and then the temperature will be stabilized at the target temperature after a few minutes.
- 11. Self-tuning temperature control PID control mode

Limit cycle method>: This method is relatively stable in tuning, but the tuning period is longer. When the user selects this control mode, they need to set self-tuning configuration parameter bit0=0 and enable the power flow. The command will automatically tune a set of suitable control parameters based on the control object during the heating process. After the self-tuning mode is completed, the system will output the self-tuning parameters and automatically adjust them. The next time it is used, it needs to be switched to manual mode and input the self-tuning parameters for control. There may be a small temperature overshoot, but the error will be within $\pm 1^{\circ}$ C after stabilization. The initial tuning time is relatively long, and the self-tuning effect is best in a normal temperature environment. It is suitable for occasions with high temperature requirements. The self-tuning sampling time can be set to 100ms. If using relay control, the control cycle can be set to 2000ms. The example curve for self-tuning temperature of 60°C and target temperature of 90°C is as follows.

The condition for self-tuning is that the internal self-tuning temperature of the system is 60°C.

A: When the target temperature is greater than the actual temperature and the target temperature is above 90°C, use target temperature (-30°C) for self-tuning.



B: When the target temperature is greater than the actual temperature and the target temperature is above 60°C and below 90°C, use 60°C for self-tuning.

C: When the target temperature is greater than the actual temperature and the target temperature is below 60°C, use target temperature for self-tuning.

∠Note: The system will not self-tune if the actual temperature is higher than the target temperature or higher than the self-tuning temperature. Self-tuning can only be performed when the actual temperature is lower than both the target temperature and the self-tuning temperature.

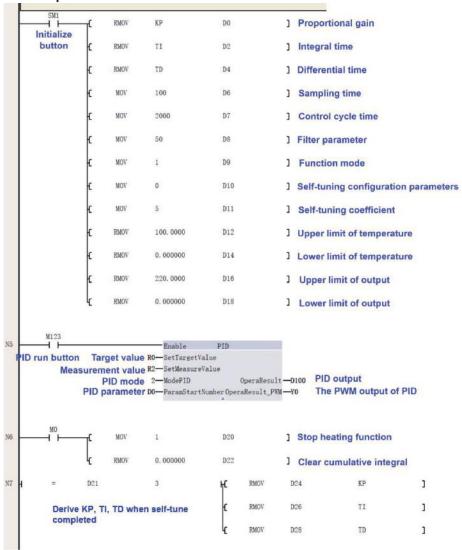
Ascending Curve Method: This tuning method has a certain probability of failure, but it has a shorter tuning period. When the user selects this control mode, they need to set the self-tuning configuration parameter bit0=1 and enable the power flow. To use this mode for self-tuning, the temperature should be set to at least 60°C higher than the current temperature. If self-tuning fails, the self-tuning coefficient can be reduced or the set temperature can be increased. This command will automatically tune a set of suitable control parameters for the heating process of the controlled object. After the self-tuning mode is completed, the system will output the self-tuning parameters and automatically adjust them. The next time it is used, it needs to be switched to manual mode and the self-tuning parameters need to be entered for control. There may be a small temperature overshoot, but the error will be within $\pm 1^{\circ}$ C after stabilization. The initial tuning time is relatively long, and the self-tuning effect is best in a normal temperature environment. It is suitable for occasions with high temperature requirements. The self-tuning sampling time can be set to 100ms. If using relay control, the control cycle can be set to 2000ms. The example curve of the tuning process from room temperature to the target temperature of 100° C is shown below.

12. Manual PID control mode: This control mode requires the user to manually enter the PID parameters, proportional gain, integral time constant and differential time constant, and the PID output is adjusted according to the adjustment equation. The PID adjustment equation is as follows:

$$u(k) = K_{p} \left[e(k) + \frac{T}{T_{i}} \sum_{j=0}^{k} e(j) + \frac{T_{d}}{T} \left[e(k) - e(k-1) \right] \right]$$

In the equation, e(k) represents the error at the current time, e(k-1) represents the error at the previous time, Kp represents the proportional gain, Ti represents the integral time, Td represents the derivative time, and T represents the sampling period.

13. ON/OFF control mode: This control mode is a On/Off control. When the temperature exceeds the target temperature, the relay is disconnected. When the temperature is below the target temperature, the relay is opened at a certain control cycle ratio. After reaching stability, there will still be some errors in this control mode, so it is suitable for situations where high accuracy is not required.


Precautions

 The temperature control PID command needs to set the control parameter of the software element to the starting address number of 30 data registers. Do not overlap with elements used by other commands.

- Due to the slow temperature changes, the temperature sampling time should not be too small. When
 using a small time value, it will affect the effectiveness of the temperature control PID, it should not be
 too large either, and it should be less than the relay switch cycle time.
- Before the first execution of the temperature control PID command, each operand needs to be
 initialized. If the operands change during the running process, the underlying data of the temperature
 control PID will be updated in the next cycle.
- During the self-tuning process, do not modify the PID control parameters, otherwise it will lead to unforeseen consequences.
- When the energy flow is disconnected or an error occurs, the PID output will maintain its last output value, and the user can manually reset it to zero.

Application Example

Initialization: When the main module starts running the first scan cycle, it initializes the PID configuration parameters. After that, the PID operands are no longer initialized in the subsequent scan cycles.

The starting address D0 stores PID parameters. In the example, (D0, D1) is the proportional gain, (D2, D3) is the integral time, (D4, D5) is the differential time, sampling period D6 = 100ms, control time D7 = 1000ms, filtering parameter D8 = 50%, function mode D9 = 1 indicates the use of self-tuning mode, self-tuning option D10 = 0 indicates the use of the limit cycle method for self-tuning, and self-tuning coefficient D11 = 5.

Start tuning: After providing a set value, when M123 is ON, the output is controlled based on the selected tuning mode, and the measured value is monitored until the auto-tuning is completed (D21=3). Upon completetion, the proportional gain Kp, integral time Ti, and differential time Td will be derived.

Execute PID calculation: The function block automatically uses the derived PID parameters to perform the PID calculation at each sampling period, and the result of this calculation is output at D100. Meanwhile, Y0 outputs the corresponding PWM digital value according to the control period.

Stop heating: When M0 is turned on, D20 = 1 to stop heating, that is D100 = 0, Y0 = OFF, and clear cumulative integral (D22, D23).

3.27.3 RAMP: Ramp signal output command

Commai	nd list	RAMP (S1)	(S2) (D1	.) (S3) (D2)	Applicable model	TS600 series		
16-Bit cor	nmand			RAMP s	ignal output	command		
32-Bit cor	nmand				-			
			Bit			ord ord		
Operand	Туре	Type X, Y, M, LM, T,	Dv.v	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S1	INT	-	-	-	✓	✓	✓	✓
S2	INT	-	1	-	✓	✓	✓	✓
D1	INT	-	ı	-	√ [1]	√	\	-
S3	INT	-	-	-	√	√	√	√
D2	BOOL	√ [2]	-	-	-	-	-	-

Remark:

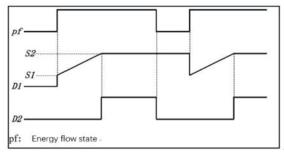
[1]Only the D, V, and R elements are supported.

[2] The X element is not supported.

Operand Description

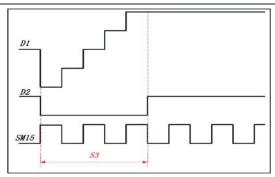
S1: Source operand, starting value.

S2: Source operand, ending value.


D1: Destination operand, output current value.

S3: Source operand, step number (S3>0, otherwise, an operand error is reported and the operation is not executed).

D2: Destination operand, output status.


Function Description

- 1. When the power flow has a rising edge and remains ON, perform linear interpolation every scanning cycle to determine the increment and current output value. After reaching S2, the output value (D1) remains in the current state, and the output status is set to ON.
- 2. If the power flow has a falling edge, the output status (D2) is set to OFF, and the output value (D1) remains in the current state until the power flow has a rising edge again. Then, the output value (D1) is initialized to the value of S1, and the next ramp calculation is continued, as shown in the following figure.

The execution process of the ramp command is decomposed as shown in the following figure (S3=5).

Precautions

- If this command is executed in the normal main cycle, to ensure linear interpolation of the output, the program execution needs to be set to a fixed scanning mode.
- If the step number is less than 0, the system will report an operand error and the command will not be executed.
- Users can convert data into analog waveforms through external special modules.
- The command will only generate one set of ramp data each time a rising edge occurs.
- When S1=S2, D1=S2 and D2=ON.
- The total number of RAMP, HACKLE, and TRIANGLE commands in the program should not exceed 100.

Application Example

When M500 is valid, interpolate from 0 to 2000 for 1000 operands and display the output result in D10. When the output value D10=endpoint value and D1=2000, set the output status M0 to ON. If a falling edge occurs in the input flow, set the output status M0 to OFF, keep the current data of output value D10 until the next rising edge occurs, and set the output value D10=initial value D0=0, then start a new ramp process.

3.27.4 HACKLE: Sawtooth Wave Signal Output Command

Commar	nd list	HACKLE (S1)	(S2) (D	01) (S3) (D2)	Applicable model	TS600 series		
16-Bit cor	nmand		HACKLE sawtooth wave signal output					
32-Bit cor	nmand				-			
			Bit			ord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S1	INT	-	-	-	✓	✓	✓	✓
S2	INT	-	-	-	✓	✓	✓	✓
D1	INT	-	-	-	√ [1]	✓	✓	-
S3	INT				√	√	√	√
D2	BOOL	√ [2]	-	-	-	-	-	-

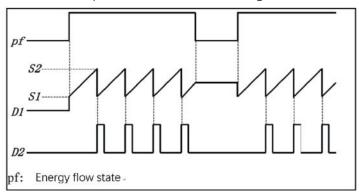
Remark:

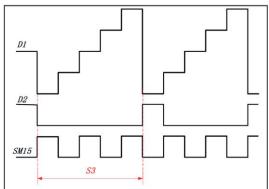
[1]Only the D, V, and R elements are supported.

[2] The X element is not supported.

Operand Description

S1: Source operand, starting value.


S2: Source operand, ending value.


- D1: Destination operand, output current value.
- S3: Source operand, step number (S3>0, otherwise, an operand error is reported and the operation is not executed).
- D2: Destination operand, output status.

Function Description

- Perform linear interpolation every scanning cycle when power flow is effective. When the output value
 reaches S2, initialize it to the value of S1 and set the status output bit (D2) to ON. If the power flow
 continues to be ON in the next scanning cycle, set the status output bit (D2) to OFF and continue to
 generate the next sawtooth wave.
- 2. During the generation process of the sawtooth wave function, if there is a falling edge in the power flow, the output status (D2) is set to OFF, and the output value (D1) remains in the current state until the power flow appears rising edge again. At this point, the output value (D1) is initialized to the value of S1, and the next sawtooth wave operation continues. See the figure below.

The execution process of the sawtooth wave command is decomposed as shown in the following figure (S3=5).

Precautions

- If this command is executed in the normal main cycle, to ensure linear interpolation of the output, the program execution needs to be set to a fixed scanning mode.
- If the step number is less than 0, the system will report an operand error and the command will not be executed.
- Users can convert data into analog waveforms through external special modules.
- As long as the power flow is valid, the command will generate a series of continuous sawtooth wave data.
- When S1=S2, D1=S2 and D2=ON (no count pulse is generated).
- The total number of RAMP, HACKLE, and TRIANGLE commands in the program should not exceed 100.

Application Example

When M501 is valid, interpolate from 0 to 2000 for 1000 operands and display the output result in D10. When the output value D10=endpoint value and D1=2000, set the output status M0 to ON. In the next scanning cycle, if X0 remains ON, the output value D10 is initialized to the initial value D0=0, and at the same time, the output status M0 is set to OFF, starting the next sawtooth wave generation process.

If there is a falling edge in the power flow during the operation, set the output status M0 to OFF, and the output value D10 remains in the current data until the power flow appears rising edge again. At this point, the output value D10 is initialized to the initial value D0=0, and a new sawtooth wave generation process starts again.

3.27.5 TRIANGLE: Triangle wave signal output command

Commar	nd list	TRIANGLE	(S1) (S2 (D2)) (D1) (S3)	Applicable model	TS600 series		
16-Bit con	nmand			HACKLE sa	wtooth wave	signal output		
32-Bit con	nmand				-			
			Bit		V	/ord		
Operand	Туре	X, Y, M, LM, T,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
S1	INT	-	ı	-	\	✓	√	✓
S2	INT	-	ı	-	\	✓	√	✓
D1	INT	-	-	-	√ [1]	✓	✓	-
S3	INT	-		-	√	√	√	√
D2	BOOL	√ [2]	-	-	-	-	-	-

Remark:

[1]Only the D, V, and R elements are supported.

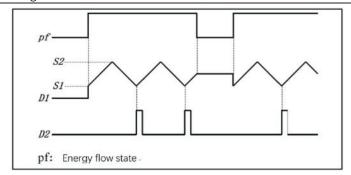
[2] The X element is not supported.

Operand Description

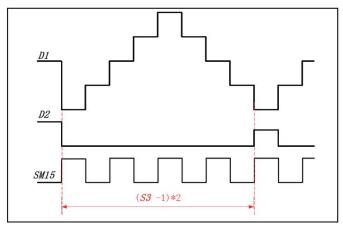
S1: Source operand, starting value.

S2: Source operand, ending value.

D1: Destination operand, output current value.


S3: Source operand, step number (S3>0, otherwise, an operand error is reported and the operation is not executed).

D2: Destination operand, output status.


Function Description

Perform linear interpolation every scanning cycle when power flow is effective. When the output value reaches S2, the first half ramp of the triangular wave is completed, and the increment direction of the output value is changed to continue generating the second half ramp. When the output value (D1) reaches the S1 value again, the status output bit (D2) is turned ON. If the power flow continues to be ON in the next scanning cycle, set the status output bit (D2) to OFF and continue to generate the next triangle wave. During the generation process of the triangular wave function, if there is a falling edge in the power flow, the output status (D2) is set to OFF, and the output value (D1) remains in the current state until the power flow appears rising edge again. At this point, the output value (D1) is initialized to the value of S1, and a new triangular wave generation process starts again, as shown in the following figure.

The execution process of the triangle wave command is decomposed as shown in the following figure (S3=5).

Precautions

- If this command is executed in the normal main cycle, to ensure linear interpolation of the output, the program execution needs to be set to a fixed scanning mode.
- If the step number is less than 0, the system will report an operand error and the command will not be executed.
- Users can convert data into analog waveforms through external special modules.
- As long as the power flow is valid, the command will generate a series of continuous triangle wave data.
- When S1=S2, D1=S2 and D2=ON (no count pulse is generated).
- The cycle of the triangle wave = $(S3-1) \times 2$.
- The total number of RAMP, HACKLE, and TRIANGLE commands in the program should not exceed 100.

Application Example

When M502=ON, interpolate from 0 to 2000 for 1000 operands and display the output result in D10. When the output value D10=ending value D1=2000, the half wave of the triangular wave is completed. Afterwards, interpolate 1000 times from 2000 to 0. When the output value D1=initial value D0, the complete triangular wave is generated, and the output status M0 is set to ON. In the next scan cycle, if X0 is kept ON, the output status M0 is set OFF and the next triangle wave process starts.

If there is a falling edge during the operation, set the output status M0 to OFF, and the output value M10 remains in the current data until the power flow appears rising edge again. At this point, the output value D10 is initialized to the initial value D0=0, and a triangle wave generation process starts again.

3.27.6 MSC: Multi-station control command

Comma	ınd list	MSC (S1) (S2) (S3) (S4) (D5) (D6)			Applicable model	TS600 series		
16-Bit co	mmand			MSO	C multi-statio	on control		
32-Bit co	mmand				-			
			Bit		٧	/ord		
Operand	Type	X, Y, M,	2	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		LM, T, C, S	Dx.y	variable	T, C	variable		
S1	BOOL	√ [1]	ı	-	ı	-	-	-
S2	DWORD	-	-	-	√ [2]	✓	-	-
S3	WORD	-	-	-	√ [2]	✓	-	-
S4	DWORD	-	-	-	√ [2]	✓	-	-
S5	DWORD	-	-	-	√ [2]	✓	-	-
S6	WORD	-	-	-	√ [2]	✓	-	-
D7	BOOL	√ [3]	-	√	-	✓	-	-
D8	DWORD	-	\sqrt{[2]} -				-	
D9	DWORD	-	-	-	√ [2]	✓	-	-

Remark:

[1]Only X and M elements are supported.

[2]Only D, R elements are supported.

[3]Only Y, M elements are supported.

Operand Description

S1: To initiate an command at the trigger input point, choose an external interrupt input point or a general input point. The command is triggered on both rising and falling edges, capturing the value of S2.

S2: Compare the data source.

S3: Occupy two consecutive 16-bit registers continuously, used for setting the station count n (1–100) and the workpiece count m (1–50). It is recommended to use non-volatile holding registers.

S4, S5: These represent the entry and exit values of workpieces, occupying n consecutive 32-bit registers (double words). Each parameter utilizes two consecutive registers, and it is advisable to employ non-volatile holding registers to preserve data in case of power loss. When the entry comparison value for a particular station exceeds the exit comparison value (S4 > S5), it indicates that the comparison action for that station is not executed. The specific register address allocation is as follows:

Name	Station 1	Station 2	•••	Station n
Station Entry Comparison Value	S4	S4+2		S4+(n-1)*2
Station Exit Comparison Value:	S5	S5+2		S5+(n-1)*2

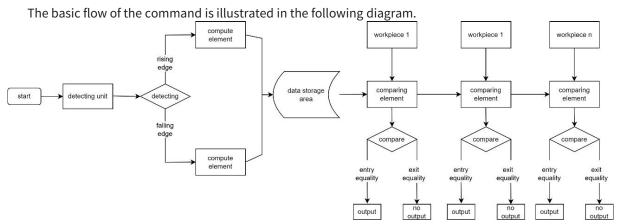
S6: Length of workpieces to be filtered, ranging from 0 to 1000.

D7: Occupies n consecutive coils (corresponding to the number of stations). Only Y and M coils can be specified for output. Used to determine whether the corresponding workpiece has entered or left the station. During command execution, each station will use the sequential index to determine if the corresponding workpiece has entered or left the station based on the configured comparison values. When the real-time count value of the corresponding workpiece is ≥ the entry comparison value, the corresponding output point is set to ON. When the real-time count value of the corresponding workpiece is ≥ the exit comparison value, the corresponding output point is set to OFF.

Assuming the trigger input point S1 is X0 and the comparison output component D6 is Y1, the following

explains the roles of S3 and S3+1: the entry value and exit value of the workpiece are relative to the station position with respect to X0. For example, if the entry value for Station 1 is set to 1000 and the exit value is set to 1200, it means that when the workpiece passes through position X0 after the rising edge, after counting 1000 high-speed values, it enters Station 1, and at this point, Y1 is set to ON. It waits for the falling edge of the trigger input point X0 and then, after counting 1200 high-speed values, leaves Station 1, and at this point, Y1 is set to OFF.

∠Note: If the trigger input point X0 experiences multiple rising and falling edges and the high-speed count value has not reached 1000, the underlying system remembers a maximum of 50 workpieces for each station.

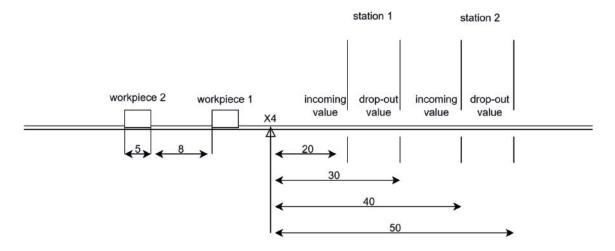

D8: Number of completed workpieces.

D9: Current length of the workpiece.

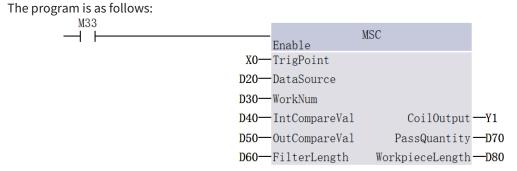
Precautions

The MSC command can be invoked up to a maximum of 128 times.

Function Description



Precautions


• Upon the disconnection and subsequent reconnection of the prerequisites for the MSC, all values within the D6 storage area will be cleared, and the output will be set to OFF.

Application Example

Assuming there are two workpieces that need to undergo processing at two stations, with the trigger input signal being X0 and the encoder signal input point being D20. The width of each workpiece is 5, and the distance between workpieces is 9.

Input Soft Elements:

Soft Element Address	Function Description
XO	Trigger input point = X0
D20	Comparative data source = D20
D30	Set number of workstations = 2
D31	Set number of workpieces = 2
D40	Station 1 preset entry value = 20
D42	Station 2 preset entry value = 40
D50	Station 1 preset exit value = 30
D52	Station 2 preset exit value = 50
D60	Filter workpiece length = 0

Output Results:

Assuming the high-speed count value when workpiece 1 triggers X0 rising edge is 11, the entry and exit comparison values for each station are as follows:

Name	Station 1	Station 2
Workpiece 1 Entry Comparison Value	31	51
Workpiece 1 Exit Comparison Value	46	66
Workpiece 2 Entry Comparison Value	45	65
Workpiece 2 Exit Comparison Value	60	80

3.28 Verification Command

3.28.1 Command list

Command Category	Name	Function	
	CCITT	CCITT checksum calculation	
Varification Common d	CRC16	CRC16 checksum calculation	
Verification Command	LRC	LRC checksum calculation	
	CCD	CCD checksum calculation	

3.28.2 CCITT: CCITT Checksum Calculation Command

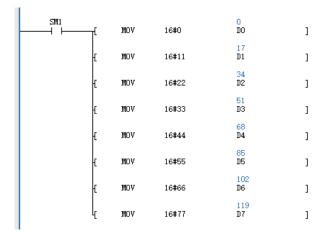
Comma	nd list	CCITT (S) (n) (D) Applicable model TS600 series						
16-Bit co	nmand			CCIT	T checksum c	alculation		
32-Bit co	nmand				-			
		Bit			W	ord		
Operand	Type	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
S	WORD, Array*n	-	-	-	√ [1]	√	✓	-
n	INT	-	-	-	✓	✓	√	✓
D	WORD	-	-	-	√ [1]	✓	√	-

Remark:

[1]Only the D, V, and R elements are supported.

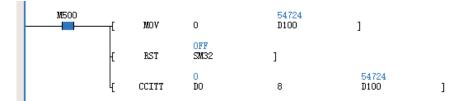
Operand Description

- S: The operand of the source, representing the starting address of the data to be verified.
- n: The quantity of data to be verified, in bytes, where $0 \le n \le 256$.
- D: The operand of the destination, representing the address of the verification result software element.


Function Description

- 1. Perform CCITT checksum operation on n bytes of data starting from the initial unit (S), and assign the result to unit D.
- 2. The polynomial for the CCITT checksum algorithm is: $X^{16}+X^{12}+X^5+1$.

Precautions


- If the verification quantity n is less than 0 or greater than 256, the system reports an operand error, and the command is not executed.
- Each time the command is executed, the system substitutes the content of D before execution into the operation, so D must be initialized before execution.
- When SM32 is in the OFF state, the high 8 bits and low 8 bits of the verification data starting from unit S2 participate in the CCITT checksum operation together, with 16 bits as the unit.
- When SM32 is in the ON state, the low 8 bits of the verification data starting from unit S2 participate in the CCITT checksum operation with 8 bits as the unit.

Application Example

• In the case of SM32 = OFF, perform a 16-bit mode checksum.

If M501 = ON, perform CCITT checksum operation on the 8 bytes of data starting from D0 (both high byte and low byte participate in the operation), and store the checksum in D100 = 54724.

• In the case of SM32 = ON, perform a 8-bit mode checksum.

If M502 = ON, perform CCITT checksum operation on the 8 bytes of data starting from D0 (only the low byte participates in the operation, and the high byte does not participate), and store the checksum in D100 = 28097.

3.28.3 CRC16: CRC16 Checksum Calculation Command

Comma	and list	CRC16 (S) (n) (D) Applicable model TS600 series						
16-Bit co	mmand			CRC16 CF	RC16 checksi	um calculation		
32-Bit co	ommand				-			
		Bit		V	<i>l</i> ord			
Operand	Type	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	Dx.y	variable	T, C	variable		
S	WORD,				√ [1]	,	,	
3	Array*n	-	-	-	V (2)	✓	V	-
n	INT	-	-	-	✓	√	√	√
D	WORD	-	-	-	√ [1]	√	√	-

Remark:

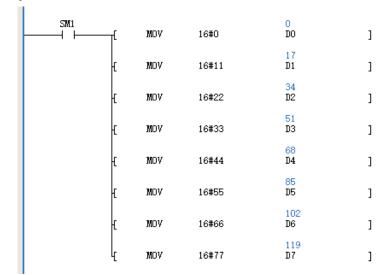
[1]Only the D, V, and R elements are supported.

Operand Description

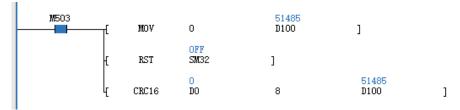
- S: The operand of the source, representing the starting address of the data to be verified.
- n: The quantity of data to be verified, in bytes, where $0 \le n \le 256$.
- D: The operand of the destination, representing the address of the verification result software element.

Function Description

- 1. Perform CRC16 checksum operation on n bytes of data starting from the initial unit (S), and assign the result to unit D.
- 2. The polynomial for the CRC16 checksum algorithm is: $X^{16}+X^{15}+X^2+1$.


Precautions

• If the verification quantity n is less than 0 or greater than 256, the system reports an operand error, and the command is not executed.



- Each time the command is executed, the system substitutes the content of D before execution into the operation, so D must be initialized before execution.
- If using standard Modbus CRC for verification, initialize the D element (checksum) with the value 16#FFFF. Additionally, the high and low bytes (high 8 bits, low 8 bits) need to be swapped.
- When SM32 is in the OFF state, perform the CRC16 checksum operation with 16 bits as the unit, with the high 8 bits and low 8 bits of the verification data starting from unit S2 participating together.
- When SM32 is in the ON state, perform the CRC16 checksum operation with 8 bits as the unit, with the low 8 bits of the verification data starting from unit S2 participating.

Application Example

• In the case of SM32 = OFF, perform a 16-bit mode checksum.

If M503 = ON, perform CCITT checksum operation on the 8 bytes of data starting from D0 (both high byte and low byte participate in the operation), and store the checksum in D100 = 51485.

• In the case of SM32 = ON, perform a 8-bit mode checksum.

If M504 = ON, perform CCITT checksum operation on the 8 bytes of data starting from D0 (only the low byte participates in the operation, and the high byte does not participate), and store the checksum in D100 = 57708.

3.28.4 LRC: LRC16 Checksum Calculation Command

Comma	nd list	LRC (S) (n) (D) Applicable model TS600 series						
16-Bit co	mmand			LRC (LRC	C16 checksur	m calculation)		
32-Bit co	mmand				-			
		Bit		V	/ord			
Operand	Type	X, Y, M, LM,	Dx.y	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		T, C, S	DA.y	variable	T, C	variable		
S	WORD, Array*n	-	-	-	√ [1]	✓	√	-
n	INT	-	1	-	\	✓	\	\
D	WORD	-	-	-	√ [1]	√	√	-

Remark:

[1]Only the D, V, and R elements are supported.

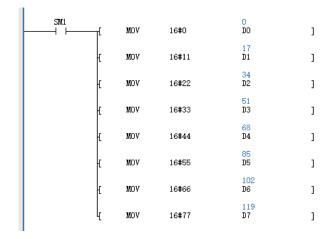
Operand Description

S: The operand of the source, representing the starting address of the data to be verified.

n: The quantity of data to be verified, in bytes, where $0 \le n \le 256$.

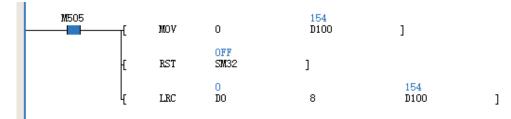
D: The operand of the destination, representing the address of the verification result software element.

Function Description

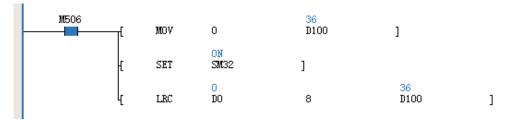

Perform LRC checksum operation on n bytes of data starting from the initial unit (S), and assign the result to unit D.

Precautions

- If the verification quantity n is less than 0 or greater than 256, the system reports an operand error, and the command is not executed.
- Each time the command is executed, the system substitutes the content of D before execution into the operation, so D must be initialized before execution.
- When SM32 is in the OFF state, perform LRC checksum operation with 16 bits as the unit. The high 8 bits and low 8 bits of the verification data starting from unit S2 participate together in the LRC checksum operation.
- When SM32 is in the ON state, perform LRC checksum operation with 8 bits as the unit. The low 8 bits of the verification data starting from unit S2 participate in the LRC checksum operation.


Application Example

Init



• In the case of SM32 = OFF, perform a 16-bit mode checksum.

If M505 = ON, perform CCITT checksum operation on the 8 bytes of data starting from D0 (both high byte and low byte participate in the operation), and store the checksum in D100 = 154.

• In the case of SM32 = ON, perform a 8-bit mode checksum.

If M506 = ON, perform CCITT checksum operation on the 8 bytes of data starting from D0 (only the low byte participates in the operation, and the high byte does not participate), and store the checksum in D100 = 36.

3.28.5 CCD: CCD Checksum Calculation Commands

Command list CCD (S) (D1) (D2) (n)		Applicable model	TS600 series						
16-Bit co	mmand			CCD: CC	D checksun	n calculation			
32-Bit co	mmand				-				
		Bit		Word					
Operand	Туре	X, Y, M, LM,	Dyy	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant	
		T, C, S	Dx.y	variable	T, C	variable			
S	WORD,				√ [1]	,			
3	Array*n	-	-	-	V 1-3	√	-	-	
D1	WORD	-	-	-	√ [1]	✓	-	-	
D2	WORD	-	-	-	√ [1]	✓	-	-	
n	WORD	-	-	-	✓	✓	✓	✓	

Remark:

[1]Only the D, V, and R elements are supported.

Operand Description

S: Source operand, representing the starting address of the variable to be used in the checksum calculation.

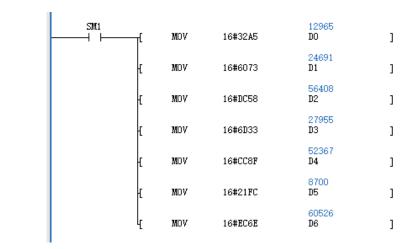
D1: Destination operand 1, which stores the checksum.

D2: Destination operand 2, which stores the result of a termwise XOR logical operation.

n: Number of bytes for checksum, where $0 \le n \le 256$.

Function Description

- 1. Perform two types of checksum calculations on n data elements starting from the initial unit (S).
- 2. Store the result of the direct addition summation operation in D1.
- 3. Store the result of the bitwise XOR operation in D2.
- 4. This operation is commonly used for communication data correctness and integrity verification.



Precautions

- If the verification quantity n is less than 0 or greater than 256, the system reports an operand error, and the command is not executed.
- When SM32 is in the OFF state, perform CCD checksum operation with 16 bits as the unit. The high 8 bits and low 8 bits of the verification data starting from unit S2 participate together in the CCD checksum operation.
- When SM32 is in the ON state, perform the CCD checksum operation with 8 bits as the unit, with the low 8 bits of the verification data starting from unit S2 participating.

Application Example

Init

• In the case of SM32 = OFF, perform a 16-bit mode checksum.

When M501 is set to ON, perform a CCD checksum operation on the 5-byte data starting from D0 (involving both high and low bytes in the calculation). Store the checksum result in D10, and store the XOR result in D11.

• In the case of SM32 = ON, perform a 8-bit mode checksum.

When M502 is set to ON, perform a CCD checksum operation on the 5-byte data starting from D0 (only involving the low byte in the calculation, excluding the high byte). Store the checksum result in D10, and store the XOR result in D11.

Refer to the specific diagram below for details.

	Н	L		Н	L				
	0x32=00110010	0xA5=10100101	DO	0x32=00110010	0xA5=10100101				
D1	0x60=01100000	0x73=01110011	D1	0x60=01100000	0x73=01110011				
D2	0xDC=11011100	0x58=01011000	D2	0xDC=11011100	0x58=01011000				
	0x6D=01101101	0x33=00110011		0x6D=01101101	0x33=00110011				
D4	0xCC=11001100	0x8F=10001111	D4	0xCC=11001100	0x8F=10001111				
D5	0x21=00100001	0xFC=11111100	D5	0x21=00100001	0xFC=11111100				
	0xEC=11101100	0x32=00110010	D6	0xEC=11101100	0x32=00110010				
SM32=OI	SM32=OFF, 16-bit mode checksum is used. SM32=ON, 8-bit mode checksum is used.								
cumulative sum: (D10	0x202=514	cumulative sum: (D10	0x232=562				
xor: (D11 0)xDC=11011100=220	xor: (D11 0x	32=00110010=50				

3.29 Other Commands

3.29.1 Command list

Command Category	Name	Function
	RND	Generate random number
Other Commands	DUTY	Generate timed pulse
	REF	I/O immediate refresh

3.29.2 RND: Generate Random Number Command

Comma	and list	ist RND (D)			Applicable model	TS600 series		
16-Bit co	mmand		The	RND instructi	uction generates a random number.			
32-Bit co	mmand	-						
		Bit			Word			
Operand	Туре	X, Y, M, LM, T, C, S	Dx.y	Custom bit variable	D, R, V, Z, T, C	Custom word variable	Indexing	Constant
D	WORD/ DWORD	-	-	-	√ [1]	✓	✓	-

Remark:

[1]The V element is not supported.

Operand Description

D: Starting address of the soft element to store the random number.

Function Description

Upon execution of the command, a pseudorandom number in the range of 0 to 65535 is generated, and its value is stored in the D unit as a random number. If the generated random number is 0, the zero flag (SM18) is set.

Application Example

When M500 is set to ON, a random number is generated and stored in D0, where D0 is set to 16214.

3.29.3 DUTY: Generate Duty Cycle Pulse Command

Commai	nd list	DUTY (S1	L) (S2 (D2)	2) (D1)	Applicable model	TS600 series		
16-Bit cor	nmand		The D	OUTY instruc	tion generate	s a duty cycle p	ulse.	
32-Bit cor	nmand				-			
			Bit		W	ord ord		
Operand	Туре	X, Y, M, LM, T,	D	Custom bit	D, R, V, Z, T,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	С	variable		
S1	WORD	-	ı	-	√ [1]	✓	✓	✓
S2	WORD	-	-	-	√ [1]	✓	✓	✓
D1	BOOL	√ [2]	√	√	-	-	-	-
D2	WORD	-	-	-	✓	✓	✓	-

Remark:

[1]The V and Z elements are not supported.

[2] The X element is not supported.

Operand Description

- S1: Number of scans in the ON state.
- S2: Number of scans for OFF state.
- D1: Destination address for the continuous timed output.
- D2: Number of pulses in the timed output.

Function Description

- The timed pulse output unit D undergoes a transition in the ON state for S1 scans, followed by the OFF state for S2 scans.
- 2. Multiple DUTY commands should not utilize the same target address for timed clock outputs.

Precautions

- The action begins on the rising edge of the command. The current flow persists even if interrupted, and it halts only on STOP or power failure.
- Up to 128 DUTY commands are supported.

Application Example

When M500 is set to ON, M0 undergoes ON state for 10,000 scans, followed by an OFF state for the next 10,000 scans. Simultaneously, the count of scan occurrences is stored in D0.

3.29.4 REF: Immediate I/O Refresh Command

Command list		REF	(D)	(S)	Applicable Models	TS	6600 series	
16-Bit cor	nmand	nmand REF: Immediate I/O refresh						
32-Bit cor	nmand				-			
			Bit		V	/ord		
Operand	Туре	X, Y, M, LM, T,	D	Custom bit	D, R, V, Z,	Custom word	Indexing	Constant
		C, S	Dx.y	variable	T, C	variable		
D	BOOL	√ [1]	ı	-	1	-	-	-
S	INT	-	-	-	-	-	-	✓

Remark:

[1]Only X and Y elements are supported.

Operand Description

D: Starting X/Y element to be refreshed.

S: Number of ports to be refreshed.

Function Description

Generally, the inputs and outputs of a PLC are executed after the user program concludes. During the computation, if there is a need to read the latest input status or update the output status immediately, this command can be employed.

Precautions

- The indices of input ports (X_n, Y_n) should be multiples of 8.
- The quantity of ports to be refreshed should also be multiples of 8.
- Between FOR-NEXT commands, REF is commonly used for immediate processing.
- During the execution of interrupt processing involving input and output actions, in the interrupt subroutine, use the REF command to refresh inputs and outputs, obtain the latest input information, and promptly output computation results.
- For relay-type output points, consider the response time of the output points.

Application Example

When M0 is set to ON, the states of Y0 to Y7 are immediately output, unaffected by the scanning cycle.

4 Appendix

4.1 System variables

4.1.1 Overview

System variables are registers used to represent and modify PLC runtime status information, such as device model, version number, serial ports, Ethernet, CAN communication, etc.

4.1.2 List of system variables

Table 4-1 Overview of System Variables

Category of system variables	Description				
CVC CAN	Information related to CAN communication, such as node number, baud rate,				
_SYS_CAN	slave on-line status, etc				
CVC COM	erial communication related information, such as node number, baud rate,				
_SYS_COM	slave node online status, etc.				
_SYS_ECAT	EtherCAT master and slave node status information				
CVC ETHEDNET	Ethernet communication information, e.g., IP, MAC, online status, error				
_SYS_ETHERNET	diagnostics.				
CVC INITO	PLC system information, e.g., SN number, firmware version, RTC clock, module				
_SYS_INFO	diagnostics, system logs.				

4.1.3 _SYS_CAN CAN interface running information

Table 4-2 _sCAN Interface Information

Name	Data Type	Description	R/W type
_sCAN.BaudRate	INT	Baud rate (kbps)	R
_sCAN.LoadRate	INT	Load rate (%)	R
_sCAN.RxPerSec	INT	Frames received per second (FPS)	R
_sCAN.TxPerSec	INT	Frames transmitted per second (FPS)	R
_sCAN.RxErrCnt	INT	Receive error counter	R
_sCAN.TxErrCnt	INT	Transmit error counter	R
_sCAN.Protocol	INT	Communication protocol	R

Table 4-3 _sCANOpen Interface Information

Name	Data Type	Description	R/W type
_sCANOpen.NodeID	INT	Node ID	R
_sCANOpen.NodeState	INT	Node status, 1 for online and 0 for offline	R
_sCANOpen.sEmcy	_stru_CANOpen_EMCY	Emergency	R
_sCANOpen.sDebug	_stru_CANOpen_DEBUG	Commissioning interface	R
_sCANOpen.sCfgErr	_stru_CANOpen_CFG_ERR	Configuration error message	R
_sCANOpen.sEmcy.NodeID	INT	Emergency Node ID	R
_sCANOpen.sEmcy.ErrorCode	INT	Emergency error code	R

Name	Data Type	Description	R/W type
		Error register	
_sCANOpen.sEmcy.RegAndMsErrField	INT	pre-manufacturer custom	R
		error message area	
_sCANOpen.sDebug.NodeID	INT	Debug node ID	R
_sCANOpen.sDebug.State	INT	Debug status	R
_sCANOpen.sDebug.Index	INT	Debug primary index	R
_sCANOpen.sDebug.SubIndexAndSize	INT	Debug sub-index and data size	R
_sCANOpen.sDebug.Data	INT	Debug data or error code	R
ocanon a cofactiva No dollo	INIT	Configuration error	Б
_sCANOpen.sCfgErr.NodeID	INT	message node ID	R
_sCANOpen.sCfgErr.ConfigIndex	INT	Configuration number	R
_sCANOpen.sCfgErr.ErrorCode	DINT	Error code	R

4.1.4 _SYS_COM Serial Port Operation Information

Table 4-4 _sCOMx Serial Port Information

Name	Data Type	Description	R/W type
_sCOMx.BaudRate	DINT	Baud rate	R
_sCOMx.DataBits	INT	Data bit	R
_sCOMx.Parity	INT	Check bit	R
_sCOMx.StopBits	INT	Stop bit	R
_sCOMx.Interface	INT	Physical interface	R
_sCOMx.Protocol	INT	Communication protocol	R

∠Note: Here _sCOMx represents _sCOM1_485, _sCOM2_485, and _sCOM3_232.

Table 4-5 Free Port Protocol Information of _sFreex Serial Ports

Name	Data Type	Description	R/W type
_sFreex.Sent	DINT	The number of bytes sent by the COM port	R
_sFreex.Received	DINT	The number of bytes received by the COM port	R
_sFreex.Timeout	DINT	Maximum timeout time (ms)	R
_sFreex.SendLen	INT	Number of bytes transmitted	R
_sFreex.SendBuf	INT[256]	Transmit data buffer	R
_sFreex.RecvBuf	INT[256]	Receive data buffer	R
_sFreex.RecvLen	INT	The number of bytes at a single time	R
_sFreex.Enable	BOOL	Enabled state	R
_sFreex.Activate	BOOL	Activated status	R
_sFreex.Busy	BOOL	Busy state	R
_sFreex.Done	BOOL	Completion sign	R
_sFreex.Error	BOOL	Error sign	R

∠Note: Here x represents a serial port number which ranges between 1 and 3.

Table 4-6 _sMbMstx Serial Port Modbus RTU/ASCII Master Node Information

Name	Data Type	Description	R/W type
_sMbMstx.AddrNum	INT	Number of nodes	R
_sMbMstx.TimeOut	INT	Maximum timeout time (ms)	R

Name	Data Type	Description	R/W type
_sMbMstx.ResponseTime	INT	Response time (ms)	R
_sMbMstx.Connected	BOOL	Number of connections	R
_sMbMstx.Enable	BOOL	Enabled state	R
_sMbMstx.Activate	BOOL	Activated status	R
_sMbMstx.Busy	BOOL	Busy state	R
_sMbMstx.Done	BOOL	Port Modbus communication completion flag bit	R
_sMbMstx.Error	BOOL	Port Modbus communication error flag bit	R
_sMbMstx.ErrSlID	BOOL[256]	Communication error flag bit for corresponding slave station Modbus	R

∠Note: Here x represents a serial port number which ranges between 1 and 3.

Table 4-7 _sMbMST_MSGx Serial Port Modbus RTU/ASCII Master Connection — Slave Information

Name	Data Type	Description	R/W type
_sMbMstMsgx.DisableSlv	BOOL	Slave node disabled or not	R
_sMbMstMsgx.IsSlvDisable	BOOL[256]	Slave disability flag	R

∠Note: Here x represents a serial port number which ranges between 1 and 3.

Table 4-8 _sMbSlvx Serial Port Modbus RTU/ASCII Master Information

Name	Data Type	Description	R/W type
_sMbSlvx.SlvID	INT	Node number	R
_sMbSlvx.Enable	BOOL	Enabled state	R
_sMbSlvx.Activate	BOOL	Activated status	R
_sMbSlvx.Busy	BOOL	Busy state	R
_sMbSlvx.Done	BOOL	Port Modbus communication completion flag bit	R
_sMbSlvx.Error	BOOL	Port Modbus communication error flag bit	R

∠Note: Here x represents a serial port number which ranges between 1 and 3.

Table 4-9 _sNNBusx N: N Protocol Information

Name	Data Type	Description	R/W type
_NNBusx.SlvId	INT	Node number	R
_NNBusx.Delay	INT	N: N additional delay	R
_NNBusx.RetryTimes	INT	Retry times	R
_NNBusx.Mode	INT	N: N network refresh mode	R
_NNBusx.Period	DINT	N: Polling cycle of N communication	R
_NNBusx.Error	DINT	Communication error flag, where bits 0–31 respectively represent the error flag bits of stations with station numbers 0–31. A value of 1 represents an error, while a value of 0 represents no error	R

∠Note: Here x represents a serial port number which ranges between 1 and 3.

4.1.5 _SYS_ECAT EtherCAT running status information

Table 4-10 EtherCAT Master Status Information

Name	Data Type	Description	R/W type
_sECATMst.MasterRunState	BOOL	Master running status flag bit	R
_scariiist.iiiasterituristate	BOOL	ON: run; OFF: stop	IX.
		Physical connection status of master	
_sECATMst.LinkState	BOOL	ON: normal; OFF: network cable	R
		disconnected	
_sECATMst.HeartBeat	BOOL	EtherCAT real-time task heartbeat	R
_sECATMst.BlockHeartBeat	BOOL	EtherCAT non-real-time task heartbeat	R
_sECATMst.MaxCycleTime	DINT	Maximum cycle time, in μs	R
_sECATMst.MinCycleTime	DINT	Minimum cycle time, in μs	R
_sECATMst.CycleTime	DINT	Cycle time, in µs	R
_sECATMst.MaxExeTime	DINT	Maximum execution time, in μs	R
_sECATMst.MinExeTime	DINT	Minimum execution time, in μs	R
_sECATMst.ExeTime	DINT	Execution time, in µs	R
_sECATMst.Tx_frames	DINT	Total frames sent	R
_sECATMst.Rx_frames	DINT	Total frames received	R
_sECATMst.Tx_frame_rates	DINT	Frame rate at which the data is	R
		transmitted, frames/second	
_sECATMst.Rx_frame_rates	DINT	Frame rate at which the data is received,	R
		frames/second	
_sECATMst.Tx_bytes_rate	DINT	The speed at which the byte is transmitted,	R
		bytes/second	
_sECATMst.Rx_bytes_rate	DINT	The speed at which the byte is received,	R
	DINIT	bytes/second	-
sECATMst.Loss_rate	DINT	Lost EtherCAT data frame, in frames	R
_sECATMst.ResetTime	BOOL	Reset execution time and cycle time	R/W
_sECATMst.StartMaster	BOOL	Start the master	R/W
_sECATMst.StopMaster	BOOL	Stop the master	R/W
_sECATMst.ClearFrameCounter	BOOL	Reset transmit and receive data frame	R/W
FCATMAL Birchlamana	DOOL	counter	D/M
_sECATMst.DisableMaster	BOOL	Disable Master Enable	R/W
cECATMet SlaverState	INIT	Online status of all slaves	D
_sECATMst.SlavesState	INT	0: some slave stations are not online; 1: all slave stations are online	R
sECATMst.FirstErrorSlave	INT	First faulty slave	R
_sECATMst.LibVersion	DINT	EtherCAT library version	R
_sECATMst.MstVersion	DINT	EtherCAT master version	R
_sECATMst.MstVersion	DINT	EtherCAT NIC driver version	R
_sECATMst.Tx_error_cnt	DINT	EtherCAT transmit error count	R
_sECATMst.Rx_timeout_cnt	DINT	EtherCAT receive frame timeout count	R
_sECATMst.Rx_timeout_cnt	DINT	EtherCAT receive invalid frame count	R
_sECATMst.Tx_corrupt_cnt	DINT	EtherCAT receive unmatched frame count	R
_sECATMst.RxPDOLength	DINT	EtherCAT total receive PDOs	R
_sECATMst.TxPDOLength	DINT	EtherCAT total transmit PDOs	R
_sECATMst.TxrboLength	DINT	EtherCAT configuration status	R
_sECATMst.Delay	DINT	EtherCAT configuration status EtherCAT synchronizer	R
_sECATMst.SlvLinkState	INT	Connection status of all slave	R
_sECATMst.DisableState	INT	Master disability state	R
_SECATIVISI.DISADIESIALE	IIVI	master disability state	7

Table 4-11 EtherCAT Slave Status Information

Name	Data Type	Description	R/W type
_sECATSlv[x].Unused	BOOL	System retention	R
_sECATSlv[x].SlaveRunState	BOOL	Slave running status ON: run; OFF: stop	R
_sECATSlv[x].SetAliasState	BOOL	Written site alias state of slave station, where ON indicates busy; OFF indicates idle or settings completed	R
_sECATSlv[x].SetAliasError	BOOL	Failed to write alias to slave	R
_sECATSlv[x].MatchState	BOOL	Slave type mismatch	R
_sECATSlv[x].ConfigError	BOOL	Slave configuration error	R
_sECATSlv[x].SetAlias	BOOL	Set slave alias, rising edge is valid	R/W
_sECATSlv[x].DisableEnable	BOOL	Disable slave enable	R/W
_sECATSlv[x].ALState	INT	EtherCAT state machine status	R
_sECATSlv[x].ALCode	INT	Fault code	R
_sECATSlv[x].ActAlias	INT	Actual node alias	R
_sECATSlv[x].TarAlias	INT	Target alias to write	R/W
_sECATSlv[x].StationAddress	INT	Actual node name	R
_sECATSlv[x].SlaveRingPos	INT	Configuration address	R
_sECATSlv[x].SDOErrorCode	INT	Startup parameter configuration error count	R
_sECATSlv[x].CfgErrorCode	DINT	Configuration error code	R
_sECATSlv[x].DisableState	INT	Configuration state	R

∠Note: Here x represents an ECAT slave station number which ranges between 0 and 71.

4.1.6 _SYS_ETHERNET Ethernet Information

Table 4-12 _sENETx Network Port Information

Name	Data Type	Description	R/W type
_sENETx.MAC	INT[3]	Physical address	R
_sENETx.IP	DINT	Native IP address	R/W
_sENETx.NetMask	DINT	Subnet mask	R/W
_sENETx.GateWay	DINT	Gateway	R/W

∠Note:

- The IP, MAC, and other information of the local machine can be monitored in the variable table.
- Here x represents an Ethernet number which ranges between 1 and 2.

Table 4-13 _sMbTcpMstX[i] Modbus RTU/ASCII Master Station Information

Name	Data Type	Description	R/W type
_sMbTcpMstx[i].SlvIP	DINT	IP address of connected slave station	R
_sMbTcpMstx[i]. SlvPort	DINT	Port number of connected slave station	R
_sMbTcpMstx[i].Timeout	INT	Connection timeout time (ms)	R
_sMbTcpMstx[i].ResponseTime	INT	Response time (ms)	R
_sMbTcpMstx[i].Connected	BOOL	Connection flag	R
_sMbTcpMstx[i].Enable	BOOL	Enabled state	R
_sMbTcpMstx[i].Activate	BOOL	Activated status	R
_sMbTcpMstx[i].Busy	BOOL	Busy state	R
_sMbTcpMstx[i].Done	BOOL	Communication completion flag bit for Modbus	R

Name	Data Type	Description	R/W type
_sMbTcpMstx[i].Error	BOOL	Communication error flag bit for Modbus	R

∠Note: Here x represents an Ethernet number which ranges between 1 and 2, and i represent a ModbusTCP slave station number which ranges between 0 and 63.

Table 4-14 Information of Slave Station Connected to _sMbTcpMstMsgx[i] ModbusTCP Master Station

Name	Data Type	Description	R/W type
_sMbTcpMstMsgx[i].MstIP	DINT	IP address of master station	R
_sMbTcpMstMsgx[i].MstPort	DINT	Port number of master station	R
_sMbTcpMstMsgx[i].DisableSlv	BOOL	Slave node disabled or not	R
_sMbTcpMstMsgx[i].IsSlvDisable	BOOL[256]	Slave disability flag	R

∠Note: Here x represents an Ethernet number which ranges between 1 and 2, and i represent a ModbusTCP slave station number which ranges between 0 and 63.

Table 4-15 _sMbTcpSlvx ModbusTCP Slave Information

Name	Data Type	Description	R/W type
_sMbTcpSlvx.Connections	INT	Number of connections	R
_sMbTcpSlvx.MstIP	DINT	Master IP address table	R
_sMbTcpSlvx.MstPort	DINT	Master port number table	R
_sMbTcpSlvx.SlvIP	DINT	Slave node IP address	R
_sMbTcpSlvx.SlvPort	DINT	Slave node port number	R
_sMbTcpSlvx. SlvID	INT	Slave node ID	R
_sMbTcpSlvx.Connected	BOOL	Connection flag of corresponding node	R
_sMbTcpSlvx.Enable	BOOL	Enabled state	R
_sMbTcpSlvx.Error	BOOL	Communication error flag bit	R
_sMbTcpSlvx.ErrIP	DINT	IP address of master node with error	R
_sMbTcpSlvx.ErrPort	DINT	Port number of master node with error	R

∠Note: Here x represents an Ethernet number which ranges between 1 and 2.

4.1.7 _SYS_INFO PLC Running Information

Table 4-16 DevInfo Device Information

Name	Data Type	Description	R/W type
_sDevInfo.Device	INT	Device Model ID	R
_sDevInfo.Vender	INT	Manufacturer ID	R
_sDevInfo.HWVersion	DINT	Hardware version	R
_sDevInfo.SWVersion	DINT	Software version	R
_sDevInfo.FPGAVersion	DINT	FPGA version	R
_sDevInfo.BattVolt	DINT	Battery voltage	R

Get PLC production device information.

Table 4-17 OSM System Monitor

Name	Data Type	Description	R/W type
_sOSM.CPU	INT	CPU usage rate	R
_sOSM.Memory	INT	Memory usage	R

Get CPU and memory utilization and diagnose CPU performance.

Table 4-18 Program User Program Information

Name	Data Type	Description	R/W type
_sProgram.TotalSize	DINT	Total program capacity	R
_sProgram.UsedSize	DINT	Used program capacity	R

Name	Data Type	Description	R/W type
_sProgram.CurRunTime	DINT	DINT Current program runtime (μs)	
_sProgram.MinRunTime	DINT	Minimum program runtime (μs)	R
_sProgram.MaxRunTime	DINT	Maximum program runtime (μs)	R
_sProgram.AveRunTime	DINT	Avergae program runtime (μs)	
_sProgram.ConstScanTime	DINT	Constant scan time (µs)	R
_sProgram.WDT	DINT	Watch dog reset time (s)	R
_sProgram.Reset	BOOL	Reset cycle time	R/W

Obtain the execution cycle time of programs and tasks, so as to judge the complexity of program execution logic.

Table 4-19 CurErrLst Error Message List

Name	Data Type	Description	R/W type
_sCurErrLst.Quantity	DINT	Current error quantity	R
_sCurErrLst.sErrInfo	_stru_ERR_INFO[42]	Current error message list	R
_sCurErrLst.sErrInfo.SubErrorCode	INT	Sub-error code	R
_sCurErrLst.sErrInfo.MainErrorCode	INT	Main error code	R
_sCurErrLst.sErrInfo.TimStamp	DINT	Time stamp	R

The error log information of PLC is recorded.

Table 4-20 RTC Clock

Name	Data Type	Description	R/W type
_sDataTime.Second	INT	Second	R
_sDataTime.Minute	INT	Minute	R
_sDataTime.Hour	INT	Hour	R
_sDataTime.Day	INT	Day	R
_sDataTime.Month	INT	Month	R
_sDataTime.Year	INT	Year	R
_sDataTime.WeekDay	INT	Week	R
_sDataTime.YearDay	INT	Days	R
_sDataTime.Timestamp	DINT	Total seconds	R

Get the RTC clock.

Table 4-21 UsrIntCtl Interrupt Enable Control

Name	Data Type	Description	R/W type
_sUsrIntCtl[x]	_stru_USR_INT_CTL[67]	Interrupt enable control	1
_sUsrIntCtl[x].Enable	BOOL	Enable control bit	R
_sUsrIntCtl[x].IntID	INT	Interrupt program ID	R

∠Note: Here x represents an interrupt number which ranges between 0 and 66.

Table 4-22 ExtModule Expansion Module System Variable Related Information

Name	Data Type	Description	R/W type	
_sExtModule.CfgNum	INT	User-configured module	R	
_sextmodute.crgivuiii	IIVI	number	K	
sExtModulo ActNum	INT	Actually mounted module	R	
_sExtModule.ActNum	IIVI	number	K	
_sExtModule.ResAlign	-	Reserved for byte alignment	-	
_sExtModule.ExtSlot	_stru_EXT_SLOT[16]	-	-	
_sExtModule.ExtSlot.CfgType	INT	User-configured module type	R	
_sExtModule.ExtSlot.ActType	INT	Type of actually mounted module	R	

Name	Data Type	Description	R/W type
_sExtModule.ExtSlot.Error	BOOL	Error state	R
_sExtModule.ExtSlot.Disable	BOOL	Module disabled	R
_sExtModule.ExtSlot.ResAlign	-	Reserved for byte alignment	-
_sExtModule.ExtSlot.SWVersion	DINT	Software version	R
_sExtModule.ExtSlot.LGVersion	DINT	Logic device version	R

Table 4-23 ExtCard Extension Card Related Information

Name	Data Type	Description	R/W type
_sExtCard.CfgType	INT	User-configured module type	R
_sExtCard.ActType	INT	Type of actually mounted module	R
_sExtCard.SWVersion	DINT	Software version	R
_sExtCard.LGVersion	DINT	Logic device version	R
_sExtCard.Error	BOOL	Error state	R
_sExtCard.Disable	BOOL	Module disabled	R

Table 4-24 AlmInfo Alarm Information and Control Bits

Name	Data Type Description F		R/W type
_sAlmInfo.Enable	BOOL	Alarm enabled	R/W
_sAlmInfo.ActFlg	BOOL	S900 – S999 alarm action flag	R
_sAlmInfo.MinNum	INT	S900–S999 minimum alarm action element number	R

Table 4-25 SM System Variables

Name	Data Type	Description	R/W type
SM0	BOOL	Running monitoring bit	R
SM1	BOOL	Initial running pulse bit	R
SM2	BOOL	Power-on flag bit	R
SM3	BOOL	Error flag bit	R
SM10	BOOL	Clock oscillation with a cycle of 10ms	R
SM11	BOOL	Clock oscillation with a cycle of 100ms	R
SM12	BOOL	Clock oscillation with a cycle of 1s	R
SM13	BOOL	Clock oscillation with a cycle of 1min	R
SM14	BOOL	Clock oscillation with a cycle of 1hour	R
SM15	BOOL	Scanning cycle oscillation bit	R
SM18	BOOL	Operation zero flag	R
SM19	BOOL	Operation borrow flag	R
SM20	BOOL	Operation carry flag	R
SM22	BOOL	Bit set for command execution error	R
SM23	BOOL	Bit set for overflow of command element number subscript	R
SM24	BOOL	Bit set for illegal command parameter	R
SM30	BOOL	Multi-cycle instruction completion flag bit	R
SM31	BOOL	Flag for BINDA command output character	R/W
SM32	BOOL	Flag for processing mode of ATI/ITA/ASC/CCITT/CRC16/LRC/CCD command bit	R/W
SM33	BOOL	SORTR/SORTC command descending sort enabled	R/W
SM34	BOOL	Bit for data format settings of SMOV command	R/W
SM35	BOOL	Flag for all comparison results of BKCMP command matrices being 1	R

4.2 Error Codes

4.2.1 Error Code Classification

Table 4-26Error Code Classifications

Device	Device Type	Module Type	Main error	Sub-error Code
Category			code (HEX)	Range
		Hardware failure	0001	0001-FFFF
	System-related	System failure	0002	0001-FFFF
		Program failure	0003	0001-FFFF
		Reserved fault	0004-0007	0001-FFFF
	System	Clock system component failure	8000	0001-FFFF
	component-related	IP system component failure	0009	0001-FFFF
CPU		Reserved fault	000A-000F	0001-FFFF
0.0		Codesys motion control failure	0010	0001-FFFF
	Functional	Autonomous motion control failure	0011	0001-FFFF
	component-related	High speed input failure	0012	0001-FFFF
		CANopen axis control failure	0013	0001-FFFF
		Reserved fault	0014-0017	0001-FFFF
	Process library	Reserved fault	0018-002F	0001-FFFF
		CPU IO failure	0030	0001-FFFF
		Digital quantity failure	0031	0001-FFFF
		Analog quantity failure	0032	0001-FFFF
Backplane bus	Backplane bus-related	Fault of temperature measuring module	0033	0001-FFFF
		Encoder input failure	0034	0001-FFFF
		Reserved fault	0035-003F	0001-FFFF
		Modbus RTU/ASCII Master 1	0040	0001-FFFF
		Modbus RTU/ASCII Master 2	0041	0001-FFFF
		Modbus RTU/ASCII Master 3	0042	0001-FFFF
		Modbus RTU/ASCII Slave 1	0043	0001-FFFF
		Modbus RTU/ASCII Slave 2	0044	0001-FFFF
		Modbus RTU/ASCII Slave 3	0045	0001-FFFF
		Serial freeport 1	0046	0001-FFFF
	Serial port-related	Serial freeport 2	0047	0001-FFFF
		Serial freeport 3	0048	0001-FFFF
Fieldbus		Modbus RTU master station command 1	0049	0001-FFFF
		Modbus RTU master station command 2	004A	0001-FFFF
		Reserved fault	0049-004F	0001-FFFF
		CANopen	0050	0001-FFFF
		CANfree	0051	0001-FFFF
	CAN-related	CANnet	0052	0001-FFFF
		Reserved fault	0052-0057	0001-FFFF
		Profibus DP	0058	0001-FFFF
	Profibus	Reserved fault	0059-005F	0001-FFFF
	Reserved	Reserved fault	005A-6F	0001-FFFF

Device Category	Device Type	Module Type	Main error code (HEX)	Sub-error Code Range
	5 6	Profinet	0070	0001-FFFF
	Profinet-related	Reserved fault	0071-007F	0001-FFFF
	Ethernet/IP-related	Ethernet/IP	0080	0001-FFFF
	Ethernet/IP-related	Reserved fault	0081-008F	0001-FFFF
		EtherCAT	0090	0001-FFFF
		ET-Digital quantity	0091	0001-FFFF
		ET-Analog quantity	0092	0001-FFFF
	EtherCAT-related	ET-Temperature measuring module	0093	0001-FFFF
		ET-Encoder input	0094	0001-FFFF
Industrial	ndustrial	Reserved fault	0095-009F	0001-FFFF
Ethernet		Modbus TCP Master(Ethernet1)	00A0	0001-FFFF
	Madhaa	Modbus TCP Master(Ethernet2)	00A1	0001-FFFF
	Modbus TCP-related	Modbus TCP Slave(Ethernet1)	00A2	0001-FFFF
	TCP-related	Modbus TCP Slave(Ethernet2)	00A3	0001-FFFF
		Reserved fault	00A4-00AF	0001-FFFF
	TCP-related	TCP	00B0	0001-FFFF
	TCP-related	Reserved fault	00B1-00B7	0001-FFFF
	UPD-related	UDP	00B8	0001-FFFF
	OPD-related	Reserved fault	00B9-00BF	0001-FFFF
	OPCUA	Reserved fault	00C0	0001-FFFF
	Reserved	Reserved fault	00C1-EF	0001-FFFF
Expansion	IoT card	4G expansion card	00F0	0001-FFFF
card	Reserved	Reserved fault	00F1-00F3	0001-FFFF
Other	Other	Reserved fault	00F4-00FF	0001-FFFF

4.2.2 Error Code List

Table 4-27 Error Code Details

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
0x0001(1)	0x0001(1)	Button cell is not installed or battery voltage is too low	Check the battery	General error
0x0001(1)	0x0002(2)	Device supply voltage is too low (<19V)	Check the power supply	General error
0x0002(2)	0x0001(1)	Hardware initialization error	Check whether the peripheral device works normally and whether the driver is loaded successfully	Serious error
0x0002(2)	0x0002(2)	Failed to open GPIO	Check whether the driver and hardware work properly	Serious error
0x0002(2)	0x0003(3)	Failed to write GPIO	Check whether the driver and hardware work properly	Serious error
0x0002(2)	0x0004(4)	Failed to read GPIO	Check whether the driver	Serious

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
			and hardware work properly	error
(2)			Check whether the driver	Serious
0x0002(2)	0x0005(5)	Failed to open FPGA FMC	and hardware work properly	error
			Check whether the driver	Serious
0x0002(2)	0x0006(6)	SPI operation failed	and hardware work properly	error
0.0002(2)	0.0007(7)	Failed to update FPGA	Check whether the driver	Serious
0x0002(2)	0x0007(7)	firmware read signal	and hardware work properly	error
00002(2)	00000(0)	Failed to read FPGA	Check whether the file exists	Serious
0x0002(2)	0x0008(8)	firmware file	or is corrupted	error
0,0002(2)	0,,000,0(0)	Failed to anon ICC davise	Check whether the driver	Serious
0x0002(2)	0x0009(9)	Failed to open I2C device	and hardware work properly	error
0,0002(2)	0×0004/10)	Failed to write to I2C	Check whether the driver	Serious
0x0002(2)	0x000A(10)	device	and hardware work properly	error
0,0002(2)	0×000P(11)	Failed to read ICC davises	Check whether the driver	Serious
0x0002(2)	0x000B(11)	Failed to read I2C device	and hardware work properly	error
00002(2)	00006(13)	Failed to write FMC dovice	Check whether the driver or	Serious
0x0002(2)	0x000C(12)	Failed to write FMC device	FPGA is working properly	error
00002(2)	0000D(13)	Failed to wood FMC dovice	Check whether the driver or	Serious
0x0002(2)	0x000D(13)	Failed to read FMC device	FPGA is working properly	error
0.0002(2)	0.0005(1.4)	Failed to account CD do inc	Check whether the driver	Serious
0x0002(2)	0x000E(14)	Failed to open USB device	and hardware work properly	error
0.0002(2)	0.0005(15)	Failed to see to UCD and II	Check whether the system is	Serious
0x0002(2)	0x000F(15)	Failed to create USB epoll	working properly	error
00002(2)	00010/16\	Programming port TCP	Check whether the driver	Serious
0x0002(2)	0x0010(16)	initialization failed	and hardware work properly	error
		Failed to create	Check whether the driver	Carious
0x0002(2)	0x0011(17)	programming port TCP	and hardware work properly	Serious
		epoll	and nardware work property	error
0x0002(2)	0x0012(18)	Element and variable	Check whether the element	Serious
0x0002(2)	0x0012(16)	forced setting failed	type and address are correct	error
		Failed to open	Check whether the	Serious
0x0002(2)	0x0013(19)	configuration file	configuration file exists or is	error
		comigaration me	damaged	enoi
		Power-down keeping	Check whether the profile	General
0x0002(2)	0x0014(20)	configuration parsing	data is correct	error
		failed	data is correct	CITOI
0x0002(2)	0x0015(21)	Failed to stop output	Check whether the profile	General
0,0002(2)	0,0013(21)	configuration parsing	data is correct	error
0x0002(2)	0x0016(22)	Watchdog configuration	Check whether the profile	General
0,0002(2)	0,0010(22)	parsing failed	data is correct	error
		Constant scan time	Check whether the profile	General
0x0002(2)	0x0017(23)	configuration parsing	data is correct	error
		failed		21101
		Power-down wait time	Check whether the profile	General
0x0002(2)	0x0018(24)	configuration parsing	data is correct	error
		failed		

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
0x0002(2)	0x0019(25)	Digital filter parameter configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x001A(26)	Advanced control configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x001B(27)	External input run configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x001C(28)	Serial port 1 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x001D(29)	Serial port 2 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x001E(30)	Serial port 232 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x001F(31)	Modbus RTU Master 1 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0020(32)	Modbus RTU Master 2 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0021(33)	Ebus serial port 1 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0022(34)	Ebus serial port 2 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0023(35)	Expansion module configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0024(36)	Interrupt configuration code configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0025(37)	Network port 1 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0026(38)	Network port 2 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0027(39)	Modbus TCP Master 1 configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0028(40)	Modbus TCP Master 2 configuration parsing failed	Check whether the profile data is correct	General error

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
0x0002(2)	0x0029(41)	CANOpen configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x002A(42)	Ethercat configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x002B(43)	Fieldbus pulse axis configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x002C(44)	Encoder axis configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x002D(45)	Fieldbus pulse axis configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x002E(46)	Encoder axis configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x002F(47)	Axis group configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0030(48)	CAM table configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0031(49)	Axis type configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0032(50)	Fieldbus servo axis configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x0033(51)	Local pulse axis configuration parsing failed	Check whether the profile data is correct	General error
0x0002(2)	0x003F(63)	Failed to allocate profile memory	Check system free memory	Serious error
0x0002(2)	0x0040(64)	Configuration parsing overrun failed	Check whether the profile data is correct	General error
0x0002(2)	0x0041(65)	Failed to start application due to undervoltage	Check whether the power supply voltage is normal	Serious error
0x0002(2)	0x0042(66)	Power failure detected	Check whether the power supply voltage is normal	Serious error
0x0002(2)	0x0043(67)	Failed to open power-down keeping file	Check whether the power-down keeping file or file directory exists	Serious error
0x0002(2)	0x0044(68)	Failed to get power-down keeping file size	Check whether the power-down keeping file is damaged	Serious error
0x0002(2)	0x0045(69)	Failed to map the power-down keeping file	Check the file size and whether the system is normal	Serious error
0x0002(2)	0x0046(70)	Failed to release the power-down keeping file mapping	Check the file size and whether the system is normal	Serious error

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
0x0002(2)	0x0047(71)	Error in detecting power-down keeping file header	Check whether the power-down keeping file is damaged	Serious error
0x0002(2)	0x0048(72)	Error in detecting power-down keeping file length	Check whether the power-down keeping file is damaged	Serious error
0x0002(2)	0x0049(73)	Error in detecting power-down keeping file tail	Check whether the power-down keeping file is damaged	Serious error
0x0002(2)	0x004A(74)	Error in detecting power-down keeping file CRC	Check whether the power-down keeping file is damaged	Serious error
0x0002(2)	0x0050(80)	Watchdog timeout	Check whether the user program is running correctly	Warning
0x0002(2)	0x0051(81)	Error message mismatch	Check whether the error message is filled in correctly	Warning
0x0002(2)	0x0052(82)	Failed to open RND file	Check whether the system is working properly	Serious error
0x0002(2)	0x0053(83)	Failed to create thread	Check whether the system is working properly	Serious error
0x0002(2)	0x0054(84)	Failed to open instruction library	Check whether the system is working properly	Serious error
0x0002(2)	0x0055(85)	Failed to open user program	Check whether the system is working properly	Serious error
0x0002(2)	0x0056(86)	Device model does not match fieldbus axis number	Check device model and user program fieldbus number	Serious error
0x0002(2)	0x0057(87)	PLC output type does not match the local machine	Check whether the PLC output matches the local machine	Serious error
0x0002(2)	0x0058(88)	Configuration code 0x22 is empty	Check whether the configuration code is configured correctly	General error
0x0002(2)	0x0059(89)	Interrupt registration function is empty	Check the interrupt registration function	Serious error
0x0002(2)	0x005A(90)	Interrupt function is not defined	Check the interrupt function	Warning
0x0002(2)	0x005B(91)	Interrupt source number exceeded	Check the interrupt source number range	Warning
0x0003(3)	0x0030(48)	Illegal instruction system parameter	Please recompile and download the user program	General error
0x0003(3)	0x0031(49)	Parameter is out of limit address range	Check whether the parameter variable data length of the instruction is out of range	General error
0x0003(3)	0x0032(50)	Illegal instruction user	Check whether the	General

Hexadecimal	Hexadecimal	nter command Mandat		ДР
main error code	error subcode			Error
(corresponding	(corresponding	Meaning of error	Solution	level
decimal)	decimal)			levet
	,	parameters	parameters of the	error
			instruction are in the wrong	
			order or the size is set	
			incorrectly	
			Stop PID operation and	
0x0003(3)	0x0033(51)	Wrong PID sampling time	check whether the	General
			parameters are set correctly	error
			Stop PID operation and	Conoral
0x0003(3)	0x0034(52)	Wrong PID filter constant	check whether the	General
			parameters are set correctly	error
		Wrong DID proportional	Stop PID operation and	Canaral
0x0003(3)	0x0035(53)	Wrong PID proportional	check whether the	General
		gain	parameters are set correctly	error
		Wrong DID intogration	Stop PID operation and	General
0x0003(3)	0x0036(54)	Wrong PID integration time	check whether the	
		time	parameters are set correctly	error
			Stop PID operation and	General
0x0003(3)	0x0037(55)	Wrong PID differential gain	check whether the	error
			parameters are set correctly	
		Wrong PID differential	Stop PID operation and	General
0x0003(3)	0x0038(56)	time	check whether the	error
		time	parameters are set correctly	enoi
		Wrong PID manual output	Stop PID operation and	General
0x0003(3)	0x0039(57)	PID value	check whether the	error
			parameters are set correctly	CITOI
		The PID setting target	Stop PID operation and	
0x0003(3)	0x003A(58)	value exceeds the	check whether the	General
	(11)	upper/lower limit of the	parameters are set correctly	error
		setting value		_
0x0003(3)	0x003B(59)	PID mode is not supported	Check whether the setting	General
. ,	, ,		mode is correct	error
0.0000(0)	0.0000(00)	PID measurements out of	Stop PID operation and	General
0x0003(3)	0x003C(60)	range	check whether the	error
			parameters are set correctly	
0.0003(3)	0.0020(61)	TPID temperature	Stop PID operation and	General
0x0003(3)	0x003D(61)	catastrophe error	check whether the	error
			parameters are set correctly	
00002(2)	00025(62)	The setting of PID control	Check whether the control	General
0x0003(3)	0x003E(62)	period is unreasonable	period is larger than the PID	error
			sampling time	
			Try to lower the set temperature value and rerun	
		TPID mode auto-tuning	the program for self-tuning.	General
0x0003(3)	0x003F(63)	failed	If self-tuning is not possible	error
		Tanca .	for a long time, please	21101
			confirm whether the control	
		l .	Committe Whichief the Control	<u> </u>

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
			device and sensors are abnormal	
0x0003(3)	0x0050(80)	Illegal ASCII code conversion value	Confirm whether the ASCII code to be converted conforms to the ASCII code specification	General error
0x0003(3)	0x0051(81)	Stack definition error	Check whether the stack data is normal	General error
0x0003(3)	0x0052(82)	Clock chip read-write error	If the upper computer clock can be read normally, recompile and download the program	General error
0x0003(3)	0x0053(83)	The divisor in the division operation is 0	Check if the divisor used for the element data is correct	General error
0x0003(3)	0x0054(84)	String instruction or data error	Check whether the string instruction or string data is illegal	General error
0x0003(3)	0x0055(85)	Override between source and target operands	Check for overlap between source and target operands	General error
0x0003(3)	0x007F(127)	Simulation does not support this command	Please use this command in actual PLC	General error
0x0003(3)	0x0080(128)	Invalid upper and lower limit setting range	Check whether the lower limit is greater than the upper limit, and exchange the upper/lower limit operation in this case	Warning
0x0003(3)	0x0081(129)	PID measurements out of range	-	Warning
0x0003(3)	0x0082(130)	PID deviation out of range	The calculated value of PID deviation exceeds the range: -32768-32767	Warning
0x0003(3)	0x0083(131)	PID proportional term out of range	The calculated value of PID proportional term exceeds the range: -32768-32767	Warning
0x0003(3)	0x0084(132)	PID integral term out of range	The calculated value of PID integral term exceeds the range: -32768-32767	Warning
0x0003(3)	0x0085(133)	PID differential term out of range	The calculated value of PID differential term exceeds the range: -32768-32767	Warning
0x0003(3)	0x0086(134)	PID operation result out of	PID operation result exceeds	Warning

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
		range	the range: -32768-32767	
0x0003(3)	0x0087(135)	Instruction fetches ID	Check the compilation ID of	Warning
0,0003(3)	0.0001(133)	number incorrectly	the upper computer	warring
0x0008(8)	0x0001(1)	Failed to open RTC device	Check whether the driver	Serious
0,0000(0)	0,0001(1)	Tanca to open tire device	and hardware work properly	error
0x0008(8)	0x0002(2)	Failed to write RTC device	Check whether the driver	Serious
0,10000(0)	0,10002(2)	Taked to Wille Ki o device	and hardware work properly	error
0x0008(8)	0x0003(3)	Failed to read RTC device	Check whether the driver	Serious
			and hardware work properly	error
0x0008(8)	0x0004(4)		,	General
		of the system	works normally in real time	error
0x0008(8)	0x0005(5)	Failed to read RTC time of	Check whether FPGA and	Warning
, ,		FPGA	RTC work properly	0
0x0008(8)	0x0006(6)	Failure to write RTC time	Check whether FPGA and	Warning
, ,		of FPGA	RTC work properly	Ŭ
0x0009(9)	0x0001(1)	The IP segments of IP1 and	· ·	General
, ,		IP2 repeat error	segments of IP1 and IP2	error
0x0009(9)	0x0011(17)	Read: IP1 module – Error	Check whether the network	General
. ,	. ,	opening file	driver is running normally	error
		Read: IP1 module –	Check whether the network	General
0x0009(9)	0x0012(18)	Unable to get IP	driver is running normally	error
		information		
0.0000(0)	0.0012(10)	Write: IP1 module – IP	Check whether the IP	General
0x0009(9)	0x0013(19)	address configuration	segment data is valid data	error
		error	(0-255)	Canaval
0x0009(9)	0x0014(20)	Write: IP1 module – Mask	Check whether the mask	General
		configuration error Write: IP1 module –	data is valid data (0–255)	error
0×0000(0)	0v001E/21\	Gateway configuration	Check whether the gateway	General
0x0009(9)	0x0015(21)	error	data is valid data (0–255)	error
		Write: IP1 module – USB	Misalign the IP1 segment	
0x0009(9)	0x0016(22)	network segment repeat	with the USB segment	General
0,0003(3)	0,0010(22)	error	(TM700 - 192.168.3.x)	error
		Write: IP1 module – IP	Configure the IP segment	
0x0009(9)	0x0017(23)	and gateway not in the	and gateway in the same	General
0,0003(3)	0,0011(23)	same network error	network	error
		Read: IP2 module – Error	Check whether the network	General
0x0009(9)	0x0021(33)	opening file	driver is running normally	error
		Read: IP2 module -		
0x0009(9)	0x0022(34)	Unable to get IP	Check whether the network	General
(-/	- ()	information	driver is running normally	error
			Check whether the IP	
0x0009(9)	0x0023(35)	Write: IP2 module – IP	segment data is valid data	General
, ,	, ,	address error	(0–255)	error
00000(0)	00024/25	Write: IP2 module – Mask	Check whether the mask	General
0x0009(9)	0x0024(36)	error	data is valid data (0–255)	error

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
0x0009(9)	0x0025(37)	Write: IP2 module – Gateway error	Check whether the gateway data is valid data (0–255)	General error
0x0009(9)	0x0026(38)	Write: IP2 module – USB network segment repeat error	Misalign the IP2 segment with the USB segment (TM700 – 192.168.3.x)	General error
0x0009(9)	0x0027(39)	Write: IP2 module – IP and gateway not in the same network error	Configure the IP segment and gateway in the same network	General error
0x0011(17)	0x0001(1)	The current axis ID is not within the valid range	Check whether the axis ID parameter settings are reasonable	General error
0x0011(17)	0x0002(2)	The current function block ID is not within the valid range	Check whether the function block ID parameter settings of the upper computer are reasonable	General error
0x0011(17)	0x0003(3)	The current function block cannot be started due to the unreasonable PLCopen state	Check whether the current axis state meets the PLCopen state machine switching process when the current command is triggered	Warning
0x0011(17)	0x0004(4)	Axis configuration failed	Check whether the axis is configured	Warning
0x0011(17)	0x0005(5)	The address of the PDO parameter DigitalIput is NULL	Check whether the parameter is mapped in the slave station IO mapping Check whether the parameter exist in the XML version of the servo slave station	Warning
0x0011(17)	0x0006(6)	Current axis/servo error	The axis/servo is faulty, and the error can be cleared by calling the MC_Reset command or restarting the MC_Power command	General error
0x0011(17)	0x0007(7)	The current axis is not enabled and therefore in the Disabled state	Switch the axis to the Standstill state by calling the MC_Power command	Warning
0x0011(17)	0x0008(8)	The positive hard limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	General error
0x0011(17)	0x0009(9)	The negative hard limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	General error

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
0x0011(17)	0x000A(10)	The positive soft limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	General error
0x0011(17)	0x000B(11)	The negative soft limit of the axis is triggered	Call the reset instruction to switch the axis state from ErrorStop state to Standstill state	General error
0x0011(17)	0x000C(12)	The pulse axis has not selected any output device	Check whether the pulse axis has selected an output device	Warning
0x0011(17)	0x000D(13)	The bus axis has not selected any output device	Check whether the bus axis has selected an output device	Warning
0x0011(17)	0x000E(14)	The current command does not support repeated calls	The current command does not support repeated calls to the function block, so avoid this situation manually	Warning
0x0011(17)	0x000F(15)	Axis type setting error	Check whether the axis type matches the command type	Warning
0x0011(17)	0x0010(16)	The address of bus axis control word (16#6040) is NULL	 Do not use axis control commands to map and send PDO parameters from the I/O mapping of the slave device description file Check whether the parameter ControlWord(16#6040) is configured in the slave device description file 	Warning
0x0011(17)	0x0011(17)	Positive hard limit ID configuration failed	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x0012(18)	Negative hard limit ID configuration failed	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x0013(19)	Probe ID1 configuration failed	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x0014(20)	Probe ID2 configuration failed	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x0015(21)	Servo error ID configuration failed	Check whether the current pulse axis input and output points are reused	Warning

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
0x0011(17)	0x0016(22)	Home signal ID configuration failed	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x0017(23)	Z signal ID configuration failed	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x0018(24)	Axis enable ID configuration failed	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x0019(25)	Failed to clear the servo error ID configuration	Check whether the current pulse axis input and output points are reused	Warning
0x0011(17)	0x001A(26)	The axis address is NULL	Check whether the axis configuration is successful	Warning
0x0011(17)	0x001B(27)	Bus axis enable failed	If bus axis enable timed out, check whether the EtherCAT communication and feedback state words are normal	Warning
0x0011(17)	0x001C(28)	The bus axis has not entered the OP state	Check whether EtherCAT communication is in Op state	General error
0x0011(17)	0x001D(29)	The current function block execution is invalid	The current command function is not yet open and is invalid for use	Warning
0x0011(17)	0x001E(30)	The current axis communication timed out	 Check whether EtherCAT communication is in Op state Check whether the EtherCAT communication return value is normal 	Warning
0×0011(17)	0x001F(31)	Under the current axis configuration, the EtherCAT synchronization cycle cannot be less than 1 ms	Check whether the setting of the synchronization cycle of the EtherCAT master station is less than 1ms (in case of mixed use of bus axis and pulse axis, the EtherCAT synchronization cycle cannot be less than 1 ms)	Warning
0x0011(17)	0x0020(32)	The PLC does not run	Check whether the PLC dial switch is set to Stop	Warning
0x0011(17)	0x0021(33)	The axis triggered a soft-limit deceleration and stop	The current axis is in the process of the soft-limit deceleration and stopping, and the execution of the current triggered command	Warning

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
•	•		is invalid	
0x0011(17)	0x0022(34)	The address of the current command parameter is NULL	If the address of the current command parameter is NULL, provide an input variable or contact the IVT technical personnel	Warning
0x0011(17)	0x0023(35)	During the pulse axis movement, the pulse frequency of the current interpolation period is ≥ 200k	The maximum operating frequency of pulse axis is not allowed to exceed 200k, so it is recommended to reduce the speed of operation	General error
0x0011(17)	0x0024(36)	The pulse axis FPGA cache reached the limit value	This is only a prompt	Warning
0x0011(17)	0x0025(37)	The PDO data address in EtherCAT is NULL	Check whether the EtherCAT communication is normal	General error
0x0011(17)	0x0026(38)	The current servo axis is not on-line	 Check whether the EtherCAT communication is normal Check whether the current servo axis is connected to the network cable 	General error
0x0011(17)	0x0027(39)	The current axis communication failed	If the EtherCAT communication failed during the operation, check the state of the EtherCAT communication	Warning
0x0011(17)	0x0028(40)	The value of the PDO parameter StatusWord is 0	Check whether the EtherCAT communication is normal	Warning
0x0011(17)	0x0029(41)	The address of the PDO parameter ErrorCode is NULL	 Check whether the EtherCAT communication is normal Check whether the PDO parameter is configured 	Warning
0x0011(17)	0x002A(42)	The current axis does not support torque control	Check the axis type configuration, as torque control only supports the bus axis	Warning
0x2B(43)	Warning	The address of bus axis target position (16#607a) is NULL	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter TargetPosition(16#607a) is configured in the slave 	Warning

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
			device description file	
0x2C(44)	Warning	The process data operation mode (16#6060) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file 2. Check whether the parameter ModeOfOperation(16#606 0) is configured in the slave device description file 	Warning
0x2D(45)	Warning	The process data status word (16#6041) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter StatusWord(16#6041) is configured in the slave device description file 	Warning
0x2E(46)	Warning	The process data feedback position (16#6064) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file 2. Check whether the parameter PositionActualValue(16#60 64) is configured in the slave device description file 	Warning
0x2F(47)	Warning	The process data feedback speed (16#606c) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file 2. Check whether the parameter SpeedActualValue(16#606 c) is configured in the slave device description file 	Warning
0x30(48)	Warning	The process data feedback mode (16#6061) is not	 Do not use axis control commands to map PDO 	Warning

Hexadecimal main error code (corresponding decimal)	Hexadecimal error subcode (corresponding decimal)	Meaning of error	Solution	Error level
		selected	parameters from the I/O mapping of the slave device description file • 2. Check whether the parameter OperationMode Display (16#6061) is configured in the slave device description file	
0x31(49)	Warning	The process data maximum velocity (16#607f) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file 2. Check whether the parameter MaxProfileVelocity(16#607 f) is configured in the slave device description file 	Warning
0x32(50)	Warning	The process data target torque (16#6071) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter TargetTorque (16#6071) is configured in the slave device description file 	Warning
0x33(51)	Warning	The process data feedback torque (16#6077) is not selected	Do not use axis control commands to map PDO parameters from the I/O mapping of the slave	Warning
0x34(52)	Warning	The process data target velocity (16#60ff) is not selected	 Do not use axis control commands to map PDO parameters from the I/O mapping of the slave device description file Check whether the parameter 	Warning

